JPS6334734B2 - - Google Patents

Info

Publication number
JPS6334734B2
JPS6334734B2 JP56081331A JP8133181A JPS6334734B2 JP S6334734 B2 JPS6334734 B2 JP S6334734B2 JP 56081331 A JP56081331 A JP 56081331A JP 8133181 A JP8133181 A JP 8133181A JP S6334734 B2 JPS6334734 B2 JP S6334734B2
Authority
JP
Japan
Prior art keywords
electrode
tube
diameter
oxygen
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56081331A
Other languages
Japanese (ja)
Other versions
JPS57195436A (en
Inventor
Masaru Uehara
Akitaka Uchida
Hirotaka Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP56081331A priority Critical patent/JPS57195436A/en
Publication of JPS57195436A publication Critical patent/JPS57195436A/en
Publication of JPS6334734B2 publication Critical patent/JPS6334734B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は検体中のガス濃度、特に生体の酸素分
圧変化を連続的に測定する為の金属電極の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in metal electrodes for continuously measuring gas concentrations in specimens, particularly changes in oxygen partial pressure in living organisms.

従来、溶液中の酸素ガス濃度変化の測定方法と
して、ポーラログラフイの原理を応用して金、白
金、白金イリジウム、銀等の金属製関電極と銀―
塩化銀等による不関電極を用い、これら電極間に
微小電圧(0.3〜0.7V)を印加して、関電極(陰
極)で酸素の還元を行ない、溶液中に酸素の拡散
電流を生ぜしめ、これを測定する方法が広く用い
られている。
Conventionally, as a method for measuring changes in oxygen gas concentration in a solution, the principle of polarography has been applied to a metal separator electrode made of gold, platinum, platinum iridium, silver, etc.
Using an indifferent electrode made of silver chloride or the like, a small voltage (0.3 to 0.7 V) is applied between these electrodes, oxygen is reduced at the indifferent electrode (cathode), and an oxygen diffusion current is generated in the solution. Methods for measuring this are widely used.

一方、生体中の酸素ガス濃度即ち酸素分圧が生
体に及ぼす影響は重大であり、特に新生児・心臓
外科・脳外科あるいは麻酔等に於いて酸素分圧の
推移を正確に連続してとらえることの重要性が認
識されるに伴い、生体組織あるいは血管中に上記
の電極を直接挿入して、酸素分圧変化を測定する
ことの要望が強くなつている。
On the other hand, the influence of oxygen gas concentration, that is, oxygen partial pressure, on living organisms is important, and it is especially important to accurately and continuously monitor changes in oxygen partial pressure in neonatal surgery, cardiac surgery, brain surgery, anesthesia, etc. With the increasing awareness of the nature of oxygen, there is an increasing demand for measuring changes in oxygen partial pressure by directly inserting the above-mentioned electrodes into living tissues or blood vessels.

しかるに、上記の方法は陰極表面と溶液中との
濃度勾配に基づく拡散電流を基本としている為、
生体のようにたえず運動し、一定の安定状態にな
い場合は、この運動によつて大きく影響され、微
小な酸素分圧を正確に測定することは困難であつ
た。
However, since the above method is based on a diffusion current based on the concentration gradient between the cathode surface and the solution,
If a living body moves constantly and is not in a constant stable state, it is greatly affected by this movement, making it difficult to accurately measure minute oxygen partial pressures.

この欠点を改良する為に種々検討され、両極を
酸素透過性の膜で隔離し、電解液を内臓したいわ
ゆる「クラーク電極」あるいは関電極(陰極)表
面を親水性のポリヒドロキシエチルメタクリレー
ト、セロフアン等の水膨潤膜で被覆し分子間にと
りかこまれた水を通路として、酸素の電極表面へ
の移動を行わしめる方法等が提案され、一部実用
に供されている。
In order to improve this drawback, various studies have been carried out.The electrodes are separated by an oxygen-permeable membrane, and the so-called "Clarke electrode" has a built-in electrolyte, or the surface of the electrode (cathode) is made of hydrophilic polyhydroxyethyl methacrylate, cellophane, etc. A method has been proposed in which oxygen is transferred to the surface of an electrode by coating it with a water-swollen membrane and using water surrounded between molecules as a passageway, and some of these methods have been put to practical use.

しかし前者は形態が大きくなり、生体への挿入
は難しく、後者は水膨潤膜の保持状態で測定感度
特に応答性が変り、精度に劣ると共に乾燥すると
もろくなり、生体への挿入時、使用時あるいは抜
去時に被覆膜が破損し体内にとり残される危険等
が予想され、実用化が遅れている。
However, the former has a large form and is difficult to insert into a living body, while the latter has a water-swollen membrane that changes the measurement sensitivity, especially the response, and is inferior in accuracy and becomes brittle when dried. Practical implementation has been delayed due to the risk of the coating being damaged during removal and being left behind inside the body.

本発明者らは、これらの現状に鑑み、微細金属
線電極を生体組織あるいは血管中に挿入しても、
組織あるいは血液の動きに影響されることなく連
続的に、しかも安定して正確に酸素分圧を測定で
きるような金属電極について検討した結果、電極
先端表面を保護することにより、当所の目的を達
することを見出した。
In view of these current circumstances, the present inventors have determined that even if a fine metal wire electrode is inserted into living tissue or blood vessels,
After studying metal electrodes that can continuously, stably, and accurately measure oxygen partial pressure without being affected by tissue or blood movement, we found that we could achieve our goal by protecting the electrode tip surface. I discovered that.

即ち、本発明の要旨はポーラログラフイー用細
線状金属電極を、有機高分子からなる先端が開口
したチユーブに該電極先端が該チユーブの開口先
端から後退した位置になるように挿入して、該チ
ユーブと該金属電極とを密着させてなり、かつそ
の後退距離Lと電極直径Dとの関係がL/D≧2
であることを特徴とする血管内挿入用ガス濃度測
定用電極にある。
That is, the gist of the present invention is to insert a thin wire metal electrode for polarography into a tube made of an organic polymer with an open end so that the tip of the electrode is set back from the open tip of the tube. and the metal electrode are brought into close contact with each other, and the relationship between the retreat distance L and the electrode diameter D is L/D≧2.
A gas concentration measuring electrode for insertion into a blood vessel is characterized by the following.

本発明を図面に従つて詳細に説明する。 The present invention will be explained in detail with reference to the drawings.

第1図は本発明による電極の縦断面図である。
本発明に云う金属電極1は、貴金属ワイヤーの細
線である。貴金属電極の太さは制限なく、太いも
のは直径数cmのものもあるが、特に心臓外科用な
ど、振動のはげしい心臓組織内への挿入の場合に
は、組織内からの離脱がないという理由で、直径
20〜200μの範囲にあることが好ましい。
FIG. 1 is a longitudinal sectional view of an electrode according to the invention.
The metal electrode 1 referred to in the present invention is a thin noble metal wire. There is no limit to the thickness of noble metal electrodes, and some thick ones are several centimeters in diameter, but the reason is that they will not come off from the tissue, especially when inserted into heart tissue that vibrates strongly, such as in cardiac surgery. So, the diameter
It is preferably in the range of 20 to 200μ.

金属電極の表面は一般に絶縁層2で被覆され、
この絶縁層2は生体に悪影響しないもので、絶縁
性に優れた柔質な樹脂で加工することが出来る。
The surface of the metal electrode is generally covered with an insulating layer 2,
This insulating layer 2 does not have any adverse effects on living organisms, and can be made of a soft resin with excellent insulation properties.

例えば、ウレタン樹脂、変性ウレタン樹脂等適
当な樹脂を用いればよい。尚、生体組織、血液と
識別し易くするため着色してもよい。例えば白
色、黒色等が挙げられる。
For example, a suitable resin such as urethane resin or modified urethane resin may be used. Note that it may be colored to make it easier to distinguish it from living tissue and blood. Examples include white and black.

本発明ではこの細線状金属電極(絶縁材をコー
トしたものあるいはコートしないもの両者を含
む)に第1図のごとく、先端が開口したチユーブ
3を被覆することにある。
The present invention is to cover this thin wire metal electrode (including both those coated with an insulating material and those not coated) with a tube 3 having an open end as shown in FIG.

チユーブ3の素材は、ポリエチレン、ポリプロ
ピレン、ポリエステル、ポリ塩化ビニール、ポリ
テトラフロルエチレン(テフロン)、ポリアミド
等いかなるものであつてもよいが、生体内に挿入
する用途の場合、急性毒性が無く、抗血栓性並び
に耐滅菌処理性のあるものが望ましい。これらの
素材からなる中空繊維などがチユーブとして好適
である。チユーブの内径は、該貴金属電極線径と
該絶縁層を含めた直径と同等或は若干大きいもの
で電極が挿入可能な口径であればよい。絶縁材2
をコートしてない場合、このチユーブ3に絶縁材
としての役目を持たせても良い。この場合、チユ
ーブは金属細線の先端だけでなく、全長にわたつ
て被覆しなければならない。該チユーブは細線状
金属電極と密着する必要がある。例えば微細空隙
があつた場合、脱気が難しく酸素分圧測定時に安
定が遅く、安定するのに長時間を要する。
The tube 3 may be made of any material such as polyethylene, polypropylene, polyester, polyvinyl chloride, polytetrafluoroethylene (Teflon), polyamide, etc., but if it is to be inserted into a living body, it has no acute toxicity and is resistant to It is desirable to have thrombogenicity and sterilization resistance. Hollow fibers made of these materials are suitable for the tube. The inner diameter of the tube may be equal to or slightly larger than the diameter including the noble metal electrode wire diameter and the insulating layer, and has a diameter into which the electrode can be inserted. Insulation material 2
If the tube 3 is not coated, the tube 3 may serve as an insulating material. In this case, the tube must cover not only the tip but also the entire length of the thin metal wire. The tube needs to be in close contact with the thin wire metal electrode. For example, if there are microscopic voids, it is difficult to remove air and the oxygen partial pressure is not stable when measuring oxygen partial pressure, and it takes a long time to stabilize.

密着手段は種々あるが、例えば該チユーブに電
極を挿入した後、加熱延伸して密着するか或は該
絶縁層にシリコン樹脂等を塗付してチユーブに挿
入しても良い。
There are various means for adhesion, but for example, after inserting an electrode into the tube, it may be heated and stretched to make it into close contact, or the insulating layer may be coated with a silicone resin or the like and then inserted into the tube.

第1図ではチユーブ上端部と該絶縁層との完全
固定並びに完全気密を目的として樹脂4で固定し
た場合である。第1図に於て、Lはチユーブ開口
先端から金属電極先端表面での距離を示す。Dは
細線状金属電極の直径を示している。
In FIG. 1, the upper end of the tube and the insulating layer are fixed with resin 4 for the purpose of complete fixation and complete airtightness. In FIG. 1, L indicates the distance from the tube opening tip to the metal electrode tip surface. D indicates the diameter of the thin wire metal electrode.

ポーラログラフイの原理により、溶液と陰極界
面との間に生じた酸素の濃度勾配に基づく溶存酸
素分子の陰極への拡散電流を測定する場合、電極
と溶液の接触は安定に保たれる必要がある。
Due to the principle of polarography, when measuring the diffusion current of dissolved oxygen molecules to the cathode based on the oxygen concentration gradient generated between the solution and the cathode interface, the contact between the electrode and the solution must be kept stable. .

本発明の如く、該チユーブ先端より金属電極表
面を後退した位置になるよう挿入することによ
り、金属電極表面に溶液の静止層を形成して溶液
と電極の安定的接触状態を作り出すことが可能と
なり、その結果、生体に直接電極を挿入した状態
で、組織あるいは血液の動きに影響されることな
く、かつ応答性良く、正確に酸素分圧変化を捕捉
しうる。
As in the present invention, by inserting the metal electrode so that the surface is set back from the tip of the tube, it is possible to form a stationary layer of solution on the metal electrode surface and create a stable contact state between the solution and the electrode. As a result, changes in oxygen partial pressure can be accurately captured with good responsiveness, without being affected by tissue or blood movement, with the electrode directly inserted into a living body.

本発明者等は電極直径Dと後退距離Lについ
て、測定の安定化を目安にして検討した結果、
L/D≧2.0であれば動揺影響も小さく正確な酸
素分圧を補足しえることを見出した。一方、電極
直径Dが50μ以下になつた場合、L/D≧2.0に従
えばLは100μ以下となるが、この場合は電極の
表面積が減少するため電解電流も小さくなり動揺
影響は大きくなり正確な酸素分圧が測定し難い。
従つて電極直径が小さいときはL/Dは2よりさ
らに大きくし、Lを少くとも100μ以上にするこ
とが好ましい。逆にLを極端に長くすると使いか
つてが悪くなり、おのずと限界があるがこれは本
発明を特に限定するものではない。以上説明した
通り、本発明のガス濃度測定用電極によれば動揺
影響が少ない状態で、生体中の酸素ガス分圧を安
定して測定できる。
The inventors studied the electrode diameter D and the retraction distance L with the aim of stabilizing the measurement, and found that
It has been found that if L/D≧2.0, the effect of oscillation is small and accurate oxygen partial pressure can be determined. On the other hand, when the electrode diameter D becomes 50μ or less, if L/D≧2.0 is followed, L becomes 100μ or less, but in this case, the surface area of the electrode decreases, so the electrolytic current also decreases, and the oscillation effect increases, making it difficult to obtain accurate It is difficult to measure the oxygen partial pressure.
Therefore, when the electrode diameter is small, L/D is preferably made larger than 2, and L is preferably at least 100 μm. On the other hand, if L is made extremely long, it will not last long and there will naturally be a limit, but this does not particularly limit the present invention. As explained above, according to the gas concentration measuring electrode of the present invention, the partial pressure of oxygen gas in a living body can be stably measured with little influence of oscillation.

本発明の電極は生体中の酸素濃度測定以外に、
ポーラログラフイーの原理を応用して行なう検体
中のガス濃度の測定にはすべて利用出来ることは
明らかである。
In addition to measuring oxygen concentration in living organisms, the electrode of the present invention can also be used to
It is clear that this method can be used for any measurement of gas concentration in a sample that applies the principle of polarography.

本発明の効果を明確にするため以下に実施例を
示す。
Examples are shown below to clarify the effects of the present invention.

実施例 1 純度99.9%の白金よりなり、15μ厚のウレタン
被覆層を持つ直径30,50,80,200μの4種類の
白金線を用意した。その各の30cmを切り出し、そ
れらの一方の端を長さ方向に対して直角に近い角
度で再度切り出し、新しい電極面を形成した。又
残る他端はウレタンシースを取り除き印加端子へ
の接続部とした。
Example 1 Four types of platinum wires made of platinum with a purity of 99.9% and having diameters of 30, 50, 80, and 200μ and having a 15μ thick urethane coating layer were prepared. A 30 cm piece of each was cut out, and one end of each was cut out again at an angle close to perpendicular to the length direction to form a new electrode surface. The urethane sheath was removed from the remaining other end to connect it to the voltage application terminal.

次に高密度ポリエチレンからなる肉厚20μ内径
35,55,85,210μのチユーブで夫々上記白金線
を被覆し、いずれも該チユーブが電極面よりはみ
出し、かつそのかみ出した長さ即ち電極先端から
チユーブ先端までの距離Lと夫々電極直径Dとの
比L/Dが1.2,2.5,3.8,5.0,12.5となるように
調整した。
Next is a wall thickness of 20μ inner diameter made of high-density polyethylene.
The above platinum wires are covered with tubes of 35, 55, 85, and 210μ, respectively, and the tubes protrude from the electrode surface, and the length of the protrusion, that is, the distance L from the tip of the electrode to the tip of the tube, and the electrode diameter D, respectively. The ratio L/D was adjusted to be 1.2, 2.5, 3.8, 5.0, and 12.5.

尚白金線とポリエチレンチユーブとの間げきは
予め白金線ウレタン被覆上に塗付した塩素化P.P.
系接着剤(日本化成工業〓14LB)によつて充填
固定せしめた。
In addition, the gap between the platinum wire and the polyethylene tube is covered with chlorinated PP coated on the platinum wire urethane coating in advance.
It was filled and fixed with adhesive (Nippon Kasei Kogyo Co., Ltd. 14LB).

これらの被覆電極を関電極として(−)極に接
続し、Ag/AgClよりなる不関電極を(+)極に
接続し、生理食塩水中に入れ、空気吹き込み、撹
拌状態(スターラー回転子5mmφ、長さ20mm、
800r.p.m)、印加電圧−0.6Vで、電解電流()
を測定した。
These coated electrodes were connected to the (-) pole as a related electrode, and an indifferent electrode made of Ag/AgCl was connected to the (+) pole, and placed in physiological saline, blown with air, and stirred (stirrer rotor 5 mmφ, length 20mm,
800r.pm), applied voltage -0.6V, electrolytic current ()
was measured.

測定系が撹拌されている為、データがふれるが
その上限値と下限値との差△I及びその平均値
を読み取り、下式よりふれ幅Noise Ratio(%)
を算出した。
Because the measurement system is stirred, the data fluctuates, but read the difference △I between the upper and lower limits and its average value, and calculate the fluctuation width Noise Ratio (%) using the formula below.
was calculated.

Noiseratio(%)=△I/I×100 第2図はNoise RatioとL/Dの関係を示すも
のである。即ち、L/D2に於て、ノイズ率は
極端に小さくなることがわかる。一方直径が50μ
より小さい電極ではL≧100μの場合、優れた安
定性が得られることがわかる。
Noiseratio (%)=ΔI/I×100 FIG. 2 shows the relationship between Noise Ratio and L/D. That is, it can be seen that the noise rate becomes extremely small at L/D2. On the other hand, the diameter is 50μ
It can be seen that for smaller electrodes, excellent stability is obtained when L≧100μ.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電極の断面拡大図、第2図は
ノイズ率とL/Dの関係を示す図である。 図中1は金属電極線、2は絶縁層、3はチユー
ブ、4は固定用樹脂である。
FIG. 1 is an enlarged cross-sectional view of the electrode of the present invention, and FIG. 2 is a diagram showing the relationship between noise rate and L/D. In the figure, 1 is a metal electrode wire, 2 is an insulating layer, 3 is a tube, and 4 is a fixing resin.

Claims (1)

【特許請求の範囲】 1 ポーラログラフイー用細線状金属電極を、有
機高分子からなる先端が開口したチユーブに該電
極先端が該チユーブの開口先端から後退した位置
になるように挿入して、該チユーブと該金属電極
とを密着させてなり、かつその後退距離Lと電極
直径Dとの関係がL/D≧2であることを特徴と
する血管内挿入用ガス濃度測定用電極。 2 後退距離Lが100μ以上であることを特徴と
する特許請求の範囲第1項記載のガス濃度測定用
電極。
[Scope of Claims] 1. A thin wire-shaped metal electrode for polarography is inserted into a tube made of an organic polymer with an open end so that the tip of the electrode is set back from the open tip of the tube, and the tube is inserted into the tube. and the metal electrode are brought into close contact with each other, and the relationship between the retraction distance L and the electrode diameter D is L/D≧2. 2. The electrode for gas concentration measurement according to claim 1, wherein the retraction distance L is 100 μ or more.
JP56081331A 1981-05-28 1981-05-28 Gas concentration measuring electrode Granted JPS57195436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56081331A JPS57195436A (en) 1981-05-28 1981-05-28 Gas concentration measuring electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56081331A JPS57195436A (en) 1981-05-28 1981-05-28 Gas concentration measuring electrode

Publications (2)

Publication Number Publication Date
JPS57195436A JPS57195436A (en) 1982-12-01
JPS6334734B2 true JPS6334734B2 (en) 1988-07-12

Family

ID=13743393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56081331A Granted JPS57195436A (en) 1981-05-28 1981-05-28 Gas concentration measuring electrode

Country Status (1)

Country Link
JP (1) JPS57195436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522441Y2 (en) * 1988-04-18 1993-06-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522441Y2 (en) * 1988-04-18 1993-06-08

Also Published As

Publication number Publication date
JPS57195436A (en) 1982-12-01

Similar Documents

Publication Publication Date Title
JP3194434B2 (en) Implantable glucose sensor
US3912614A (en) Sensor
US4197853A (en) PO2 /PCO2 sensor
US6280604B1 (en) Electrode materials, systems and methods for the electrochemical detection of nitric oxide
US4442841A (en) Electrode for living bodies
US8003401B2 (en) Carbon dioxide sensor and method of determining partial pressure of carbon dioxide
JPH0824244A (en) Electric catalyst glucose sensor
Meruva et al. Catheter-type sensor for potentiometric monitoring of oxygen, pH and carbon dioxide
US3334623A (en) Electrochemical transducer
JPS6154410B2 (en)
US3259124A (en) Catheter transducer for in vivo measurements
JP2701987B2 (en) Electrochemical sensor
US5562815A (en) Apparatus and method for the electrochemical determination of the oxygen concentration of a liquid medium
EP0056178B1 (en) Electrode for living bodies
JPS6334734B2 (en)
Hahn Techniques for measuring the partial pressures of gases in the blood. II. In vivo measurements
Hagihara et al. Intravascular oxygen monitoring with a polarographic oxygen cathode
US4893625A (en) Insertion type electrode arrangement for continuous pO2 measurement in living skin tissue
JPS5933389B2 (en) Polarography sensor
GB2045940A (en) Device for measuring ionic concentration
Dittmar et al. In vivo and in vitro evaluation of specially designed gold and carbon fiber oxygen microelectrodes for living tissues
JPS5855750A (en) Composite electrode
JPS6133644A (en) Living body electrode
Parker et al. PO 2/PCO 2 sensor
JPH0368691B2 (en)