JPS6334765B2 - - Google Patents

Info

Publication number
JPS6334765B2
JPS6334765B2 JP56024154A JP2415481A JPS6334765B2 JP S6334765 B2 JPS6334765 B2 JP S6334765B2 JP 56024154 A JP56024154 A JP 56024154A JP 2415481 A JP2415481 A JP 2415481A JP S6334765 B2 JPS6334765 B2 JP S6334765B2
Authority
JP
Japan
Prior art keywords
dredging
blade screw
precipitate
mono pump
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56024154A
Other languages
Japanese (ja)
Other versions
JPS57140439A (en
Inventor
Toshihiro Kikuchi
Masataka Kawamorita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2415481A priority Critical patent/JPS57140439A/en
Publication of JPS57140439A publication Critical patent/JPS57140439A/en
Publication of JPS6334765B2 publication Critical patent/JPS6334765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/8891Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers wherein at least a part of the soil-shifting equipment is handheld
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は膠化状態にある殿物の浚渫(積込み)
装置に関する。 鉱水中和殿物その他の工場廃棄物である各種の
スラツジは沈殿池その他の場所に一たん堆積貯留
されるのが通常である。これが満ぱいになると2
次処理場または他の大量処理場に搬送されねばな
らない。ところが、この種の殿物またはスラツジ
は、天日乾燥その他により粘性に富む膠化状態に
なり、取扱い難い固形状となる。例えば鉱水中和
殿物の場合の例について述べると、有効深さ1.7
mの堆積量630m3の沈殿池内に、上澄液を流出さ
せてから気温1〜13℃の約20日間堆積させた場合
に、第1表に示す如き上下層間にパルプの濃度の
変化が現われてくることが本発明者らの測定によ
つてわかつた。
The present invention is for dredging (loading) deposits in a coagulated state.
Regarding equipment. Mineral hydrates and other types of sludge, which are industrial wastes, are usually deposited and stored in sedimentation ponds or other locations. When this is full, 2
It must be transported to a secondary treatment plant or other bulk treatment plant. However, this type of precipitate or sludge becomes highly viscous and solidified by drying in the sun or other means, and becomes a solid that is difficult to handle. For example, in the case of hydrated deposits in mines, the effective depth is 1.7
When the supernatant liquid was discharged into a sedimentation tank with a deposition volume of 630 m3 and allowed to accumulate for about 20 days at a temperature of 1 to 13°C, a change in pulp concentration appeared between the upper and lower layers as shown in Table 1. The inventors' measurements have revealed that.

【表】 つまり、この種の殿物は下位層では含水率が高
いが、上位層にゆくに従つて含水率が低下し、上
位層ではパルプ濃度が高くなつて固形状の膠化状
態となる。したがつて、浚渫ポンプのサクシヨン
ホースを用いてこれをそのまま吸上げることはで
きない。このため、通常は圧力水によつて殿物を
崩かいさせ、パルプ濃度を薄くしてからポンプに
吸引し、殿物運搬車その他に揚泥する等の措置を
採つている。しかし、この場合はパルプ濃度が薄
くなるので殿物運搬量が増大して不経済となるほ
か、水処理を必要としまたトラツク積込輸送のさ
いには道路への撤水問題があるし、僻地の山間部
の鉱山における坑廃水処理殿物の場合には浚渫動
力源も容易に得られず、また殿物運搬量の減少等
きわめてやつかいな作業となつている。 本発明はこの種の膠化殿物の前記の問題の解決
を目的としてなされたもので、膠化殿物の機械的
撹拌による解膠現象を利用することによつて、こ
の目的を有利に達成するものである。 本発明者らの膠化殿物の実態調査によると、天
日乾燥によつて膠化状態となつている上層位殿物
は、機械的撹拌を受けるとこれが破壊粉砕される
と同時に流動性に富む泥状となることが判明し
た。 この液状化現象を試験結果に基づいて述べる
と、パルプ濃度7.3%、比重1.04の膠化状態にあ
る鉱水処理殿物(消石灰による中和殿物)を試料
として採取し、これを混練り機を用いて混練り
し、その混練回数と流量および貫入値との関係を
調べた結果を第1図に示した。この試験において
混練り機は市販のMMNE30―2のモーノポンプ
を使用し、貫入値測定は5cm径×10cm高さの筒に
150g(7.64g/cm2)の荷重を負荷して測定し、また
流量は第2図に示した流量測定器によつて行な
い、吐出筒1から吐出される吐出流量を測定し
た。 第2図において、2は荷重であり570g(25.9g/
cm2)を負荷する。筒本体3の寸法は高さ25cm内径
5.3cm(JlSG3452によるB2管に相当筒本体3の頂
部から吐出筒1までの長さ20cm、吐出筒1の直径
16mm、長さ10cmである。 第1図の結果から明らかなように、膠化殿物は
水分無添加にもかかわらず、その混練回数の増加
につれて流動性が飛躍的に良好となる。これは膠
状粒子の破壊粉砕によりその膠状態が解かれ、包
有水分も均一化されることによるものと考えられ
るが、高いパルプ濃度を保持したままで極めて流
動性に富む泥化状態に変化させることができる。 本発明はこの見知に基づいてなされたもので、
走行装置として無限軌道帯を用いたエンジン駆動
のクローラ式自走装置の前面に、浚渫機能部を、
走行面に対して迎え角と上下移動を調整可能に設
置してなる膠化殿物の浚渫装置であつて、前記の
浚渫機能部が、走行方向と直角方向に設置され且
つその回転によつて地上の殿物を撹拌しながら軸
方向に搬送する多翼スクリユーと、この多翼スク
リユーによつて撹拌搬送されてきた殿物を受入れ
てこれを混練りしながら吐出口に吐出するモーノ
ポンプとからなることを特徴とする膠化殿物上を
走行し且つ解膠機能を備えた膠化殿物の浚渫装置
を提供するものであり、本装置は、固化盤状とな
つている膠化状態の殿物を、その存在位置で機械
的撹拌作用に供せしめ、これによつて流動性に富
む泥状としてからポンプによる送泥を行なうもの
である。以下に、第3図〜第5図に示した実施例
に従つて本発明装置を具体的に説明する。図示の
ように本発明に従う浚渫装置は、エンジン駆動式
の自走装置5と、この自走装置5に取付けられた
モーノポンプ6と、このモーノポンプ6の吸込側
に物質が搬送されるように設置した多翼スクリユ
ー部7とからなつており、多翼スクリユー7の回
転により地上の殿物の上位層を解膠、粉砕、撹拌
しながら流動性に富む泥状とし、モーノポンプの
送泥条件を整えてこれをモーノポンプ6に供給
し、このモーノポンプ6によつてさらに殿物が混
練されるようにしたものである。 自走装置5は、駆動輪としての無限軌道帯8,
8′と、エンジン部9と、運転部10と、運転部
前方の浚渫機能部接続部11とからなつている。
この接続部11には油圧シリンダー12が取付け
られ、この油圧シリンダー12の操作により浚渫
機能部全体が走行面との上下移動および迎え角を
調整できるようになつている。 浚渫機能部を構成するモーノーポンプ6と多翼
スクリユー7はいづれの回転軸も走行方向とは直
角方向にしてケーシング内に収納され、多翼スク
リユー7の各羽根が切羽部を形成している。 このモーノポンプ6は、その原理自体は公知の
回転容積型の一軸偏心ネジポンプであり、金属製
の断面真円の雄ネジのローター15を断面が長円
形の弾性材質からなるステーター16の中に装着
したものであつて、このローター15をステータ
ー16の中で回転させることによつてこの両者の
空間容積が一方の端から他方の端に向けて無限の
ピストン運動をくり返すことになり、これによつ
てこのローター15とステーター16の間に供給
された殿物は混練りされながら吐出口17に向け
て搬送されることになる。ローター15の回転は
シヤフトスプライン型のモーター18によつて行
なわれ、このモーター18とモーノポンプ6とを
連結するドライブシヤフト19の部分に殿物吸込
口20が設けられている。そしてこのドライブシ
ヤフト19には案内羽根21が装着されていて、
多翼スクリユー7によつて殿物吸込口20に送ら
れた殿物をモーノポンプ6の吸込口22に送り込
むようにしてある。モーノポンプ6の吐出口17
には図示されていないがホースが接続され、この
ホースによつて殿物搬送トラツクなどの他の運搬
車その他に高濃度泥状殿物が積込まれる。 多翼スククリユー7はケーシングの走行前面に
露出しており、地上の膠化状殿物をこの多翼スク
リユー7の回転によつて破壊しながら前記の殿物
吸込口20に取入れる作用をする。本実施例にお
いてこの多翼スクリユー7は殿物吸込口20を境
いにして各翼の向きを逆にしてあり、この多翼ス
クリユーの回転によつてその左右から殿物が殿物
吸込口20に集送されるようになつている。この
多翼スクリユー7による地上殿物の取り込みにさ
いしては、この殿物が連続流れを形成しながら殿
物吸込口20に移動することがその膠化状態を解
く(解膠)作用を得る上で重要である。このため
に、スクリユー円周による殿物の堀削粉砕が効果
的に行なわれるようにスクリユーシヤフト径をで
きるだけ小さくしてスクリユー断面効率を高くす
ると共に、図示の実施例のように左右両側から殿
物吸込口20に集送して合体させる方式が非常に
有益である。 このようにしてこの浚渫装置を沈殿池その他の
膠化状態にある殿物の上を走行させつつ浚渫する
と、膠化殿物は多翼スクリユーによる堀削粉砕と
同時に撹拌されて解膠現象が生じて流動性を増
し、さらにモーノポンプによつて混練りされて一
層流動性がよくなつてこのポンプから吐出され
る。したがつて、本発明によると、ジエツト水な
どによる膠化殿物の流動化などによらずとも、無
添加水のままでこれを流動化できることが可能と
なり、前述の目的が好適に達成できる。
[Table] In other words, this type of precipitate has a high moisture content in the lower layer, but as it goes to the upper layer, the moisture content decreases, and in the upper layer, the pulp concentration increases and becomes a solid coagulated state. . Therefore, it is not possible to directly suck up this water using the suction hose of a dredging pump. For this reason, measures are usually taken to break up the sludge using pressurized water to reduce the pulp concentration, which is then sucked into a pump and pumped into a sludge transport vehicle or other vehicle. However, in this case, the density of the pulp decreases, which increases the amount of sludge transported, making it uneconomical. In addition, water treatment is required, and when transporting by truck, there is a problem with draining water onto the road, and in remote areas. In the case of dredging wastewater from mines in mountainous areas, it is difficult to obtain a power source for dredging, and the amount of sediment transported is reduced, making the dredging process extremely difficult. The present invention has been made with the aim of solving the above-mentioned problems of this type of flocculated precipitate, and advantageously achieves this purpose by utilizing the peptization phenomenon caused by mechanical stirring of the flocculated precipitate. It is something to do. According to a survey conducted by the present inventors on the actual condition of coagulated precipitates, the upper precipitates that have become coagulated due to sun drying are broken and crushed when subjected to mechanical agitation, and at the same time become fluid. It turned out to be a rich muddy mess. To explain this liquefaction phenomenon based on the test results, a sample of mineral water treatment precipitate (precipitate neutralized by slaked lime) in a coagulated state with a pulp concentration of 7.3% and a specific gravity of 1.04 is taken, and this is put into a kneading machine. Figure 1 shows the results of examining the relationship between the number of kneading times, flow rate, and penetration value. In this test, a commercially available MMNE30-2 mono pump was used as the kneading machine, and the penetration value was measured using a cylinder with a diameter of 5 cm and a height of 10 cm.
The measurement was carried out by applying a load of 150 g (7.64 g/cm 2 ), and the flow rate was measured using the flow meter shown in FIG. 2 to measure the flow rate discharged from the discharge cylinder 1. In Figure 2, 2 is the load of 570g (25.9g/
cm 2 ). The dimensions of the cylinder body 3 are height 25cm and inner diameter.
5.3cm (equivalent to B2 pipe according to JlSG3452 Length from top of cylinder body 3 to discharge cylinder 1 20cm, diameter of discharge cylinder 1
It is 16mm and 10cm long. As is clear from the results in FIG. 1, the fluidity of the coagulated precipitate improves dramatically as the number of kneading increases, even though no water is added. This is thought to be due to the destruction and crushing of the colloid particles, which loosens their cohesive state and equalizes the contained moisture, but it changes to a slurry state with extremely high fluidity while maintaining a high pulp density. can be done. The present invention was made based on this finding,
A dredging function section is installed on the front of an engine-driven crawler-type self-propelled device that uses a track belt as a traveling device.
A dredging device for agglomerated deposits, which is installed so that the angle of attack and vertical movement can be adjusted with respect to the running surface, wherein the dredging function section is installed in a direction perpendicular to the running direction, and the dredging device is installed in a direction perpendicular to the running direction, and Consists of a multi-blade screw that transports sediment on the ground in the axial direction while stirring it, and a Mono pump that receives the sediment that has been stirred and transported by the multi-blade screw, kneads it, and discharges it to the discharge port. The purpose of this invention is to provide a dredging device for flocculated sediment that can run on flocculated sediment and has a deflocculating function. The material is subjected to mechanical agitation at its existing location, thereby turning it into a highly fluid slurry, which is then pumped. The apparatus of the present invention will be specifically explained below according to the embodiments shown in FIGS. 3 to 5. As shown in the figure, the dredging device according to the present invention includes an engine-driven self-propelled device 5, a mono pump 6 attached to the self-propelled device 5, and a dredging device installed so that material is transported to the suction side of the mono pump 6. It consists of a multi-blade screw part 7, and the rotation of the multi-blade screw 7 peptizes, crushes, and stirs the upper layer of precipitate on the ground, turning it into a highly fluid slurry, thereby arranging the mud-feeding conditions for the Mono pump. This is supplied to the Mono pump 6, and the precipitate is further kneaded by the Mono pump 6. The self-propelled device 5 includes an endless track belt 8 as a driving wheel,
8', an engine section 9, an operating section 10, and a dredging function section connection section 11 in front of the operating section.
A hydraulic cylinder 12 is attached to this connecting part 11, and by operating this hydraulic cylinder 12, the entire dredging function part can be moved up and down with respect to the running surface and the angle of attack can be adjusted. The Morneau pump 6 and the multi-blade screw 7, which constitute the dredging function section, are housed in a casing with their rotating shafts oriented at right angles to the running direction, and each blade of the multi-blade screw 7 forms a face. This Mono pump 6 is a rotary displacement type uniaxial eccentric screw pump whose principle itself is well known, and has a male screw rotor 15 made of metal and having a perfect circular cross section mounted in a stator 16 made of an elastic material and having an oval cross section. By rotating the rotor 15 within the stator 16, the spatial volume of both of them repeats an infinite piston movement from one end to the other. The precipitate supplied between the rotor 15 and the stator 16 is conveyed toward the discharge port 17 while being kneaded. The rotor 15 is rotated by a shaft spline type motor 18, and a sludge suction port 20 is provided in a drive shaft 19 that connects the motor 18 and the Mono pump 6. A guide vane 21 is attached to this drive shaft 19,
The sludge sent to the sludge suction port 20 by the multi-blade screw 7 is fed into the suction port 22 of the Mono pump 6. Discharge port 17 of Mono pump 6
Although not shown in the figure, a hose is connected thereto, and the highly concentrated muddy sediment is loaded onto other transport vehicles such as a sediment transport truck or the like by means of this hose. The multi-blade screw 7 is exposed at the front surface of the casing, and has the function of destroying agglomerated precipitates on the ground by rotation of the multi-blade screw 7 and introducing them into the precipitate suction port 20. In this embodiment, the multi-blade screw 7 has its blades reversed with respect to the deposit suction port 20, and as the multi-blade screw rotates, deposits are sent from the left and right to the deposit suction port 20. It is now being collected and shipped to When the multi-blade screw 7 takes in precipitates on the ground, it is important that the precipitates move to the precipitate suction port 20 while forming a continuous flow. is important. For this purpose, the diameter of the screw shaft is made as small as possible to increase the efficiency of the screw cross section so that the precipitate can be effectively excavated and pulverized by the screw circumference. It is very advantageous to collect and combine the materials at the suction port 20. In this way, when this dredging device is dredged while running over the coagulated sediment in the sedimentation pond or other places, the coagulated sediment is agitated at the same time as the multi-blade screw excavates and crushes it, causing a peptization phenomenon. The mixture is further kneaded by the Mono pump, resulting in even better fluidity, and then discharged from this pump. Therefore, according to the present invention, it is possible to fluidize the agglomerated precipitate using additive-free water without using jet water or the like to fluidize it, and the above-mentioned object can be suitably achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は膠化殿物の混練り回数と吐出流量およ
び貫入値との関係図、第2図は流量測定に供した
測定器の断面図、第3図は本発明に従う浚渫装置
の部分断面平面図、第4図は第3図の装置の正面
図、で第5図は第3図の装置の側面図である。 5……自走装置、6……モーノポンプ、7……
多翼スクリユー、8……無限軌道帯、9……エン
ジン部、10……運転台、12……油圧シリンダ
ー、17……吐出口、18……モータ、19……
ドライブシヤフト、20……殿物吸込口、22…
…ポンプ吸込口。
Fig. 1 is a diagram of the relationship between the number of kneading times of coagulant precipitate, discharge flow rate, and penetration value, Fig. 2 is a cross-sectional view of a measuring device used for flow rate measurement, and Fig. 3 is a partial cross-section of a dredging device according to the present invention. 4 is a front view of the apparatus of FIG. 3, and FIG. 5 is a side view of the apparatus of FIG. 3. 5...Self-propelled device, 6...Mono pump, 7...
Multi-blade screw, 8... Track belt, 9... Engine section, 10... Cab, 12... Hydraulic cylinder, 17... Discharge port, 18... Motor, 19...
Driveshaft, 20... Throat suction port, 22...
...Pump suction port.

Claims (1)

【特許請求の範囲】[Claims] 1 走行装置として無限軌道帯を用いたエンジン
駆動のクローラ式自走装置の前面に、浚渫機能部
を、走行面に対して迎え角と上下移動を調整可能
に設置してなる膠化殿物の浚渫装置であつて、前
記の浚渫機能部が、走行方向と直角方向に設置さ
れ且つその回転によつて地上の殿物を撹拌しなが
ら軸方向に搬送する多翼スクリユーと、この多翼
スクリユーによつて撹拌搬送されてきた殿物を受
入れてこれを混練りしながら吐出口に吐出するモ
ーノポンプとからなることを特徴とする膠化殿物
上を走行し且つ解膠機能を備えた膠化殿物の浚渫
装置。
1. A dredging function part is installed on the front of an engine-driven crawler-type self-propelled device that uses a track belt as a traveling device so that the angle of attack and vertical movement can be adjusted with respect to the running surface. The dredging device includes a multi-blade screw that is installed in a direction perpendicular to the traveling direction and transports sediment on the ground in the axial direction while stirring the dredging device, and this multi-blade screw. A flocculant that runs over the flocculant and has a peptizing function, and is comprised of a Mono pump that accepts the floc that has been stirred and transported, mixes it, and discharges it to a discharge port. Material dredging equipment.
JP2415481A 1981-02-20 1981-02-20 Method and apparatus for dredging gelatinized sediment Granted JPS57140439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2415481A JPS57140439A (en) 1981-02-20 1981-02-20 Method and apparatus for dredging gelatinized sediment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2415481A JPS57140439A (en) 1981-02-20 1981-02-20 Method and apparatus for dredging gelatinized sediment

Publications (2)

Publication Number Publication Date
JPS57140439A JPS57140439A (en) 1982-08-31
JPS6334765B2 true JPS6334765B2 (en) 1988-07-12

Family

ID=12130417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2415481A Granted JPS57140439A (en) 1981-02-20 1981-02-20 Method and apparatus for dredging gelatinized sediment

Country Status (1)

Country Link
JP (1) JPS57140439A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183816A (en) * 1986-02-08 1987-08-12 Chubu Electric Power Co Inc Underwater travelling device for sand removal
JPS62133755U (en) * 1986-02-17 1987-08-22
JPH01307500A (en) * 1988-06-03 1989-12-12 Ishigaki Kiko Kk Method and device for thickening sludge
CN110195466B (en) * 2019-04-24 2021-07-13 湖南睿弓机械科技有限公司 Dredging machine and hydraulic system thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117740U (en) * 1974-07-26 1976-02-09
JPS523254A (en) * 1975-06-26 1977-01-11 Kubota Ltd Raking machine for sunken sand

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104439U (en) * 1974-01-30 1975-08-28
JPS558781Y2 (en) * 1975-03-10 1980-02-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117740U (en) * 1974-07-26 1976-02-09
JPS523254A (en) * 1975-06-26 1977-01-11 Kubota Ltd Raking machine for sunken sand

Also Published As

Publication number Publication date
JPS57140439A (en) 1982-08-31

Similar Documents

Publication Publication Date Title
KR930008637B1 (en) Dredging apparatus
US20050042064A1 (en) Tank having multiple screw-type transfer augers
US20040208732A1 (en) Tank having multipe screw-type transfer augers
JP4887335B2 (en) Sludge dewatering equipment
CN111533399A (en) Silt solidification construction equipment
JPS6334765B2 (en)
CN109653793A (en) A kind of coal mine integrated high-efficiency conveyer for emptying warehouse
JP4403126B2 (en) Polluted mud drainage treatment device and polluted mud waste water treatment system
CN105800907A (en) Device and method for treating drilling mud without falling on the ground
CN212375130U (en) Silt solidification construction equipment
JP2589170B2 (en) Earth Pressure Shield Surplus Soil Treatment Method Using High Moisture Abrasion Treatment Agent
JP3182668B2 (en) Excavated soil improvement equipment for earth pressure shield machine
GB2103099A (en) Treating slurry
JP4653056B2 (en) Muddy water treatment method and muddy water treatment apparatus
JPS59179197A (en) Process and apparatus for treating sludgy mud
JP2659015B2 (en) Dredging equipment
EP0699633A2 (en) Solidification and pneumatic transportation equipment for soft mud
JPH0615776B2 (en) Dredging device
CN215855747U (en) Drilling fluid solid waste advanced treatment device
JPH02167996A (en) Continuous solidifying system of high moisture-content mud
JP4827245B2 (en) Water circulation device and operation method
JPS5842021Y2 (en) Solids feeding device into water supply channel
JP3217246B2 (en) Fluid stirring separation processing apparatus and fluid stirring separation processing method
JP2000008773A (en) Method for propelling muddy water pressurizing buried pipe
JP2005113511A (en) Mud improvement method