JPS6334864B2 - - Google Patents

Info

Publication number
JPS6334864B2
JPS6334864B2 JP55127182A JP12718280A JPS6334864B2 JP S6334864 B2 JPS6334864 B2 JP S6334864B2 JP 55127182 A JP55127182 A JP 55127182A JP 12718280 A JP12718280 A JP 12718280A JP S6334864 B2 JPS6334864 B2 JP S6334864B2
Authority
JP
Japan
Prior art keywords
formula
ether
compound
chloro
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55127182A
Other languages
Japanese (ja)
Other versions
JPS5750950A (en
Inventor
Noboru Yagi
Mitsumasa Umemoto
Hideo Michama
Noryoshi Pponda
Hironobu Horie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP12718280A priority Critical patent/JPS5750950A/en
Publication of JPS5750950A publication Critical patent/JPS5750950A/en
Publication of JPS6334864B2 publication Critical patent/JPS6334864B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogenated Pyridines (AREA)
  • Pyrrole Compounds (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は眮換ヒドラゞノニトロゞプニル゚ヌ
テル系化合物の補造方法に関し、詳しくは匏
 匏䞭、―は―NO2たたは
The present invention relates to a method for producing a substituted hydrazinonitrodiphenyl ether compound, and more particularly, the present invention relates to a method for producing a substituted hydrazinonitrodiphenyl ether compound, and more specifically, the formula () (In formula (), -D is -NO 2 or

【匏】を瀺す で衚されるニトロゞプニル゚ヌテル系化合物を
脂肪族ハロゲン化炭化氎玠たたは芳銙族炭化氎玠
から遞ばれた疎氎性の䞍掻性有機溶媒の存圚䞋
で、ヒドラゞン化合物ずを眮換反応させお埗られ
た匏化合物のがヒドラゞノ化された反応
液を、氎掗、分液しお、未反応ヒドラゞン化合物
を含む氎局を陀去した埌、匕続きヒドラゞノ化合
物の含たれる疎氎性䞍掻性有機溶媒局を、匏
 は䜎玚アルキル基を瀺す。で衚される䜎
玚脂肪酞クロリドたたは䜎玚脂肪酞無氎物を甚い
おアシル化反応に付し、ヒドラゞノ基をアシル化
させるこずを特城ずする匏 は匏のず同䞀 で衚される眮換ヒドラゞノニトロゞプニル゚ヌ
テル系化合物の補造方法に係る。 埓来、数倚くのゞプニル゚ヌテル系化合物が
陀草剀ずしお実甚化が怜蚎されおいるが、これら
の化合物は、その眮換基の皮類、数たたは䜍眮な
どの化孊構造䞊の僅かな盞違によ぀お陀草掻性の
有無や、発珟の仕方、遞択性ならびに効力の持続
性など著しく異なる堎合が倚く、化合物の化孊構
造の類䌌性によ぀お、これらの化合物の陀草掻性
を予枬するこずは極めお困難である。 これたでのゞプニル゚ヌテル系化合物のある
皮のものが優れた陀草掻性を有するこずは公知の
事実である。䟋えば―トリクロル―
4′―ニトロゞプニル゚ヌテルや、―ゞク
ロル―3′―メトキシ―4′―ニトロゞプニル゚ヌ
テルが氎田初期甚陀草剀ずしお広く䜿甚されおい
る。 しかしながら、これらの化合物は残効性が䞍十
分でありたた、その䜿甚時期を逞するず完党な雑
草防陀は困難であるず蚀う䞍䟿があるので、これ
ら既知ゞプニル゚ヌテル系化合物よりもさらに
高い陀草掻性ず安党な遞択性および防陀の困難な
氎田倚幎生雑草を防陀できる陀草掻性を持぀氎田
甚陀草剀の開発が望たれおいた。 䞀方、畑䜜甚陀草剀ずしお―ゞクロル―
4′―ニトロゞプニル゚ヌテルが広く䜿甚されお
おり、その他にもいく぀かのゞプニル゚ヌテル
系化合物が知られおいるが、これらの化合物は、
ある皮の広葉雑草に効果が䞍十分であり、これら
の既知ゞプニル゚ヌテル系化合物よりもさらに
高い陀草掻性ず安党な遞択性を持぀畑䜜甚陀草剀
の開発が望たれおいた。 最近、前蚘匏で瀺される化合物も含たれ
るずころの眮換ヒドラゞノニトロゞプニル゚ヌ
テル系化合物が既知ゞプニル゚ヌテル系化合物
に范べ極めお優れた陀草掻性ず高い遞択性ず十分
な残効性および陀草の困難な倚幎生雑草をも防陀
できる陀草掻性を有するこずが芋出されおいる。
特開昭55−64557。 本願発明方法は特開昭55−64557に提䟛された
新芏化合物の䞭でも匏で瀺される化合物は
特に顕著な掻性を有するこずがわかり、これらの
化合物の改良された補造方法であり、前蚘特開昭
55−64557に開瀺された補造法の工業的芏暡での
経枈的欠点を解決したものである。 特開昭55−64557では䟋えば匏の䞭の
―クロル――トリルオルメチル―3′―セチルヒ
ドラゞノ―4′―ニトロゞプニル゚ヌテルを埗る
堎合、―クロル――トリフルオルメチル―
3′4′―ゞニトロゞプニル゚ヌテルをゞオキサ
ン溶媒䞭に溶解しおヒドラゞン化合物でヒドラゞ
ノ化反応を行い、反応終了埌反応液を氷氎䞭に排
出し、析出した粗結晶を分離、氎掗、也燥、粟補
により結晶ずしおヒドラゞノ化物を単離しおい
る。そしおこれを氷酢酞を溶媒ずしおアセチル化
工皋に付しお目的生成物を埗おいるが、ヒドラゞ
ノ化工皋では未反応ヒドラゞンの系䞭ぞの若干の
残存は避けられず、次のヒドラゞノ化物のアシル
化工皋では、ヒドラゞンが未反応物ずしお存圚す
ればアシル化反応が劚害される。 そのため該公報ではヒドラゞノ化反応終了液を
氷氎䞭に排出し、未反応ヒドラゞンを氎掗しお陀
去しおいるが、この堎合、ゞオキサンのような氎
溶性溶媒をヒドラゞノ化反応に䜿甚すれば、排出
液から効率のよい溶媒の分離、回収が困難であ
り、たた析出させお埗られたヒドラゞノ化合物結
晶には未反応ヒドラゞン含有の氎分が付着し、こ
のため、也燥、再結晶などの工皋が必芁であ぀
た。 本発明者等はニトロゞプニル゚ヌテル系化合
物にヒドラゞン化合物を䜜甚させる際の溶媒に぀
いお怜蚎した結果、回収が容易な―ゞクロ
ル゚タンなどの氎ずたじり合わない疎氎性の䞍掻
性有機溶媒䞭で非垞に高収率でヒドラゞノニトロ
ゞプニル゚ヌテル系化合物が生成し、しかもこ
れを分液により氎盞のみ分離しお匕続き同䞀の溶
媒䞭でアシル化を行うず目的の眮換ヒドラゞノニ
トロゞプニル゚ヌテル系化合物が合成できるこ
ずを芋出し、鋭意怜蚎した結果、本発明を完成し
た。本発明方法においお補造される眮換ヒドラゞ
ノニトロゞプニル゚ヌテル系化合物は、匏
で衚される、具䜓的には―クロル――
トリフルオルメチル―3′――アセチルヒドラ
ゞノ―4′―ニトロゞプニル゚ヌテル、―ク
ロル――トリフルオルメチル―3′――プロ
ピオニルヒドラゞノ―4′―ニトロゞプニル゚
ヌテル、―クロル――トリフルオルメチル―
3′――ピバロむルヒドラゞノ―4′―ニトロ
ゞプニル゚ヌテル、―クロル――トリフル
オルメチル―3′――む゜ブチロむルヒドラゞ
ノ―4′―ニトロゞプニル゚ヌテル、―クロ
ル――トリフルオルメチル―3′―スクシンむ
ミドアミノ―4′―ニトロゞプニル゚ヌテル、
―クロル――トリフルオルメチル―3′―グ
ルタルむミドアミノ―4′―ニトロゞプニル゚
ヌテル、―クロル――トリフルオルメチル―
3′―アゞピンむミドアミノ―4′―ニトロゞフ
゚ニル゚ヌテル、などの化合物が挙げられる。 たた、本発明方法においお出発原料ずなる匏
のニトロゞプニル゚ヌテル系化合物は
―クロル――トリフルオルメチル―3′4′―ゞ
ニトロゞプニル゚ヌテルたたは―ビス
―クロル――トリフルオルメチルプノキ
シニトロベンれンであり、 で瀺されるゞプニル゚ヌテル系化合物を垞法に
より硫酞、無氎酢酞もしくは―ゞクロル゚
タン䞭、硝酞―硫酞の混酞もしくは硝酞塩―硫酞
などでニトロ化するこずによ぀お埗られるが、特
に―ゞクロル゚タンなどを溶媒ずする堎合
には、生成したニトロゞプニル゚ヌテル系化合
物を取り出さずに本発明方法の原料ずしお䜿甚で
き、䞊蚘のゞプニル゚ヌテル系化合物から同䞀
溶媒䞭でニトロ化、ヒドラゞノ化およびアシル化
ず䞭間䜓を取り出さずに行なえる利点がある。 本発明方法のヒドラゞノ化の眮換反応においお
䜿甚されるヒドラゞン化合物はヒドラゞン・ヒド
ラヌトを甚いたほうがよく、匏で瀺される
ニトロゞプニル゚ヌテル系化合物モルに察し
お奜たしくは1.0〜10モル比が䜿甚される。䜿甚
量がこれより少ない堎合には反応率が悪くなり収
率が䜎䞋し、たた、これより倚い堎合には反応埌
の埌凊理の際などに生成物の粟補を困難にする。 たた、本発明方法においお䜿甚されるアシル化
剀ずしおは具䜓的には無氎酢酞、無氎コハク酞、
無氎グルタル酞、無氎アゞピン酞、無氎マレむン
酞などの酞無氎物類、塩化アセチル、ピロピオニ
ルクロリド、ピバロむルクロリド、む゜ブチルク
ロリドなどの酞ハロゲン化物類が挙げられ、ヒド
ラゞノニトロゞプニル゚ヌテル系化合物モル
に察しお奜たしくは1.0〜モル比が䜿甚される。
䜿甚量がこれより少ない堎合には反応率が悪くな
り収率は䜎䞋し、たた、これより倚い堎合には高
䟡なアシル化剀のロスだけでなく反応埌の埌凊理
の際などに生成物の粟補を困難にする。 本発明方法においお䜿甚される疎氎性の䞍掻性
溶媒は具䜓的にはゞクロルメタン、クロロホル
ム、四塩化炭玠、―ゞクロル゚タン、
―ゞクロル゚タン、―トリクロル゚
タン、―トリクロル゚タン、
―テトラクロル゚タン、―
テトラクロル゚タン、ペンタクロル゚タン、ヘキ
サクロル゚タン、―ゞクロル゚チレン、ト
リクロル゚チレン、テトラクロル゚チレン、塩化
プロピル、塩化む゜プロピル、―ゞクロル
プロパン、―トリクロプロパン、―
クロルペンタン、―ゞブロム゚タン、
―テトラブロム゚タン、臭化プロピ
ル、臭化む゜プロピルなどの脂肪族ハロゲン化炭
化氎玠類、ベンれン、トル゚ン、―キシレン、
―キシレン、―キシレンなどの芳銙族炭化氎
玠類が挙げられるが、特に―ゞクロ゚タン
などの脂肪族ハロゲン化炭化氎玠が奜たしい。 これらの溶媒の䜿甚量は匏で瀺されるニ
トロゞプニル゚ヌテル系化合物重量郚に察し
お〜50重量郚、奜たしくは〜20重量郚が䜿甚
される。䜿甚量がこれより倚い堎合には反応速床
が遅くなり、工業的には生産性が䜎くなる。た
た、䜿甚量がこれより少ない堎合にはかきたぜが
困難ずなり、郚分的な反応枩床の加熱が起こり易
くなる。 たた、本発明方法においおヒドラゞノ化あるい
は、アシル化の際に炭酞カリりム、ピリゞンもし
くはトリ゚チルアミン等の塩基性物質を共存させ
るず円滑に反応が進行する。 本発明方法の䞀般的な実斜態様は次の通りであ
る。即ち、匏で瀺されるニトロゞプニル
゚ヌテル系化合物を疎氎性䞍掻性有機溶媒に溶解
たたは懞濁し、―10〜50℃、奜たしくは10〜40℃
でヒドラゞン化合物を添加する。぀いで10℃〜沞
点で、奜たしくは数十分間〜数十時間かきたぜた
埌、分液し、有機局は氎掗、脱氎、也燥埌、―10
℃〜沞点でアシル化剀を添加する。぀いで10℃〜
沞点で、奜たしくは数十分間〜数十時間かきたぜ
た埌、冷华、氎掗、分液する。有機局は脱氎、也
燥埌、溶媒を枛圧䞋に陀去、也燥しお粗生成物を
埗る。䞀般にはこの皋床で十分実甚に耐えうる
が、さらに望むなら再結晶掻性炭凊理もしくはシ
リカゲルカラムクロマトグラフむヌなどのよ぀お
粟補するこずによ぀お、匏の眮換ヒドラゞ
ノニトロゞプニル゚ヌテル系化合物を埗るこず
ができる。 本発明方法により補造される匏の眮換ヒ
ドラゞノニトロゞプニル゚ヌテル系化合物は氎
田甚および畑䜜甚陀草剀ずしお優れた陀草掻性を
瀺し、高い遞択性を有する。 次に本発明を実斜䟋によ぀お具䜓的に説明す
る。 実斜䟋  ―クロル――トリフルオルメチル―3′―ニ
トロゞプニル゚ヌテル15.9を―ゞクロ
ル゚タン32に溶解し、98硝酞4.0および98
硫酞26.8によりなる混酞を10〜15℃で時間
かか぀お滎䞋。぀いで30℃に昇枩し、同枩床で
時間かきたぜた。反応埌宀枩で有機局ず硫酞局に
分液し、䞊局有機局は氎掗埌、次のヒドラゞ
ノ化工皋ぞ移す。䞀方、䞋局硫酞局は煮詰め
た埌、硫酞ずしお次回の反応に再䜿甚する。 このようにしお埗たニトロ化液53.0に無氎炭
酞カリりム7.0および―ゞクロル゚タン
80.2を添加し、かきたぜながら80ヒドラゞ
ン・ヒドラヌト氎溶液3.8を20℃で玄10分間か
か぀お滎䞋぀いで80℃たで昇枩し、同枩床で時
間かきたぜた。宀枩たで冷华埌、氎80mlを加えお
かきたぜ分泌し、氎局はさらに―ゞクロル
゚タン20mlで抜出し、有機局ず合わせた。埗られ
た有機局は脱氎した埌次のアセチル化工皋ぞ移し
た。䞀方、氎局は次亜塩粗酞ナトリりム氎溶液で
過剰のヒドラゞンを分解した埌、排氎ずしお凊理
した。 このようにしお埗たヒドラゞノ化液138に塩
化アセチル4.08を20〜25℃で10分間かか぀お滎
䞋。40℃に昇枩した埌、40〜50℃で時間、さら
に80℃に昇枩しお同枩床で時間かきたぜた。反
応埌、冷华、氎掗した。粉末掻性炭を添加し
た埌時間かきたぜ濟過、さらに脱氎埌、溶媒を
枛圧䞋に蒞発也固しお粗補の―クロル――ト
リフルオルメチル―3′―アセチルヒドラゞノ―
4′―ニトロゞプニル゚ヌテル11.0収率56.4
、察―クロル――トリフルオルメチル―
3′―ニトロゞプニル゚ヌテルを埗た。このも
のをベンれン――ヘキサンで再結晶しお
mp151.5〜153.5℃の淡黄色結晶を埗た。このもの
は別途―クロル――トリフルオルメチル―
3′―ヒドラゞノ―4′―ニトロゞプニル゚ヌテル
を氷酢酞䞭無氎酢酞でアセチル化しお埗た暙品ず
混融詊隓、IRスペクトル、ガスクロマトグラフ
むヌおよび薄局クロマトフラフむヌの結果同䞀で
あるこずを確認した。たた回収した溶媒は最初の
ニトロ化の溶媒ずしお埪環しお䜿甚し、氎掗液は
䞭和埌排氎しお凊理した。 実斜䟋  ―クロル――トリフルオルメチル―3′
4′―ゞニトロゞプニル゚ヌテル1.82を
―ゞクロル゚タン25.1に溶解し、20℃でかきた
ぜながら80ヒドラゞン・ヒドラヌト氎溶液0.63
を滎䞋した。぀いで30℃で時間、60℃で時
間、80℃で時間かきたぜた埌、氎20mlを加えお
かきたぜ分液した。有機溶媒局を脱氎、也燥した
のち、無氎酢酞0.52を滎䞋しお58〜60℃で時
間かきたぜた。氎20mlに排出したのち、分液。氎
局はさらに―ゞクロル゚タン10.0で抜出
し、前の有機溶媒局ず合わせた。氎掗、脱氎、也
燥した埌、溶媒を枛圧䞋で蒞発也固しお―クロ
ル――トリフルオルメチル―3′―アセチルヒド
ラゞノ―4′―ニトロゞプニル゚ヌテルの結晶
1.87を埗た。収率96.0、察―クロル―
―トリフルオルメチル―3′4′―ゞニトロゞプ
ニル゚ヌテルmp152.5〜154℃。 尚、溶媒―ゞクロル゚タンのかわりに、
ヒドラゞノ化反応時にゞオキサンを溶媒に䜿甚し
お同量の―クロル――トリフルオルメチル―
3′4′―ゞニトロゞプニル゚ヌテルをヒドラゞ
ノ化反応させ、反応終了液を氷氎䞭に排出し、こ
れを析出分離、也燥させたものを、䞊蚘蚘茉ず同
じ方法でアセチル化しお―クロル――トリフ
ルオルメリル―3′―アセチルヒドラゞノ―4′―ニ
トロゞプニル゚ヌテルの結晶1.54を埗た。こ
れは―クロル――トリフルオルメチル―3′
4′―ゞニトロゞプニル゚ヌテルに察し、収率
79.0である。 実斜䟋  ―ビス―クロル――トリフルオル
メチルプノキシニトロベンれン2.56を
―ゞクロル゚タン25.1に溶解させ、27℃でか
きたぜながら80ヒドラゞン・ヒドラヌト氎溶液
0.63を滎䞋した。぀いで80℃たで1.5時間かか
぀お昇枩した埌、79〜80℃で時間かきたぜた。
80ヒドラゞン・ヒドラヌト氎溶液0.63を远加
しお、さらに80℃で50時間かきたぜた。氎20mlを
くわえおかきたぜ分液した。有機溶媒局を脱氎、
也燥埌、無氎酢酞0.52を滎䞋しお60℃で時間
かきたぜた。氎50mlに排出したのち、分液。氎局
はさらに―ゞクロル゚タン25.1で抜出
し、前の有機溶媒ず合わせ、氎掗、脱氎、也燥し
た。枛圧䞋で溶媒を蒞発也固した埌、ベンれン―
―ヘキサンの混合溶媒で再結晶しお
―クロル――トリフルオルメチル―3′―アセ
チルヒドラゞノ―4′―ニトロゞプニル゚ヌテル
の結晶1.55収率79.6、察―ビス
―クロル――トリフルオルメチルプノキシ
ニトロベンれンを埗た。mp152.5〜153℃。 実斜䟋  ―クロル――トリフルオルメチル―3′
4′―ゞニトロゞプニル゚ヌテル1.82をトル゚
ン17.4に溶解し、20℃でかきたぜながら80ヒ
ドラゞン・ヒドラヌト氎溶液0.63を滎䞋した。
぀いで30℃で時間、60℃で16時間かきたぜた
埌、氎20mlを加えおかきたぜ分液した。トル゚ン
局を脱氎、也燥したのち、塩化アセチル0.41を
滎䞋。40℃で時間、80℃で時間かきたぜた。
æ°Ž10mlで回掗浄した埌、脱氎、也燥した。溶媒
を枛圧䞋で蒞発也固しお粗生物1.94を埗た。
mp111〜131℃。このものをベンれン――ヘキ
サンの混合溶媒䞭で再結晶しお―ク
ロル――トリフルオルメチル―3′―アセチルヒ
ドラゞノ―4′―ニトロゞプニル゚ヌテルの結晶
1.50収率76.7、察―クロル――トリフ
ルオルメチル―3′4′―ゞニトロゞプニル゚ヌ
テルを埗た。mp152〜153.5℃。 実斜䟋 〜 実斜䟋に準じお、実斜䟋のアシル化工皋に
おいお、アシル化剀の無氎酢酞に替えお、第衚
に瀺すアシル化剀を、―クロル――トリフル
オルメチル―3′4′―ゞニトロゞプニル゚ヌテ
ルに察し1.1モル倍甚いた以倖は実斜䟋ず党く
同様にしお第衚に瀺す匏化合物を合成し
た。
Substitution reaction of a nitrodiphenyl ether compound represented by [formula] with a hydrazine compound in the presence of a hydrophobic inert organic solvent selected from aliphatic halogenated hydrocarbons or aromatic hydrocarbons. The resulting reaction solution in which D of the compound of formula () was hydrazinated was washed with water and separated to remove the aqueous layer containing the unreacted hydrazine compound, and then the hydrophobic inert solution containing the hydrazino compound was washed with water and separated. The organic solvent layer is expressed by the formula () Formula () characterized in that a lower fatty acid chloride or lower fatty acid anhydride represented by (R represents a lower alkyl group) is subjected to an acylation reaction to acylate a hydrazino group. (R is the same as R in formula ()) The present invention relates to a method for producing a substituted hydrazinonitrodiphenyl ether compound represented by the formula (R is the same as R in formula ()). A number of diphenyl ether compounds have been considered for practical use as herbicides, but these compounds differ in their herbicidal activity due to slight differences in their chemical structure, such as the type, number, or position of substituents. It is extremely difficult to predict the herbicidal activity of these compounds based on similarities in their chemical structures, as the presence or absence of these compounds, mode of expression, selectivity, and persistence of efficacy often differ significantly. It is a well-known fact that certain types of diphenyl ether compounds have excellent herbicidal activity. For example, 2,4,6-trichlor-
4'-nitrodiphenyl ether and 2,4-dichloro-3'-methoxy-4'-nitrodiphenyl ether are widely used as herbicides for initial use in paddy fields. However, these compounds have insufficient residual efficacy and are difficult to completely control weeds if the timing of their use is missed. It has been desired to develop a herbicide for paddy fields that has safe selectivity and herbicidal activity that can control difficult-to-control perennial weeds in paddy fields. On the other hand, 2,4-dichlor-
4'-Nitrodiphenyl ether is widely used, and several other diphenyl ether compounds are known, but these compounds are
It is insufficiently effective against certain broad-leaved weeds, and it has been desired to develop a field herbicide with even higher herbicidal activity and safer selectivity than these known diphenyl ether compounds. Recently, substituted hydrazinonitrodiphenyl ether compounds, which also include the compound represented by the formula () above, have been discovered to have extremely superior herbicidal activity, high selectivity, sufficient residual efficacy, and herbicidal properties compared to known diphenyl ether compounds. It has been found that it has herbicidal activity that can control even difficult perennial weeds.
(Japanese Patent Application Laid-open No. 55-64557). It has been found that among the novel compounds provided in JP-A-55-64557, the compound represented by the formula () has particularly remarkable activity, and the method of the present invention is an improved method for producing these compounds. Kaisho
This method solves the economic disadvantages of the manufacturing method disclosed in No. 55-64557 on an industrial scale. In JP-A-55-64557, for example, 2 in the formula ()
When obtaining chloro-4-tolyluomethyl-3'-cetylhydrazino-4'-nitrodiphenyl ether, 2-chloro-4-trifluoromethyl-
3′,4′-dinitro diphenyl ether was dissolved in dioxane solvent and subjected to hydrazine reaction with a hydrazine compound. After the reaction was completed, the reaction solution was discharged into ice water, and the precipitated crude crystals were separated, washed with water, dried, The hydrazinide is isolated as crystals through purification. This is then subjected to an acetylation process using glacial acetic acid as a solvent to obtain the desired product. However, in the hydrazine formation process, it is inevitable that some unreacted hydrazine remains in the system, and the acyl of the next hydrazine is In the acylation step, the presence of hydrazine as an unreacted substance will hinder the acylation reaction. Therefore, in this publication, the hydrazine reaction completed liquid is discharged into ice water, and unreacted hydrazine is removed by washing with water. It is difficult to efficiently separate and recover the solvent from the hydrazino compound crystals obtained by precipitation, and moisture containing unreacted hydrazine adheres to the hydrazino compound crystals obtained by precipitation, thus requiring steps such as drying and recrystallization. Ta. The present inventors investigated the solvent for reacting a hydrazine compound with a nitrodiphenyl ether compound, and found that in a hydrophobic inert organic solvent that does not mix with water, such as 1,2-dichloroethane, which is easy to recover. A hydrazinonitrodiphenyl ether compound is produced in a very high yield, and when only the aqueous phase is separated by liquid separation and then acylated in the same solvent, the desired substituted hydrazinonitrodiphenyl ether is obtained. The inventors discovered that it was possible to synthesize such compounds, and as a result of intensive study, they completed the present invention. The substituted hydrazinonitrodiphenyl ether compound produced in the method of the present invention is represented by the formula (), specifically 2-chloro-4-
Trifluoromethyl-3'-(2-acetylhydrazino)-4'-nitrodiphenyl ether, 2-chloro-4-trifluoromethyl-3'-(2-propionylhydrazino)-4'-nitrodiphenyl Ether, 2-chloro-4-trifluoromethyl-
3'-(2-pivaloylhydrazino)-4'-nitrodiphenyl ether, 2-chloro-4-trifluoromethyl-3'-(2-isobutyroylhydrazino)-4'-nitrodiphenyl Ether, 2-chloro-4-trifluoromethyl-3'-(succinimidamino)-4'-nitrodiphenyl ether,
2-chloro-4-trifluoromethyl-3'-(glutarimidamino)-4'-nitrodiphenyl ether, 2-chloro-4-trifluoromethyl-
Examples include compounds such as 3'-(adipineimidoamino)-4'-nitrodiphenyl ether. Further, in the method of the present invention, the nitrodiphenyl ether compound of formula () which is the starting material is 2
-chloro-4-trifluoromethyl-3',4'-dinitrodiphenyl ether or 2,4-bis(2-chloro-4-trifluoromethylphenoxy)nitrobenzene, It can be obtained by nitrating the diphenyl ether compound represented by the formula with a mixed acid of nitric acid-sulfuric acid or nitrate-sulfuric acid in sulfuric acid, acetic anhydride, or 1,2-dichloroethane using a conventional method. - When dichloroethane or the like is used as a solvent, the produced nitrodiphenyl ether compound can be used as a raw material for the method of the present invention without being taken out, and the above-mentioned diphenyl ether compound can be nitrated, hydrazined, and It has the advantage that acylation can be carried out without removing intermediates. It is better to use hydrazine hydrate as the hydrazine compound used in the substitution reaction of hydrazinization in the method of the present invention, and the molar ratio is preferably 1.0 to 10 per mole of the nitrodiphenyl ether compound represented by formula (). used. If the amount used is less than this, the reaction rate will be poor and the yield will be reduced, and if it is more than this, it will be difficult to purify the product during post-treatment after the reaction. In addition, specific examples of the acylating agent used in the method of the present invention include acetic anhydride, succinic anhydride,
Examples include acid anhydrides such as glutaric anhydride, adipic anhydride, and maleic anhydride; acid halides such as acetyl chloride, propionyl chloride, pivaloyl chloride, and isobutyl chloride; and hydrazinonitrodiphenyl ethers. Preferably a molar ratio of 1.0 to 5 is used per mole of compound.
If the amount used is less than this, the reaction rate will be poor and the yield will be reduced, and if it is more than this, not only will there be a loss of the expensive acylating agent, but there will also be a loss of the product during post-treatment after the reaction. Makes refining difficult. Hydrophobic inert solvents used in the method of the present invention are specifically dichloromethane, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,
2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,
1,2-tetrachloroethane, 1,1,2,2-
Tetrachloroethane, pentachloroethane, hexachloroethane, 1,2-dichloroethylene, trichlorethylene, tetrachlorethylene, propyl chloride, isopropyl chloride, 1,2-dichloropropane, 1,2,3-triclopropane, 1-
Chlorpentane, 1,2-dibromoethane, 1,
Aliphatic halogenated hydrocarbons such as 1,2,2-tetrabromoethane, propyl bromide, isopropyl bromide, benzene, toluene, o-xylene,
Examples include aromatic hydrocarbons such as m-xylene and p-xylene, but aliphatic halogenated hydrocarbons such as 1,2-dichlorothane are particularly preferred. The amount of these solvents to be used is 1 to 50 parts by weight, preferably 2 to 20 parts by weight, per 1 part by weight of the nitrodiphenyl ether compound represented by formula (). If the amount used is larger than this, the reaction rate will be slow and industrial productivity will be low. Furthermore, if the amount used is less than this, stirring becomes difficult and partial heating of the reaction temperature tends to occur. Furthermore, in the method of the present invention, when a basic substance such as potassium carbonate, pyridine or triethylamine is present during hydrazination or acylation, the reaction proceeds smoothly. A general embodiment of the method of the invention is as follows. That is, a nitrodiphenyl ether compound represented by the formula () is dissolved or suspended in a hydrophobic inert organic solvent, and heated at -10 to 50°C, preferably 10 to 40°C.
Add the hydrazine compound at . Then, after stirring at 10°C to the boiling point, preferably for several minutes to several tens of hours, the organic layer is separated, and the organic layer is washed with water, dehydrated, dried, and heated to -10°C.
The acylating agent is added at ~°C to boiling point. Then 10℃
After stirring at the boiling point, preferably for several tens of minutes to several tens of hours, the mixture is cooled, washed with water, and separated. After the organic layer is dehydrated and dried, the solvent is removed under reduced pressure and dried to obtain a crude product. Generally, this level is sufficient for practical use, but if desired, the substituted hydrazinonitrodiphenyl ether compound of formula () can be purified by recrystallization activated carbon treatment or silica gel column chromatography. Obtainable. The substituted hydrazinonitrodiphenyl ether compound of formula () produced by the method of the present invention exhibits excellent herbicidal activity as a herbicide for paddy fields and fields, and has high selectivity. Next, the present invention will be specifically explained using examples. Example 1 15.9 g of 2-chloro-4-trifluoromethyl-3'-nitrodiphenyl ether was dissolved in 32 g of 1,2-dichloroethane, and 4.0 g of 98% nitric acid and 98%
A mixed acid consisting of 26.8 g of % sulfuric acid was added dropwise at 10 to 15°C for 1 hour. Then the temperature was raised to 30℃, and at the same temperature
I stirred the time. After the reaction, the mixture is separated into an organic layer and a sulfuric acid layer at room temperature, and the upper layer (organic layer) is washed with water and then transferred to the next hydrazination step. On the other hand, the lower layer (sulfuric acid layer) is boiled down and reused as sulfuric acid in the next reaction. To 53.0 g of the nitrated liquid thus obtained, 7.0 g of anhydrous potassium carbonate and 1,2-dichloroethane were added.
80.2 g was added, and while stirring, 3.8 g of an 80% hydrazine hydrate aqueous solution was added dropwise at 20°C for about 10 minutes, then the temperature was raised to 80°C, and the mixture was stirred at the same temperature for 5 hours. After cooling to room temperature, 80 ml of water was added and stirred to secrete the mixture, and the aqueous layer was further extracted with 20 ml of 1,2-dichloroethane and combined with the organic layer. The obtained organic layer was dehydrated and then transferred to the next acetylation step. On the other hand, the aqueous layer was treated as wastewater after decomposing excess hydrazine with an aqueous solution of crude sodium hypochlorite. 4.08 g of acetyl chloride was added dropwise to 138 g of the hydrazinated liquid thus obtained at 20 to 25°C for 10 minutes. After raising the temperature to 40°C, the mixture was heated at 40 to 50°C for 2 hours, then further raised to 80°C, and stirred at the same temperature for 5 hours. After the reaction, it was cooled and washed with water. After adding 1 g of powdered activated carbon, stirring and filtration for 1 hour, and further dehydration, the solvent was evaporated to dryness under reduced pressure to obtain crude 2-chloro-4-trifluoromethyl-3'-acetylhydrazino.
4′-nitrodiphenyl ether 11.0g (yield 56.4
%, vs. 2-chloro-4-trifluoromethyl-
3′-nitrodiphenyl ether) was obtained. Recrystallize this with benzene-n-hexane
Pale yellow crystals with mp 151.5-153.5°C were obtained. This product is sold separately with 2-chloro-4-trifluoromethyl-
The results of mixing test, IR spectrum, gas chromatography, and thin layer chromatography showed that the sample was identical to the standard obtained by acetylating 3'-hydrazino-4'-nitrodiphenyl ether with acetic anhydride in glacial acetic acid. confirmed. The recovered solvent was recycled and used as a solvent for the initial nitration, and the washing solution was neutralized and then drained for treatment. Example 2 2-chloro-4-trifluoromethyl-3',
1.82g of 4′-dinitrodiphenyl ether 1,2
-Dissolve in 25.1g of dichloroethane and stir at 20℃ to make 0.63% 80% hydrazine hydrate aqueous solution.
g was added dropwise. Next, after stirring at 30°C for 3 hours, 60°C for 3 hours, and 80°C for 3 hours, 20ml of water was added and stirred to separate the liquids. After the organic solvent layer was dehydrated and dried, 0.52 g of acetic anhydride was added dropwise and stirred at 58 to 60°C for 4 hours. After draining into 20ml of water, separate the liquids. The aqueous layer was further extracted with 10.0 g of 1,2-dichloroethane and combined with the previous organic solvent layer. After washing with water, dehydration, and drying, the solvent was evaporated to dryness under reduced pressure to crystallize 2-chloro-4-trifluoromethyl-3'-acetylhydrazino-4'-nitrodiphenyl ether.
1.87g was obtained. (Yield 96.0%, vs. 2-chloro-4
-trifluoromethyl-3',4'-dinitrodiphenyl ether) mp152.5-154℃. In addition, instead of the solvent 1,2-dichloroethane,
Using dioxane as a solvent during the hydrazination reaction, the same amount of 2-chloro-4-trifluoromethyl-
3',4'-dinitrodiphenyl ether was subjected to a hydrazination reaction, the reaction completed liquid was discharged into ice water, this was precipitated, separated and dried, and the resulting product was acetylated in the same manner as described above to give 2-chloro- 1.54 g of crystals of 4-trifluoromelyl-3'-acetylhydrazino-4'-nitrodiphenyl ether were obtained. This is 2-chloro-4-trifluoromethyl-3′,
Yield for 4′-dinitrodiphenyl ether
It is 79.0%. Example 3 2.56 g of 2,4-bis(2-chloro-4-trifluoromethylphenoxy)nitrobenzene was
Dissolve in 25.1g of 2-dichloroethane and stir at 27℃ to prepare 80% hydrazine hydrate aqueous solution.
0.63g was added dropwise. The temperature was then raised to 80°C for 1.5 hours, and then stirred at 79-80°C for 6 hours.
0.63 g of 80% hydrazine hydrate aqueous solution was added, and the mixture was further stirred at 80°C for 50 hours. Add 20 ml of water and stir to separate the liquid. Dehydrate the organic solvent layer,
After drying, 0.52 g of acetic anhydride was added dropwise and stirred at 60°C for 6 hours. After draining into 50ml of water, separate the liquids. The aqueous layer was further extracted with 25.1 g of 1,2-dichloroethane, combined with the previous organic solvent, washed with water, dehydrated, and dried. After evaporating the solvent to dryness under reduced pressure, benzene-
Recrystallization from a mixed solvent of n-hexane (1:1) gave 1.55 g of crystals of 2-chloro-4-trifluoromethyl-3'-acetylhydrazino-4'-nitrodiphenyl ether (yield 79.6%, pair 2,4-bis(2
-chloro-4-trifluoromethylphenoxy)
Nitrobenzene) was obtained. mp152.5~153℃. Example 4 2-chloro-4-trifluoromethyl-3',
1.82 g of 4'-dinitrodiphenyl ether was dissolved in 17.4 g of toluene, and 0.63 g of an 80% aqueous hydrazine hydrate solution was added dropwise while stirring at 20°C.
Then, after stirring at 30°C for 5 hours and at 60°C for 16 hours, 20ml of water was added and stirred to separate the liquids. After dehydrating and drying the toluene layer, 0.41 g of acetyl chloride was added dropwise. The mixture was stirred at 40℃ for 4 hours and at 80℃ for 5 hours.
After washing twice with 10 ml of water, it was dehydrated and dried. The solvent was evaporated to dryness under reduced pressure to obtain 1.94 g of crude product.
mp111~131℃. This product was recrystallized in a mixed solvent of benzene-n-hexane (1:1) to give crystals of 2-chloro-4-trifluoromethyl-3'-acetylhydrazino-4'-nitrodiphenyl ether.
1.50 g (yield 76.7%, 2-chloro-4-trifluoromethyl-3',4'-dinitrodiphenyl ether) was obtained. mp152~153.5℃. Examples 5 to 9 According to Example 2, in the acylation step of Example 2, 2-chloro-4-trifluoromethyl was used as the acylating agent shown in Table 1 instead of acetic anhydride as the acylating agent. Compounds of formula () shown in Table 1 were synthesized in exactly the same manner as in Example 2, except that 1.1 times the mole of -3',4'-dinitro diphenyl ether was used.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  匏 匏䞭、―は―NO2たたは
【匏】を瀺す で衚されるニトロゞプニル゚ヌテル系化合物を
脂肪族ハロゲン化炭化氎玠たたは芳銙族炭化氎玠
から遞ばれた疎氎性の䞍掻性有機溶媒の存圚䞋
で、ヒドラゞン化合物ず眮換反応させお埗られた
匏化合物のがヒドラゞノ化された反応液
を、氎掗、分液しお、未反応ヒドラゞン化合物を
含む氎局を陀去した埌、匕続きヒドラゞノ化合物
の含たれる疎氎性䞍掻性有機溶媒局を、匏 は䜎玚アルキル基を瀺す。 で衚される䜎玚脂肪酞クロリドたたは䜎玚脂肪酞
無氎物を甚いおアシル化反応に付し、ヒドラゞノ
基をアシル化させるこずを特城ずする匏 は匏のず同䞀 で衚される眮換ヒドラゞノニトロゞプニル゚ヌ
テル系化合物の補造方法。
[Claims] 1 Formula () (In the formula (), -D represents -NO 2 or [Formula]) A nitrodiphenyl ether compound represented by The reaction solution in which D of the compound of formula () obtained by substitution reaction with a hydrazine compound in the presence of an organic solvent was hydrazinated was washed with water and separated into layers to remove the aqueous layer containing the unreacted hydrazine compound. After that, the hydrophobic inert organic solvent layer containing the hydrazino compound was added using the formula () (R represents a lower alkyl group.) A formula () characterized in that the hydrazino group is acylated by subjecting it to an acylation reaction using a lower fatty acid chloride or lower fatty acid anhydride represented by (R represents a lower alkyl group) (R is the same as R in formula ()) A method for producing a substituted hydrazinonitrodiphenyl ether compound represented by:
JP12718280A 1980-09-16 1980-09-16 Preparation of substituted hydrazinonitrodiphenyl ethereal compound Granted JPS5750950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12718280A JPS5750950A (en) 1980-09-16 1980-09-16 Preparation of substituted hydrazinonitrodiphenyl ethereal compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12718280A JPS5750950A (en) 1980-09-16 1980-09-16 Preparation of substituted hydrazinonitrodiphenyl ethereal compound

Publications (2)

Publication Number Publication Date
JPS5750950A JPS5750950A (en) 1982-03-25
JPS6334864B2 true JPS6334864B2 (en) 1988-07-12

Family

ID=14953698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12718280A Granted JPS5750950A (en) 1980-09-16 1980-09-16 Preparation of substituted hydrazinonitrodiphenyl ethereal compound

Country Status (1)

Country Link
JP (1) JPS5750950A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201033163A (en) * 2008-10-20 2010-09-16 Sumitomo Chemical Co Method for manufacturing oxadiazolinone compound and intermediate thereof
WO2019241850A1 (en) * 2018-06-22 2019-12-26 La Trobe University Substituted sulfonyl hydrazides as inhibitors of lysine biosynthesis via the diaminopimelate pathway

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564557A (en) * 1978-11-08 1980-05-15 Mitsui Toatsu Chem Inc Diphenyl ether compound and herbicide containing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564557A (en) * 1978-11-08 1980-05-15 Mitsui Toatsu Chem Inc Diphenyl ether compound and herbicide containing the same

Also Published As

Publication number Publication date
JPS5750950A (en) 1982-03-25

Similar Documents

Publication Publication Date Title
SU628812A3 (en) Organic compound producing method
RU1771476C (en) Method for production of 1,6-dichlorine-1,6-didesoxy-@@@-d-fruclofuranosyl-4-chloro-4 desoxy-@@@-d-galactopyranoside
DK170335B1 (en) Process for the preparation of 5-cyano-10-nitro-5H-dibenz (b, f) azepine
GB2275923A (en) Sucralose pentaester Production
JPH08134055A (en) Production of 3-o-substituted-ascorbic acid
JPS6334864B2 (en)
JPS62478A (en) Molecular composite, its production and utilization
CA2230921C (en) Process for the purification of diphenyl ether compounds
JPS5857373A (en) Preparation of l-ascorbic acid derivative
EP0398782B1 (en) Process for the preparation of acyl cyanides in anhydrous media
EP0274194B1 (en) Process for the preparation of 2-nitro-5-phenoxy-n-alkylsulfonyl benzamides by nitration
PL144334B1 (en) Method of isolating and purifying crude 5-/2-chloro-4-(trifluoromethyl)-phenoxy/-2-nitrobenzoic acid
US4191711A (en) Process for the preparation of certain nuclear chlorinated benzotrichlorides
JPS591255B2 (en) dinitronaphthalene
KR100201518B1 (en) Process for the preparation of 2-alkyl-4-acyl-6--i (tert)-butylphenol compounds
US5910604A (en) Purification process
JPH0354930B2 (en)
EP0398783A1 (en) Process for the synthesis of acyl cyanides
US4778568A (en) Process for separating isomer mixtures of 1,3- and 1,4- bis-(2-hydroxyhexafluoro-prop-2-yl)-benzene
US6072080A (en) Purification process
JPS6116252B2 (en)
JP4428730B2 (en) Method for producing 2,5-dihydrofuran
JPS6238346B2 (en)
JPH0586000A (en) Production of 2-amino-4-fluorobenzoic acid
RU2109005C1 (en) Method of synthesis of 2-alkyl-4-acyl-6-tert-butylphenolic compounds and their crystalline purified forms