JPS6334657B2 - - Google Patents

Info

Publication number
JPS6334657B2
JPS6334657B2 JP7554380A JP7554380A JPS6334657B2 JP S6334657 B2 JPS6334657 B2 JP S6334657B2 JP 7554380 A JP7554380 A JP 7554380A JP 7554380 A JP7554380 A JP 7554380A JP S6334657 B2 JPS6334657 B2 JP S6334657B2
Authority
JP
Japan
Prior art keywords
junction
superconducting
output
circuit
junction switches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7554380A
Other languages
Japanese (ja)
Other versions
JPS572129A (en
Inventor
Nobuo Kodera
Kunio Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7554380A priority Critical patent/JPS572129A/en
Publication of JPS572129A publication Critical patent/JPS572129A/en
Publication of JPS6334657B2 publication Critical patent/JPS6334657B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/195Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices
    • H03K19/1952Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices with electro-magnetic coupling of the control current

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、直流電源によつて駆動できるノンラ
ツチング型の、ジヨセフソン接合を応用した論理
回路の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the configuration of a non-latching logic circuit that can be driven by a DC power source and uses Josephson junctions.

従来ジヨセフソン接合を用いた論理回路は、主
に交流電源駆動方式が検討されている。この交流
電源駆動方式はジヨセフソン接合が多くはラツチ
ングゲートになるため、止むを得ず一旦電源電圧
をゼロにする要請から発したものである。しか
し、これではインパルス状の誤信号が入力された
場合にも回路がラツチしてしまい、誤まつた計算
結果を出力する可能性が大きく、実用上回路の信
頼性に欠ける問題点があつた。また電源を切替え
ただけで回路がラツチしてしまう危険も大きかつ
た。このために直流電源駆動のノンラツチング・
ゲートを使用することが1つの課題となつてい
た。
Conventional logic circuits using Josephson junctions have mainly been studied using AC power supply systems. This AC power supply drive system was developed out of a desire to temporarily reduce the power supply voltage to zero, since Josephson junctions are often used as latching gates. However, this had the problem that the circuit would latch even if an erroneous impulse signal was input, and there was a high possibility that erroneous calculation results would be output, making the circuit unreliable in practice. There was also a great risk that the circuit would latch just by switching the power supply. For this purpose, a DC power-driven non-latching
One challenge was using the gates.

また従来ジヨセフソン接合を用いた論理ゲート
でNOT機能を果せるものとして、直流電源駆動
方式でかつ出力電流の有無を論理の1と0とに対
応させる方式では、第1図に示す電圧バランス型
回路が知られていた。しかし、この方式は1つの
出力(入力線を2本にした場合は、ORまたは
NOR論理のうちの一方)しか得られない欠点が
あつた。また、この方式ではインラインゲートを
用いているために出力電流を任意に大きく設計し
ようとする場合、2つの接合g01,g02を一辺25μ
m程度と大面積に設計する必要があり回路動作の
高速化は困難であつた。さらに、直列に接続され
る2つの接合g01,g02及び抵抗Rsに印加される電
圧の値は、接合のギヤツプエネルギーに相当する
電圧Vg=2Δ/eの1倍より大きく2倍よりも小
さく設定した場合しか動作しない欠点があつた。
Furthermore, as a conventional logic gate using a Josephson junction that can perform the NOT function, the voltage balanced circuit shown in Fig. It was known. However, this method only requires one output (OR or OR if there are two input lines).
There was a drawback that only one of the NOR logics could be obtained. Also, since this method uses in-line gates, if you want to design the output current to be arbitrarily large, the two junctions g 01 and g 02 should be set at 25μ on each side.
It was necessary to design the circuit with a large area of about 100 m, making it difficult to increase the speed of circuit operation. Furthermore, the value of the voltage applied to the two junctions g 01 , g 02 and the resistor R s connected in series is greater than 1 times the voltage V g =2Δ/e corresponding to the gap energy of the junctions and 2 There was a drawback that it only worked if the setting was smaller than double.

本発明の目的は前記した欠点を除去し、OR論
理、NOR論理の演算出力を同時に得ることがで
きる論理回路を提供することにある。本発明の
OR/NOR論理回路を用いることにより、これを
基本としてすべての論理を構成できるため、汎用
性の高い集積回路用論理ゲートを提供できる。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a logic circuit that can simultaneously obtain operation outputs of OR logic and NOR logic. of the present invention
By using the OR/NOR logic circuit, all logic can be configured based on this, so a highly versatile logic gate for integrated circuits can be provided.

以下に実施例によつて本発明を詳細に述べる。
初めに電源電圧が適当で、2個の縦続接続された
接合スイツチおよび抵抗Rsに加わる電圧がVg
2Vgの中間の値に設定されているときの第2図に
示す本発明の回路の動作を、第1図の電圧バラン
ス型回路と比較しながら述べる。第1図の2つの
磁場結合入力方式のジヨセフソン接合スイツチ
g01,g02の組合せまたは第2図のg11とg12との組
合せ、またはこれを超電導線により並列接続され
るg21とg22との組合せと直流電源線P1に接続され
る抵抗Rsとに印加される電圧はVg+α(0<α<
Vg)の値となるよう設定されている。第2図に
おける接地線側の直列抵抗RDは基本的にはゼロ
でも構わない。この抵抗RDがゼロのとき、第2
図の構成は第1図の電圧バランス回路を2対並べ
たものと類似の構成となる。
The present invention will be described in detail with reference to Examples below.
Initially, the supply voltage is suitable and the voltage across the two cascaded junction switches and the resistor R s is V g .
The operation of the circuit of the present invention shown in FIG. 2 when set to an intermediate value of 2V g will be described in comparison with the voltage balanced circuit shown in FIG. 1. Fig. 1 Josephson junction switch with two magnetic field coupling input methods
A combination of g 01 and g 02 or a combination of g 11 and g 12 in Figure 2, or a combination of g 21 and g 22 connected in parallel by a superconducting wire and a resistor connected to the DC power line P 1 The voltage applied to R s and V g +α (0<α<
V g ). The series resistance R D on the ground line side in FIG. 2 may basically be zero. When this resistance R D is zero, the second
The configuration shown in the figure is similar to the configuration in which two pairs of voltage balance circuits in FIG. 1 are arranged side by side.

第1図、第2図において、まず入力信号線(第
1図においてはINで示し第2図においてはIN1
及びIN2で示す)に入力電流が流れていない場
合(入力が“0”の状態)を考える。このとき、
第1図の上側の接合スイツチg01、第2図の右上
側の接合スイツチg21、左下側の接合スイツチ
g12、には磁場が印加されないため、それぞれの
接合は超伝導電流が流れ得る状態にある。一方、
第1図の下側の接合スイツチg02、第2図の左上
側の接合スイツチg11、右下側の接合スイツチ
g22、には、バイアス電流が抵抗RBを通つて接合
スイツチg11,g22の近傍をたえず流れるため、磁
場が印加されており超電導電流が流れない状態に
ある。このときスイツチg02,g11,g22の両端には
電圧Vgが発生している。この結果、電圧バラン
ス型回路の抵抗Rsを通る直流電流は、第1図の
接合スイツチg01とg02との中点に設けた出力端子
OUTPUT(NOT)または第2図の接合スイツチ
g21とg22との中点に設けた出力端子OUTPUT
(NOR)より流出できる(出力“1”)。しかし、
第2図の接合スイツチg11とg12との中点に設けた
出力端子OUTPUT(OR)からは、接合スイツチ
g11が有限の抵抗を示すので流出できない(出力
“0”)。
In Figures 1 and 2, the input signal line (indicated by IN in Figure 1 and IN1 in Figure 2)
Let us consider the case where no input current is flowing (input is "0" state) (indicated by IN2 and IN2). At this time,
The connection switch g 01 on the upper side of Figure 1, the connection switch g 21 on the upper right side of Figure 2, the connection switch on the lower left side
Since no magnetic field is applied to g 12 , each junction is in a state where superconducting current can flow. on the other hand,
The connection switch g 02 on the lower side of Fig. 1, the connection switch g 11 on the upper left side of Fig. 2, the connection switch on the lower right side
Since the bias current constantly flows in the vicinity of the junction switches g 11 and g 22 through the resistor R B , a magnetic field is applied to g 22 , so that no superconducting current flows. At this time, a voltage V g is generated across the switches g 02 , g 11 , and g 22 . As a result, the DC current passing through the resistor R s of the voltage balanced circuit is transferred to the output terminal located at the midpoint between junction switches g 01 and g 02 in Figure 1.
OUTPUT (NOT) or junction switch in Figure 2
Output terminal OUTPUT installed at the midpoint between g 21 and g 22
It can flow out from (NOR) (output “1”). but,
From the output terminal OUTPUT (OR) installed at the midpoint between junction switches g 11 and g 12 in Fig.
Since g 11 exhibits a finite resistance, it cannot flow out (output “0”).

次に第1図の入力信号線INに入力電流が流れ、
第2図の入力信号線IN1,IN2のいずれか一方
または両方に入力電流が流れた場合(入力が
“1”の状態)を考える。このとき、接合スイツ
チ、g01,g12,g21、には磁場が印加され、それら
の両端には電圧Vgが発生する。一方接合スイツ
チ、g02,g11,g22、には、入力電流によつて生ず
る磁場とこれを打消す向きに印加されるバイアス
電流による磁場とが同時に印加されて実効的に全
磁場が小さくなつて超電導電流が流れ得る状態と
なる。それぞれ、接合スイツチg01とg02との組
(g01+g02)、g11とg12との組(g11+g12)、g21
g22との組(g21+g22)、と直列抵抗Rsとに印加さ
れる電圧はVg+α(0<α<Vg)にあらかじめ設
定されているため、前記した状態においてg01
g02の双方、g11とg12の双方及びg21とg22との双方
が、それぞれ共にVgの電圧を発生する状態(抵
抗のある状態)になることはあり得ない。この印
加電圧規制により、入力信号線に入力電流が流れ
ると、g01,g12,g21は有限の抵抗を示す。すなわ
ち、電圧Vgを発生する状態になる。これと同時
に、他の接合スイツチg02,g11,g22は超伝導電流
の流れる、すなわち電圧Vgを発生しない状態に
移らざるを得ない。この結果電圧バランス型回路
の抵抗Rsを通る直流電流は、第2図の接合スイ
ツチg11のみを通つて流れて出力電流は出力端子
OUTPUT(OR)を通つて外部に流出される(出
力“1”)。しかし、第2図のg21とg22との中点に
設けた出力端子OUTPUT(NOR)、および第1
図のg01とg02との中点に設けた出力端子
OUTPUT(NOT)からは、接合スイツチg21およ
びg01が有限の抵抗を示すので流出できない(出
力“0”)。
Next, the input current flows through the input signal line IN in Figure 1,
Consider a case where an input current flows through one or both of the input signal lines IN1 and IN2 in FIG. 2 (input is "1" state). At this time, a magnetic field is applied to the junction switches g 01 , g 12 , and g 21 , and a voltage V g is generated across them. On the other hand, to the junction switches g 02 , g 11 , and g 22 , the magnetic field generated by the input current and the magnetic field due to the bias current applied in the direction that cancels this are simultaneously applied, effectively reducing the total magnetic field. This results in a state in which superconducting current can flow. The pair of junction switches g 01 and g 02 (g 01 + g 02 ), the pair of g 11 and g 12 (g 11 + g 12 ), and the pair of g 21 and g 12 respectively.
Since the voltage applied to the pair with g 22 (g 21 + g 22 ) and the series resistor R s is set in advance to V g + α (0 < α < V g ), in the above state, g 01 and
It is impossible for both g 02 , both g 11 and g 12 , and both g 21 and g 22 to be in a state where they each generate a voltage of V g (state with resistance). Due to this applied voltage regulation, when an input current flows through the input signal line, g 01 , g 12 , and g 21 exhibit finite resistance. That is, the state is such that a voltage V g is generated. At the same time, the other junction switches g 02 , g 11 , and g 22 have no choice but to shift to a state where superconducting current flows, that is, no voltage V g is generated. As a result, the DC current passing through the resistor R s of the voltage balanced circuit flows only through the junction switch g 11 in Figure 2, and the output current flows through the output terminal.
It flows out to the outside through OUTPUT (OR) (output “1”). However, the output terminal OUTPUT (NOR) installed at the midpoint between g 21 and g 22 in Figure 2, and the
Output terminal installed at the midpoint between g 01 and g 02 in the diagram
From OUTPUT (NOT), the junction switches g 21 and g 01 exhibit finite resistance, so there is no flow (output “0”).

このあと、再度入力信号線の電流がゼロ(入力
“0”)になると、同様の動作原理により、超電導
電流が第1図ではOUTPUT(NOT)、第2図で
はOUTPUT(NOR)の出力端子から流出される
状態出力“1”)が実現できる。
After this, when the current in the input signal line becomes zero again (input "0"), the superconducting current flows from the output terminal of OUTPUT (NOT) in Figure 1 and OUTPUT (NOR) in Figure 2 due to the same operating principle. The state output "1") which is outputted can be realized.

このようにして印加電圧規制のある場合は、第
1図の回路が否定(NOT)機能を果たし、第2
図の回路がNORおよびOR機能を果たし、これら
は入力信号電流の有無に対応して出力信号を外部
にとりだせることが明らかになつた。
In this way, when the applied voltage is regulated, the circuit in Figure 1 performs the NOT function and the second
It has become clear that the circuit shown in the figure performs NOR and OR functions, and that they can output signals to the outside depending on the presence or absence of input signal current.

第2図に示す本発明の回路が第1図に示す公知
の電圧バランス型回路と異なる点は、(1)接合スイ
ツチ2個を縦続接続したものを1連ではなく2連
(4個)用いて、別々の出力を同時に取りだせる
ようにしたこと、(2)接合スイツチとして単体のジ
ヨセフソン接合(インラインゲートとも呼ばれ
る)でなく、他の磁場入力型ゲート、例えば量子
干渉型ゲート、を用いる方式としたこと、(3)さら
に、4個の接合スイツチをループ状に結線して以
下に述べる新らしい効果を付与したこと、にあ
る。
The circuit of the present invention shown in FIG. 2 differs from the known voltage-balanced circuit shown in FIG. (2) Instead of using a single Josephson junction (also called an in-line gate) as a junction switch, it is possible to use other magnetic field input type gates, such as quantum interference type gates. (3)Furthermore, four junction switches were connected in a loop to provide the following new effects.

4個の接合をループ接続した効果は、電源電圧
をVg+α(0<α<Vg)に規制することが必要で
なくなる点にある。この場合、第2図で電源側の
抵抗Rsを通つて流入する電流の値が、縦続接続
された2つのジヨセフソン接合スイツチの組
(g11+g12、g21+g22)に流れ得る最大超電導電流
Inよりも小さく設定してあれば良い。このときの
動作は次のようになる。例えば、入力電流が入力
信号線から流入していて突然これがゼロになつた
場合を考えると、接合スイツチg11とg22は突然磁
場が印加されて超電導電流が遮断される。このと
きこの電流の流れなくなる瞬間において、接合ス
イツチg11,g22の上下に瞬時的に逆電圧が発生し
たため、超電導電流が流れなくなつたと見なして
よい。この逆電圧がそれぞれ、接合スイツチg12
とg21とに瞬時的に印加されるため、今まで接合
スイツチg12とg21にかかつていた電圧Vgは逆電圧
−Vg(同大異符号)によつて打消すことができ
る。この結果接合スイツチg12とg21にかかる電圧
は瞬時的にほゞ同時にゼロとなる。さらにこのと
き、接合スイツチg12とg21に磁場が印加されなく
なつているため、接合スイツチg12とg21は超電導
電流が流れ得る状態に転移する。この例では、実
際には接合スイツチg21を通つて出力電流が出力
端子OUTPUT(NOR)から流出する。出力端子
OUTPUT(OR)端子からは接続される接合スイ
ツチg11が抵抗のある状態にいるため電流が流れ
ないままになつている。この回路の特徴は、接合
スイツチg12が超電導電流を流し得る状態にある
ために、出力端子OUTPUT(OR)に直前まで流
していた信号電流を速やかに接合スイツチg12
通して接地線にぬきとることが出来る点にある。
この目的のためには、接地線側の直列抵抗RD
小さいことが好ましく、この値がゼロであつても
構わない。
The effect of connecting the four junctions in a loop is that it is no longer necessary to regulate the power supply voltage to V g +α (0<α<V g ). In this case, the value of the current flowing through the resistor R s on the power supply side in Fig. 2 is the maximum superconducting current that can flow through the set of two Josephson junction switches (g 11 + g 12 , g 21 + g 22 ) connected in cascade. current
It is sufficient if it is set smaller than I n . The operation at this time is as follows. For example, if an input current is flowing from the input signal line and suddenly becomes zero, a magnetic field is suddenly applied to the junction switches g11 and g22 , and the superconducting current is cut off. At this moment, at the moment when this current stops flowing, a reverse voltage is instantaneously generated across the junction switches g 11 and g 22 , so it can be considered that the superconducting current has stopped flowing. This reverse voltage is applied to each junction switch g 12
Since the voltage V g that has been applied to the junction switches g 12 and g 21 is instantaneously applied to the junction switches g 12 and g 21, it can be canceled by the reverse voltage −V g ( same magnitude and different sign). As a result, the voltages across junction switches g 12 and g 21 become zero instantaneously and almost simultaneously. Furthermore, at this time, since the magnetic field is no longer applied to the junction switches g12 and g21 , the junction switches g12 and g21 transition to a state in which superconducting current can flow. In this example, the output current actually flows out of the output terminal OUTPUT (NOR) through the junction switch g21 . Output terminal
No current flows from the OUTPUT (OR) terminal because the connected junction switch g11 is in a resistive state. The feature of this circuit is that since the junction switch g 12 is in a state where superconducting current can flow, the signal current that was flowing to the output terminal OUTPUT (OR) until just before is quickly removed to the ground wire through the junction switch g 12 . It is possible to do this.
For this purpose, it is preferable that the series resistance R D on the ground line side is small, and this value may be zero.

本発明に用いるジヨセフソン接合スイツチとし
ては、第1図で用いられているようなインライン
ゲート(単なるジヨセフソン接合)を用いること
も可能であるが、ここでは入力信号磁界に対する
感度の大きくとれる第3図のような量子干渉型ゲ
ートを用いることがより望ましい。このゲートは
複数個のジヨセフソン接合を並列に含み、2個の
超電導性ループを設けた構造(第3図)のもので
ある。このゲートの電流(I)電圧(V)特性
は、単一のジヨセフソン接合のそれと相似で第4
図の太線で示すような形をもつ。超電導電流の流
れる状態は図のJの分岐であり、超電導電流の流
れない状態は図のGの分岐である。
As the Josephson junction switch used in the present invention, it is also possible to use an in-line gate (simple Josephson junction) as shown in FIG. 1, but here we will use the in-line gate shown in FIG. It is more desirable to use such a quantum interference gate. This gate includes a plurality of Josephson junctions in parallel and has a structure (FIG. 3) in which two superconducting loops are provided. The current (I) and voltage (V) characteristics of this gate are similar to those of a single Josephson junction.
It has the shape shown by the thick line in the figure. The state in which superconducting current flows is branch J in the figure, and the state in which superconducting current does not flow is branch G in the figure.

第5図は本発明の他の実施例を示す図である。
第5図の回路が先に述べた第2図の回路と異なる
点は、4つの接合スイツチg11,g12,g21,g22
つなぐループ結線の中に抵抗R11,R12,R21
R22をとり入れたことである。図では、抵抗RD
0として、この抵抗RDは記入していないが本質
的に第2図の回路と異なるものではない。このよ
うにすると、ループ結線の中に信号でない雑音磁
束が捕獲されることが防げる効果がある。
FIG. 5 is a diagram showing another embodiment of the present invention.
The circuit in Fig. 5 differs from the circuit in Fig. 2 described above in that the loop connections connecting the four junction switches g 11 , g 12 , g 21 , and g 22 include resistors R 11 , R 12 , and R twenty one ,
This is the introduction of R 22 . In the figure, the resistor R D is set to 0, and although this resistor R D is not shown, it is not essentially different from the circuit shown in FIG. 2. This has the effect of preventing noise magnetic flux that is not a signal from being captured in the loop connection.

以上述べてきたように本発明によれば、OR/
NOR論理出力が同時に出力できて、汎用性に富
み、直流電源で駆動できるφ集積回路用の論理ゲ
ートを提供できる。出力電流は、接合スイツチの
許容電流値を大きく取ることで任意に設計でき、
この出力はそのまま次段の論理ゲートの入力信号
としてそのまま利用できる。また、本発明の論理
回路はノンラツチング方式となつているため、演
算に誤りがなく信頼性に優れた回路となつてい
る。以上の理由により本発明が、高速論理装置
(超高速計算機)に用いられる基本論理回路の方
式として有用なものであることは明らかである。
As described above, according to the present invention, OR/
It is possible to provide logic gates for φ integrated circuits that can simultaneously output NOR logic outputs, are highly versatile, and can be driven by a DC power supply. The output current can be arbitrarily designed by increasing the allowable current value of the junction switch.
This output can be used as is as an input signal for the next stage logic gate. Furthermore, since the logic circuit of the present invention is of a non-latching type, the circuit is free from errors in calculations and has excellent reliability. For the above reasons, it is clear that the present invention is useful as a basic logic circuit system used in high-speed logic devices (ultra-high-speed computers).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来から知られる電圧バランス型回路
の構成を示す図、第2図は本発明の直流駆動
OR/NOR論理回路の一実施例を示す図、第3図
は本発明のOR/NOR論理回路に用いられるジヨ
セフソン接合スイツチの構成を詳細に説明する
図、第4図は第3図の接合スイツチの電流電圧特
性を説明する図、第5図は本発明の他の実施例を
示す図、である。
Figure 1 is a diagram showing the configuration of a conventionally known voltage balance type circuit, and Figure 2 is a diagram showing the configuration of a conventionally known voltage balance type circuit.
A diagram showing an embodiment of the OR/NOR logic circuit, FIG. 3 is a diagram explaining in detail the configuration of a Josephson junction switch used in the OR/NOR logic circuit of the present invention, and FIG. 4 shows the junction switch of FIG. 3. FIG. 5 is a diagram showing another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 2種の独立な磁場結合入力方式ジヨセフソン
接合スイツチg11,g12をまず直列に縦続接続し、
その中点に出力端子を接続した単位回路と、この
単位回路と同じく接合スイツチg21,g22からなる
他の単位回路とを超電導線または抵抗を介して並
列接続した基本回路と、この基本回路の上辺を直
列抵抗を介して直流電源線に接続しまたこの基本
回路の下辺を直接または抵抗を介して接地線を接
続すると共に上記接合スイツチg11,g22に同時に
鎖交するバイアス磁束を発生させるバイアス入力
ループを設け、かつ2本の磁場結合入力線を上記
接合スイツチg11とg12およびg21とg22に同時に鎖
交する磁束を発生させるように設置し、上記接合
スイツチg11とg22への入力磁束とバイアス磁束の
符号が反対になるよう組合せて、上記接合スイツ
チg11とg12の中点からOR出力をとりだすと共に
上記接合スイツチg21とg22の中点からNOR出力
をとりだすことを特徴とする超電導直流駆動論理
回路。 2 特許請求の範囲第1項において、上記単位回
路の各々に印加される電圧の値を接合のギヤツプ
エネルギーに相当する電圧Vg=2Δ/eの1倍よ
り大きく2倍よりも小さくしたことを特徴とする
超電導直流駆動論理回路。 3 特許請求の範囲第1項において、上記接合ス
イツチg11,g12,g21,g22として量子患渉型磁場
結合入力型ゲートを用いたことを特徴とする超電
導直流駆動論理回路。 4 特許請求の範囲第1項において、磁場結合入
力線をそれぞれg11とg12及びg21とg22に結合させ
た後に、終端抵抗を介してそれぞれ上記接地線を
接続することを特徴とする超電導直流駆動論理回
路。
[Claims] 1. Two types of independent magnetic field coupling input type Josephson junction switches g 11 and g 12 are first connected in series,
A basic circuit consisting of a unit circuit with an output terminal connected to its midpoint, another unit circuit consisting of junction switches g 21 and g 22 connected in parallel via a superconducting wire or a resistor, and this basic circuit. The upper side is connected to the DC power line via a series resistor, and the lower side of this basic circuit is connected to the ground line directly or via a resistor, and a bias magnetic flux is generated that simultaneously interlinks with the junction switches g 11 and g 22 . A bias input loop is provided, and two magnetic field coupling input lines are installed so as to generate magnetic flux that simultaneously links the junction switches g 11 and g 12 and g 21 and g 22 . By combining the input magnetic flux to g 22 and the bias magnetic flux so that their signs are opposite, an OR output is obtained from the midpoint of the junction switches g 11 and g 12 , and a NOR output is obtained from the midpoint of the junction switches g 21 and g 22 . A superconducting DC drive logic circuit characterized by taking out. 2. In claim 1, the value of the voltage applied to each of the unit circuits is set to be greater than 1 time and less than 2 times the voltage V g =2Δ/e corresponding to the gap energy of the junction. A superconducting DC drive logic circuit characterized by: 3. A superconducting direct current drive logic circuit according to claim 1, characterized in that quantum interference type magnetic field coupling input type gates are used as the junction switches g 11 , g 12 , g 21 , and g 22 . 4. Claim 1 is characterized in that after the magnetic field coupling input lines are coupled to g 11 and g 12 and g 21 and g 22 , respectively, the grounding wires are connected to each other via a terminating resistor. Superconducting DC drive logic circuit.
JP7554380A 1980-06-06 1980-06-06 Superconductive direct current driving logical circuit Granted JPS572129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7554380A JPS572129A (en) 1980-06-06 1980-06-06 Superconductive direct current driving logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7554380A JPS572129A (en) 1980-06-06 1980-06-06 Superconductive direct current driving logical circuit

Publications (2)

Publication Number Publication Date
JPS572129A JPS572129A (en) 1982-01-07
JPS6334657B2 true JPS6334657B2 (en) 1988-07-12

Family

ID=13579212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7554380A Granted JPS572129A (en) 1980-06-06 1980-06-06 Superconductive direct current driving logical circuit

Country Status (1)

Country Link
JP (1) JPS572129A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734699B1 (en) * 1999-07-14 2004-05-11 Northrop Grumman Corporation Self-clocked complementary logic

Also Published As

Publication number Publication date
JPS572129A (en) 1982-01-07

Similar Documents

Publication Publication Date Title
US5640105A (en) Current mode null convention threshold gate
EP0197658A2 (en) Mosfet AC switch
US4672244A (en) Josephson logic integrated circuit
JPS6334657B2 (en)
EP0069534B1 (en) Superconducting logic circuit
JP2004080129A (en) Superconducting driver circuit and superconducting equipment
GB1499241A (en) Josephson junction circuit arrangements
US4559459A (en) High gain non-linear threshold input Josephson junction logic circuit
JPH0262967B2 (en)
EP0074604B1 (en) Circuit utilizing josephson effect
JPS5840945U (en) 3 Josephson junction direct connection type separation circuit
JPS6334656B2 (en)
JP2550587B2 (en) The Josephson Gate
JPH0516772B2 (en)
JPH0136199B2 (en)
JPS61206316A (en) Josephson drive circuit
JPS62258518A (en) Output circuit for josephson high voltage signal
JPH0460373B2 (en)
JPS62150927A (en) Josephson current polarity switching type drive circuit
JPS6089126A (en) Superconduction logical circuit
JPH11312971A (en) Superconducting circuit
JPH0258420A (en) Josephson gate circuit
JPH0563554A (en) Superconducting integrated circuit
JPH047130B2 (en)
JPH0445009B2 (en)