JPS6333969B2 - - Google Patents

Info

Publication number
JPS6333969B2
JPS6333969B2 JP54083716A JP8371679A JPS6333969B2 JP S6333969 B2 JPS6333969 B2 JP S6333969B2 JP 54083716 A JP54083716 A JP 54083716A JP 8371679 A JP8371679 A JP 8371679A JP S6333969 B2 JPS6333969 B2 JP S6333969B2
Authority
JP
Japan
Prior art keywords
machining
cut
workpiece
wire
wire electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54083716A
Other languages
Japanese (ja)
Other versions
JPS569129A (en
Inventor
Sadafumi Shichizawa
Kazuhiko Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8371679A priority Critical patent/JPS569129A/en
Publication of JPS569129A publication Critical patent/JPS569129A/en
Publication of JPS6333969B2 publication Critical patent/JPS6333969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/04Apparatus for supplying current to working gap; Electric circuits specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はワイヤ電極を用いて被加工物を加工す
るワイヤカツト放電装置に関する。 従来、XY軸平面内において二次元平面運動を
行なえる加工テーブル上に被加工物を載置し、こ
の被加工物を貫通してワイヤ電極を設け、このワ
イヤ電極と被加工物との間に所定の電圧を印加し
て放電を行なわせるとともに、この加工部に絶縁
性の加工液を供給し、かつ加工テーブルをNCや
倣い機構からなる制御装置で制御しながら駆動し
て被加工物を加工するワイヤカツト放電加工装置
が知られている。 このようなワイヤカツト放電加工装置は、主に
プレス金型、アルミサツシの押出しダイス金型な
どのような貫通状の孔を有する金型加工に用いら
れており、前記制御装置により精度良く厚さ方向
全部に加工できるために、従来の加工方法に比較
して極めて高精度な金型を製作できるようになつ
た。また、ワイヤカツト放電加工装置を用いた金
型製作時間全体は、従来の機械切削あるいは通常
の放電加工を用いた場合と比較すると、製作工程
が単純なため、同等か若干速いと言える。しか
し、加工速度そのものについて言えば、現状のワ
イヤカツト加工速度は0.1g/minであり、機械
切削に比較して遅いといわれている通常の放電加
工装置でも数g/minの実用加工速度であること
を考えると、極めて加工速度が遅いという問題が
ある。同じ放電加工でありながらこのような加工
速度が遅い原因は、ワイヤ電極の断線というワイ
ヤカツト放電加工装置特有の問題があるためで、
加工エネルギー投入の限界はワイヤの断線の発生
限界により決められている。これに対し、通常の
放電加工の実用上の加工速度限界が、エネルギー
投入の限界というよりもむしろ加工精度や加工面
粗さによつて制限されるということが、ワイヤカ
ツト放電加工との相異点である。 ところで、ワイヤカツト放電加工でも加工精度
や面粗さは無視されている訳ではなく、一般に前
述のような最高速度(約0.1g/min)でも10〜
15μRmax程度の細い加工面粗さが得られるので、
それ程問題となつていないだけである。一方、面
粗さを数μRmaxにまで仕上げる場合を考えてみ
ると、このような面粗さの条件での加工速度は、
数mg/minでしかなく最大加工速度の数十分の一
で実用的でないため、一旦最大加工速度で加工し
た後に加工条件を所望の面粗さになるように設定
して再度加工表面をなぞるように加工する方法が
あり、セカンドカツト加工と呼ばれている。とこ
ろが、前述のように最大加工速度での加工では、
10〜15μRmaxもの面粗さがあり、さらに最大加
工速度自体が極めて遅いため、切削長が数百mmも
あると、その加工時間自体が数時間〜数十時間に
もなり、この長時間中の温度の変化や被加工物の
変形などがあつて、形状精度としては10〜20μm
程度ずれた部分も出てくる。従来は、このような
被加工物の表面を数μRmax程度まで仕上げるに
は一気に加工条件を改めて、数mg/min程度の加
工速度でセカンドカツト加工を行なつていた。 第1図A〜Eは従来のセカンドカツト加工によ
る加工面の変化を示したものである。この図にお
いて、図面寸法面10に対し加工面12はAの粗
仕上げ直後においては大きな凹凸を有する面とな
つており、一回目のセカンドカツト加工を行なう
と凹凸の頂部が一部切除されてBの状態となり、
二回目のセカンドカツト加工ではCのようにさら
に頂部が切除され、同時にして数回のセカンドカ
ツト加工を行ないDの状態でほぼ大きい山がなく
なり、さらにEに示されるように最終的には加工
面12が図面寸法面10と一致するように加工さ
れる。ところが、この様な方法では一回のセカン
ドカツト加工によつて加工される取代は非常に少
なく、さらに放電が発生する所と発生しない所と
が生じ、放電が非常に不安定となる不都合があ
る。また、完全に表面を仕上げようとすると、何
回も試行錯誤を繰り返して仕上げ加工を行なう必
要があり、時間的に非常に能率が悪いという欠点
がある。 本発明の目的は、加工精度が良くかつ加工能率
の良いワイヤカツト放電加工装置を提供するにあ
る。 本発明は、被加工物と走行するワイヤ電極との
間に所定の電圧を印加して放電させ、この放電エ
ネルギーにより被加工物を切断するワイヤカツト
放電加工装置において、上記被加工物を切断後そ
の切断部をさらに複数回にわたつて放電加工する
セカンドカツトの際に上記ワイヤ電極と被加工物
との間に所定の電圧を印加する印加電圧変更可能
なセカンドカツト用電源と、電気条件と被加工物
の厚さと加工幅の関係を一組のデータ群として複
数組記憶させた記憶手段と、該記憶手段に記憶さ
せた複数組のデータ群の中から1回のセカツドカ
ツト加工ごとに順次加工幅の小さい1組のデータ
群を選択してこの選択されたデータ群に従つて電
気条件とワイヤ電極のオフセツト値とをそれぞれ
小さくなるよう変更させ、かつ上記電気条件の変
更に伴うワイヤ電極と被加工物間の放電発生電圧
の低下を防止するために上記セカンドカツト用電
源の電圧を高める動作をする制御手段とをそれぞ
れ具備した構成を特徴とするものである。 なお、本発明において「電気条件」とは「電
流」を含んでいるが「電圧」は含んでおらず、従
つて本発明で「電気条件の変更」という場合は
「電流の変更」を含んではいるが、「電圧の変更」
は含んでおらず、また本発明でいう「電気エネル
ギーの変更」とは、そのような「電気条件の変
更」を意味しているものであることをまず最初に
定義しておくことにする。 以下、本発明の実施例を図面に基づいて説明す
る。 第2図には本発明装置の一実施例の概略構成が
示されている。図において、加工テーブル20は
上テーブル22と下テーブル24とを備え、上テ
ーブル22はX軸駆動モータ26によりX軸方向
すなわち矢印P方向に駆動可能にされ、下テーブ
ル24はY軸駆動モータ28によりY軸方向すな
わち矢印Q方向に駆動可能にされている。この加
工テーブル20の上テーブル22上には被加工物
30が載置され、この被加工物30を貫通してワ
イヤ電極32が設けられ、このワイヤ電極32と
被加工物30との間には絶縁性の加工液34が介
在するようにされている。この加工液34はタン
ク36からポンプ38により被加工物30とワイ
ヤ電極32との間隙にノズル40により噴射され
てる。ワイヤ電極32は、ワイヤ供給リール42
により供給され、下部ワイヤガイド44及び被加
工物30中を通過して上部ワイヤガイド46に達
し、電気エネルギー給電部48を介してテンシヨ
ンローラを兼ねるワイヤ巻取りリール50により
巻取られるようになつている。電気エネルギー給
電部48には電気エネルギーを供給するための加
工電源52の一端が接続され、この加工電源52
の他端は被加工物30に接続されている。また、
加工電源52は、仕上げ加工であるセカンドカツ
ト用の電源となる電気回路54を内蔵している。
この電気回路54は後述する理由により印加電圧
を変更可能になつているとともに、コンピユータ
56の制御手段58に接続され、記憶手段60か
らの信号によりセカンドカツト加工時に印加電圧
が制御されるようになつている。この制御手段5
8にはX軸駆動モータ26及びY軸駆動モータ2
8も接続され、同じく記憶手段60からの信号に
より駆動及び制御を行なわれるようになつてい
る。 なお、第2図中符号62は被加工物30に設け
られた加工開始穴を示し、符号64は加工軌跡を
示している。 このような構成において、被加工物30を加工
するには、ワイヤ供給リール42から下部ワイヤ
ガイド44を介して供給されるワイヤ電極32を
被加工物30の加工開始穴62内に通し、さらに
上部ワイヤガイド46及び電気エネルギー給電部
48を介してワイヤ巻取りリール50に巻取り所
定のテンシヨンを加えておく。この状態で、加工
電源52から所定の電圧を被加工物30及び電気
エネルギー供給部48に供給するとともに、ポン
プ38を駆動してタンク36内の加工液34をノ
ズル40からワイヤ電極32と被加工物30との
間に供給する。次いで、コンピユータ56の制御
手段58によりX軸駆動モータ26及びY軸駆動
モータ28を駆動し、被加工物30とワイヤ電極
32とをXY軸平面内において二次元平面内相対
運動させ、所望の加工軌跡64を得るものであ
る。 ところで、粗加工であるフアーストカツト加工
をされた後、第3図及び第4図に示されるような
被加工物30のセカンドカツト加工時において、
電気エネルギーをE、被加工物30とワイヤ電極
32との相対加工速度をF、被加工物30の厚さ
をt及び加工幅をεとするとこれらの間には次の
関係式が成り立つ。 E∝K×F×t×ε ……(1) ∴ε∝E/k×F×t ……(2) ここで、kは被加工物30の厚さtをパラメー
タとする関係である。従つて、加工幅εは、加工
速度F、電気エネルギーE、被加工物30の厚さ
tにより決定される。 下記の表−1は、前記(2)式において加工速度F
を一定とし、電気エネルギーE,I及び被加工物
30の厚さt,Jをパラメータとした場合の加工
幅ε(I、J)を示したものである。 このような関連づけられたデータ群を加工速度
Fを変えた場合についても用意しておき、コンピ
ユータ56の記憶手段60に記憶させておく。フ
アーストカツト加工では、オフセツト量をNJ=1 ε(I、J)だけ余分にとり、加工を行なう。
すなわち、図面寸法10よりNJ=1 ε(I、J)だけ
小さめに加工するセカンドカツト加工により、図
面寸法10に順次近づけてゆく訳である。 第5図A〜Jには本発明による加工方法の過程
が示され、Aは粗加工終了後の状態、Bは1回目
のセカンドカツト加工を行なつている状態、Cは
2回目のセカンドカツト加工を行なつている状
態、以下、D、E、Fの状態を経てJの最終加工
状態に至り加工を終了するものである。すなわ
ち、第5図Aにおいて、フアーストカツト加工で
ある粗加工が終了すると、被加工物30の加工面
12は図面寸法面10に対してNJ=1 ε(I、J)の
距離だけ離れている。次いで、電気エネルギーE
(1)で被加工物
The present invention relates to a wire cut discharge device for machining a workpiece using a wire electrode. Conventionally, a workpiece is placed on a processing table that can perform two-dimensional plane movement within the XY-axis plane, a wire electrode is provided passing through the workpiece, and a wire electrode is placed between the wire electrode and the workpiece. A predetermined voltage is applied to generate electrical discharge, an insulating machining fluid is supplied to this machining section, and the machining table is controlled and driven by a control device consisting of an NC and copying mechanism to machine the workpiece. A wire cut electric discharge machining apparatus is known. This type of wire-cut electric discharge machining equipment is mainly used for machining molds with penetrating holes, such as press molds and extrusion dies for aluminum sash. This makes it possible to manufacture molds with extremely high precision compared to conventional processing methods. Furthermore, the overall mold manufacturing time using a wire-cut electric discharge machining device can be said to be the same or slightly faster than when conventional mechanical cutting or normal electric discharge machining is used because the manufacturing process is simple. However, regarding the machining speed itself, the current wire cut machining speed is 0.1 g/min, and even with normal electrical discharge machining equipment, which is said to be slower than mechanical cutting, the practical machining speed is several g/min. Considering this, there is a problem that the processing speed is extremely slow. The reason why the machining speed is so slow even though it is the same electric discharge machining is that there is a problem unique to wire-cut electric discharge machining equipment, such as wire electrode breakage.
The limit of machining energy input is determined by the limit of occurrence of wire breakage. On the other hand, the difference from wire-cut electrical discharge machining is that the practical machining speed limit of normal electrical discharge machining is limited by machining accuracy and machined surface roughness rather than the limit of energy input. It is. By the way, machining accuracy and surface roughness are not ignored in wire cut electrical discharge machining, and generally even at the maximum speed (approximately 0.1 g/min) as mentioned above,
A fine machined surface roughness of about 15μRmax can be obtained, so
It's just not that much of a problem. On the other hand, if we consider the case where the surface roughness is finished to several μRmax, the machining speed under such surface roughness conditions is:
It is only a few mg/min, which is a few tenths of the maximum machining speed, which is not practical, so after machining at the maximum machining speed, set the machining conditions to the desired surface roughness and trace the machined surface again. There is a method of processing, which is called second cut processing. However, as mentioned above, when machining at the maximum machining speed,
There is a surface roughness of 10 to 15μRmax, and the maximum machining speed itself is extremely slow, so if the cutting length is several hundred mm, the machining time itself will be several hours to several tens of hours. Due to changes in temperature and deformation of the workpiece, the shape accuracy is 10 to 20 μm.
There are also some parts that are off-kilter. Conventionally, in order to finish the surface of such a workpiece to about several μRmax, the processing conditions were changed all at once, and second cut processing was performed at a processing speed of about several mg/min. FIGS. 1A to 1E show changes in the machined surface due to conventional second cut processing. In this figure, the machined surface 12 with respect to the drawing dimension surface 10 is a surface with large unevenness immediately after the rough finishing of A, and when the first second cutting process is performed, the top of the unevenness is partially cut off, resulting in B. becomes the state of
In the second second cut process, the top part is further cut off as shown in C, and after several second cuts are made at the same time, almost no large peaks are left in the state shown in D, and finally the top part is cut off as shown in E. The surface 12 is machined to match the drawing dimension surface 10. However, with this method, the amount of machining stock that can be machined in one second cut process is very small, and there are also areas where electrical discharge occurs and areas where it does not occur, resulting in the inconvenience that the electrical discharge becomes extremely unstable. . Furthermore, in order to completely finish the surface, it is necessary to perform the finishing process by repeating trial and error many times, which has the drawback of being very inefficient in terms of time. An object of the present invention is to provide a wire-cut electrical discharge machining device with good machining accuracy and machining efficiency. The present invention provides a wire-cut electrical discharge machining apparatus that applies a predetermined voltage between a workpiece and a traveling wire electrode to cause discharge, and uses this discharge energy to cut the workpiece. A power source for second cutting that can change the applied voltage that applies a predetermined voltage between the wire electrode and the workpiece during the second cut in which the cut portion is subjected to electric discharge machining multiple times, and electrical conditions and the workpiece. A storage means stores a plurality of sets of the relationship between the thickness of the object and the machining width as one data group, and stores the machining width in sequence for each second cutting process from among the plurality of data groups stored in the storage means. A small data group is selected, and the electrical conditions and the offset value of the wire electrode are changed to become smaller according to the selected data group, and the wire electrode and workpiece are changed as the electrical conditions are changed. The present invention is characterized by a configuration including a control means for increasing the voltage of the second cut power supply in order to prevent a drop in the discharge generation voltage between the two. In addition, in the present invention, "electrical conditions" includes "current" but does not include "voltage", and therefore, in the present invention, "change in electrical conditions" does not include "change in current". There is, but "voltage change"
First of all, it is defined that "change of electrical energy" as used in the present invention means such "change of electrical conditions". Embodiments of the present invention will be described below based on the drawings. FIG. 2 shows a schematic configuration of an embodiment of the device of the present invention. In the figure, the processing table 20 includes an upper table 22 and a lower table 24. The upper table 22 is driven by an X-axis drive motor 26 in the X-axis direction, that is, the direction of arrow P, and the lower table 24 is driven by a Y-axis drive motor 28. It is possible to drive in the Y-axis direction, that is, in the arrow Q direction. A workpiece 30 is placed on the upper table 22 of the processing table 20, a wire electrode 32 is provided passing through the workpiece 30, and a wire electrode 32 is provided between the wire electrode 32 and the workpiece 30. An insulating working fluid 34 is interposed. This machining fluid 34 is sprayed from a tank 36 by a pump 38 into the gap between the workpiece 30 and the wire electrode 32 through a nozzle 40 . The wire electrode 32 is connected to a wire supply reel 42
The wire passes through the lower wire guide 44 and the workpiece 30, reaches the upper wire guide 46, and is wound up by the wire take-up reel 50, which also serves as a tension roller, via the electrical energy feeder 48. ing. One end of a processing power supply 52 for supplying electrical energy is connected to the electrical energy power supply section 48 .
The other end is connected to the workpiece 30. Also,
The processing power source 52 includes an electric circuit 54 that serves as a power source for second cutting, which is finishing processing.
This electric circuit 54 is capable of changing the applied voltage for reasons to be described later, and is connected to a control means 58 of a computer 56, so that the applied voltage is controlled by a signal from a storage means 60 during second cut processing. ing. This control means 5
8 has an X-axis drive motor 26 and a Y-axis drive motor 2.
8 is also connected and similarly driven and controlled by signals from the storage means 60. Note that in FIG. 2, reference numeral 62 indicates a machining start hole provided in the workpiece 30, and reference numeral 64 indicates a machining trajectory. In such a configuration, in order to process the workpiece 30, the wire electrode 32 supplied from the wire supply reel 42 via the lower wire guide 44 is passed through the machining start hole 62 of the workpiece 30, and then the upper A predetermined winding tension is applied to the wire take-up reel 50 via the wire guide 46 and the electric energy feeder 48. In this state, a predetermined voltage is supplied from the machining power source 52 to the workpiece 30 and the electrical energy supply unit 48, and the pump 38 is driven to supply the machining liquid 34 in the tank 36 from the nozzle 40 to the wire electrode 32 and the workpiece. 30. Next, the control means 58 of the computer 56 drives the X-axis drive motor 26 and the Y-axis drive motor 28 to cause the workpiece 30 and the wire electrode 32 to move relative to each other within a two-dimensional plane within the XY-axis plane, thereby performing the desired processing. A trajectory 64 is obtained. By the way, after the first cut processing, which is rough processing, is performed, during the second cut processing of the workpiece 30 as shown in FIGS. 3 and 4,
Letting E be the electrical energy, F be the relative machining speed between the workpiece 30 and the wire electrode 32, t be the thickness of the workpiece 30, and ε be the machining width, the following relational expression holds between these. E∝K×F×t×ε (1) ∴ε∝E/k×F×t (2) Here, k is a relationship in which the thickness t of the workpiece 30 is used as a parameter. Therefore, the machining width ε is determined by the machining speed F, the electrical energy E, and the thickness t of the workpiece 30. Table 1 below shows the machining speed F in equation (2) above.
The figure shows the machining width ε(I, J) when the electric energies E, I and the thicknesses t, J of the workpiece 30 are used as parameters. Such an associated data group is also prepared for the case where the machining speed F is changed, and is stored in the storage means 60 of the computer 56. In the first cut machining, the offset amount is increased by NJ=1 ε(I, J) and the machining is performed.
In other words, the drawing size is gradually made closer to the drawing size of 10 by performing a second cut process to make the drawing size smaller by NJ=1 ε (I, J) than the drawing size of 10. 5A to 5J show the process of the processing method according to the present invention, where A is the state after rough machining, B is the first second cut, and C is the second second cut. The state in which machining is being performed, hereafter, passes through states D, E, and F, and reaches the final machining state J, where the machining is completed. That is, in FIG. 5A, when the rough machining that is first cut machining is completed, the machined surface 12 of the workpiece 30 is separated from the drawing dimension surface 10 by a distance of NJ=1 ε (I, J). There is. Then, the electric energy E
(1) Workpiece

【表】 30の厚さt,Jに対する加工幅ε(1、J)を
コンピユータ56により設定し、その加工幅分だ
け加工できるようなオフセツト量を決定し、その
条件の下で1回目のセカンドカツト加工を行な
う。この状態を示すのが第5図Bである。1回目
のセカンドカツト加工が終了すると、コンピユー
タ56により電気エネルギーE(2)での加工幅ε
(2、J)を選択してその加工幅分だけの加工が
できるようにオフセツト量を決定してその条件で
の下で2回目のセカンドカツト加工を行なう。こ
の状態を示すのが第5図Cである。このようにし
てコンピユータ56の記憶手段60に記憶された
テーブルに従い加工幅ε(N、J)になるまでセ
カンドカツト加工を継続して加工を終了する。こ
の際、第5図D〜Fは図面の作成上3段階で示さ
れているが、実際には記憶手段60に記憶された
テーブルに従つて数段階の加工を行なうものであ
る。また、ワイヤ電極32は第5図中矢印方向に
相対的に移動しつつ加工を行なう。 上述のような本実施例によれば、2回以上行な
われるセカンドカツト加工の1工程を単位として
1回目のセカンドカツト加工の加工幅に比べ順次
加工幅を減らし、最終セカンドカツト加工で加工
幅をほぼ零の状態で加工するようにしたから、従
来のセカンドカツト加工法に比べ、加工速度が速
くしかも加工面の細かな精度の良い加工を行なう
ことができる。 なお、前記実施例において、粗加工を行なつた
結果残りの加工幅がNJ=1 ε(I、J)より多かつた
場合には電気エネルギーE(1)で何回か加工するこ
とにより所定の残り加工幅になるまで加工を行な
い以下、前記実施例と同様に電気エネルギーEを
順次下げて加工を行なう。また、残りの加工幅が
NJ=1 ε(I、J)より少なかつた場合はその時の残
り加工幅に合うような電気エネルギーE,Iから
加工を開始し、以下電気エネルギーEを順次下げ
て加工を継続する。このようにして、粗加工の結
果にかかわらず効率を損うことなしに加工をする
ことが可能である。 第6図にはワイヤカツト放電加工を行なう場合
の加工経路が示され、加工は加工開始穴62から
a→b→c→d→e→f→gと加工される。この
際、粗加工を上記経路に従つて加工し、点gから
加工開始穴62にもどる経過をとり、セカンドカ
ツト加工を同様にたどらせても良いが、粗加工で
gの地点まで加工が進んだとき、自動的にコンピ
ユータ56により電気エネルギー、オフセツト量
を変更し、bの方向に継続してセカンドカツト加
工にうつるということも可能である。このように
加工開始穴62にもどらない方法によると、ワイ
ヤ電極32の無駄な動きである加工開始穴62と
点gとの間の往復をなくすことができ、さらに加
工効率を向上させることができる。 次にセカンドカツト加工の際にその電源となる
電気回路54の印加電圧がコンピユータ56から
の指令信号によつて変更されるようにした理由に
ついて第7図の電源説明図をもとに説明する。 第7図において、54は前述したセカンドカツ
ト用電源となる電気回路で、その印加電圧E1は
変更可能になつており、これ以外は従来から周知
の回路であり、Gはワイヤ電極32と被加工物3
0が対向した極間間隙、R1は電源抵抗、R2は
極間抵抗、E2は極間電圧、Sはスイツチ手段で
ある。 以上の構成であるから、前述したようにセカン
ドカツト加工ごとに電気条件を小さくなるように
変更するということは、極間間隙Gに流れる電流
を小さくするということであり、これは電源抵抗
R1を大きくするということである。 ところがこのように抵抗R1を大きくすると必
然的に極間電圧E2は小さくなり、放電を発生さ
せるのに十分な電圧、言い換えるといわゆる無負
荷電圧が十分な値にならないことにより、放電が
安定して発生しなくなり、ひいては加工が不安定
となる。 そこで本発明ではこのような不具合を防止する
ためにセカンドカツト用電源となる電気回路54
の印加電圧E1を大きくして放電発生電圧の低下
を防止しているのである。 なお、印加電圧E1を大きくしても極間間隙G
に流れる電流I(=E/R1+R2)はR1が極めて大 きいためその変化は実際は無視できる。 上述のように本発明によれば、セカンドカツト
加工の高速化、高精度化、自動化ができるという
効果があるとともに、セカンドカツト加工時にも
所定の放電発生電圧を維持させることができ、安
定して放電加工を行わせることができるという効
果がある。
[Table] The processing width ε (1, J) for the thickness t, J of 30 mm is set by the computer 56, the offset amount that allows processing by that processing width is determined, and under that condition, the first second Perform cut processing. FIG. 5B shows this state. When the first second cut machining is completed, the computer 56 determines the machining width ε with electrical energy E(2).
(2, J) is selected, the offset amount is determined so that the cutting width can be processed, and the second second cutting process is performed under these conditions. FIG. 5C shows this state. In this way, according to the table stored in the storage means 60 of the computer 56, the second cut process is continued until the process width ε(N, J) is reached, and the process is completed. At this time, although FIGS. 5D to 5F are shown in three stages for drawing purposes, in reality, processing is performed in several stages according to the table stored in the storage means 60. Further, the wire electrode 32 is processed while relatively moving in the direction of the arrow in FIG. According to this embodiment as described above, the processing width is sequentially reduced compared to the processing width of the first second cut processing, and the processing width is reduced in the final second cut processing in units of one step of the second cut processing performed two or more times. Since machining is performed in an almost zero state, the machining speed is faster than the conventional second-cut machining method, and the machined surface can be machined with fine precision. In addition, in the above example, if the remaining machining width is larger than NJ=1 ε (I, J) as a result of rough machining, machining must be performed several times with electric energy E(1). Machining is carried out until a predetermined remaining machining width is reached, and thereafter, the electric energy E is successively lowered and the machining is carried out in the same way as in the previous embodiment. Also, the remaining machining width is
If it is less than NJ=1 ε(I, J), machining is started from electric energies E and I that match the remaining machining width at that time, and thereafter machining is continued by lowering the electric energy E sequentially. In this way, it is possible to carry out machining without loss of efficiency, regardless of the result of rough machining. FIG. 6 shows a machining path when wire cut electric discharge machining is performed, and machining is performed from a machining start hole 62 in the order of a → b → c → d → e → f → g. At this time, the rough machining may be performed according to the above-mentioned path, returning from point g to the machining start hole 62, and the second cut machining may be performed in the same manner, but the machining may proceed to point g in the rough machining. In this case, it is also possible to automatically change the electric energy and offset amount using the computer 56, and continue in the direction b to proceed to the second cut process. According to the method of not returning to the machining start hole 62 in this way, it is possible to eliminate the back and forth between the machining start hole 62 and the point g, which is a wasteful movement of the wire electrode 32, and it is possible to further improve the machining efficiency. . Next, the reason why the voltage applied to the electric circuit 54 serving as the power source during the second cutting process is changed by the command signal from the computer 56 will be explained based on the power supply diagram of FIG. 7. In FIG. 7, reference numeral 54 is an electric circuit that serves as the power source for the second cut described above, and the applied voltage E1 can be changed, and the other circuits are conventionally known circuits. Thing 3
0 is the gap between the opposing electrodes, R1 is the power supply resistance, R2 is the resistance between the electrodes, E2 is the voltage between the electrodes, and S is the switching means. With the above configuration, changing the electrical conditions to be smaller for each second cut process as described above means reducing the current flowing through the gap G between the electrodes, which means that the power supply resistance R1 is reduced. It means making it bigger. However, when the resistor R1 is increased in this way, the interelectrode voltage E2 inevitably becomes smaller, and the voltage sufficient to generate a discharge, in other words, the so-called no-load voltage does not reach a sufficient value, and the discharge becomes stable. This will no longer occur, and as a result, machining will become unstable. Therefore, in the present invention, in order to prevent such problems, an electric circuit 54 serving as a power source for the second cut is provided.
The applied voltage E1 is increased to prevent the discharge generation voltage from decreasing. Note that even if the applied voltage E1 is increased, the electrode gap G
Since R1 of the current I (=E/R 1 +R 2 ) flowing through is extremely large, its change can actually be ignored. As described above, the present invention has the effect of speeding up, increasing precision, and automating the second cut machining, and also maintains a predetermined discharge generation voltage during the second cut machining, stably. This has the effect that electrical discharge machining can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜Eは従来のセカンドカツト加工によ
る図面寸法面と加工面との変化状態を示す説明
図、第2図は本発明に係るワイヤカツト放電加工
装置の一実施例を示す概略構成図、第3図及び第
4図はセカンドカツト加工時における被加工物と
ワイヤ電極との寸法及び速度関係を示す正面図及
び平面図、第5図A〜Jは本発明によるセカンド
カツト加工過程を示す説明図、第6図は本発明に
おける加工経路を示す説明図、第7図は本発明の
電源の説明図である。各図中同一部材には同一符
号を付し、20は加工テーブル、26はX軸駆動
モータ、28はY軸駆動モータ、30は被加工
物、32はワイヤ電極、48は電気エネルギー給
電部、52は加工電源、54はセカンドカツト用
電源を構成する電気回路、58は制御手段、60
は記憶手段、Eは電気エネルギー、Fは加工速
度、tは被加工物の厚さ、εは加工幅である。
1A to 1E are explanatory diagrams showing changes in the drawing dimension surface and the machined surface due to conventional second cut machining, and FIG. 2 is a schematic configuration diagram showing an embodiment of the wire cut electric discharge machining apparatus according to the present invention. 3 and 4 are a front view and a plan view showing the size and speed relationship between the workpiece and the wire electrode during the second cut process, and FIGS. 5A to 5J are explanatory views showing the second cut process according to the present invention. FIG. 6 is an explanatory diagram showing the machining path in the present invention, and FIG. 7 is an explanatory diagram of the power source of the present invention. In each figure, the same members are given the same reference numerals, 20 is a processing table, 26 is an X-axis drive motor, 28 is a Y-axis drive motor, 30 is a workpiece, 32 is a wire electrode, 48 is an electrical energy feeder, 52 is a processing power source; 54 is an electric circuit constituting a second cutting power source; 58 is a control means; 60
is the storage means, E is the electric energy, F is the machining speed, t is the thickness of the workpiece, and ε is the machining width.

Claims (1)

【特許請求の範囲】[Claims] 1 被加工物と走行するワイヤ電極との間に所定
の電圧を印加して放電させ、この放電エネルギー
により被加工物を切断するワイヤカツト放電加工
装置において、上記被加工物を切断後その切断部
をさらに複数回にわたつて放電加工するセカンド
カツトの際に上記ワイヤ電極と被加工物との間に
所定の電圧を印加する印加電圧変更可能なセカン
ドカツト用電源と、電気条件と被加工物の厚さと
加工幅の関係を一組のデータ群として複数組記憶
させた記憶手段と、該記憶手段に記憶させた複数
組のデータ群の中から1回のセカツドカツト加工
ごとに順次加工幅の小さい1組のデータ群を選択
してこの選択されたデータ群に従つて電気条件と
ワイヤ電極のオフセツト値とをそれぞれ小さくな
るよう変更させ、かつ上記電気条件の変更に伴う
ワイヤ電極と被加工物間の放電発生電圧の低下を
防止するために上記セカンドカツト電源の電圧を
高める動作をする制御手段とを具備してあるワイ
ヤカツト放電加工装置。
1. In a wire cut electrical discharge machining device that applies a predetermined voltage between a workpiece and a traveling wire electrode to cause discharge, and cuts the workpiece with this discharge energy, after cutting the workpiece, the cut portion is In addition, a second cut power supply that applies a predetermined voltage between the wire electrode and the workpiece during the second cut that is performed multiple times by electrical discharge machining, and a variable applied voltage power supply, as well as electrical conditions and the thickness of the workpiece, are provided. A storage means that stores a plurality of data groups containing relationships between the cutting width and the machining width, and one set with a smaller machining width for each second cutting process from among the plurality of data groups stored in the storage means. The electrical conditions and the offset value of the wire electrode are changed to be smaller in accordance with the selected data group, and the electric discharge between the wire electrode and the workpiece is reduced due to the change in the electrical conditions. A wire cut electrical discharge machining apparatus comprising: control means for increasing the voltage of the second cut power supply in order to prevent a drop in the generated voltage.
JP8371679A 1979-07-02 1979-07-02 Method and apparatus for wire cut electric discharge machining Granted JPS569129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8371679A JPS569129A (en) 1979-07-02 1979-07-02 Method and apparatus for wire cut electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8371679A JPS569129A (en) 1979-07-02 1979-07-02 Method and apparatus for wire cut electric discharge machining

Publications (2)

Publication Number Publication Date
JPS569129A JPS569129A (en) 1981-01-30
JPS6333969B2 true JPS6333969B2 (en) 1988-07-07

Family

ID=13810226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8371679A Granted JPS569129A (en) 1979-07-02 1979-07-02 Method and apparatus for wire cut electric discharge machining

Country Status (1)

Country Link
JP (1) JPS569129A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993227A (en) * 1982-11-15 1984-05-29 Fanuc Ltd Edm control circuit
JPS60114427A (en) * 1983-11-25 1985-06-20 Inst Tech Precision Eng Manufacturing method of extrusion dies
JPS63267122A (en) * 1987-04-21 1988-11-04 Inoue Japax Res Inc Wire-cut electric discharge machining device
JPH0775806B2 (en) * 1988-04-08 1995-08-16 株式会社ソディック Wire cut electrical discharge machining method
JP5004638B2 (en) * 2007-04-10 2012-08-22 株式会社ソディック Wire-cut EDM method

Also Published As

Publication number Publication date
JPS569129A (en) 1981-01-30

Similar Documents

Publication Publication Date Title
DE2954382C2 (en)
DE3104032A1 (en) METHOD FOR CUTTING A WORKPIECE
US4317019A (en) Method and apparatus for electrically cutting work pieces with a wire electrode
US11998997B2 (en) Wire electrical discharge machine and machining program editor
DE3546130C2 (en) Process for controlling machining in an electrical discharge machine with a wire electrode
DE3736004C2 (en) Method and device for the electrical discharge machining of workpiece surfaces by means of a wire electrode
CN102019473B (en) Wire electric discharge machining method, apparatus therefor
US5041984A (en) Method of calculating an amount of offset in a wire cut electric discharge machining operation
US4427870A (en) Method of and apparatus for electroerosively machining a conductive workpiece with a continuous wire electrode
CN101337296A (en) Cutting method of electric spark wire-electrode cutting machine by to-and-fro travelling wire
JPS6333969B2 (en)
US4940871A (en) Method of restoring a wire electrode broken during an electric discharge machining operation
US4386248A (en) Electrical machining method and apparatus for forming a 3D surface contour in a workpiece with a traveling-wire electrode
JPS6336891B2 (en)
Moulton Wire EDM the fundamentals
CH677628A5 (en)
EP0446368A1 (en) Machining condition setting method for wire cut discharge machine
JPS639931B2 (en)
JPH0253526A (en) Wire cut electric discharge machine
JPS6247648B2 (en)
US5038011A (en) Wire cut electric discharge machining method
JPS632728B2 (en)
US4786777A (en) Process and apparatus for wire electrode trimming using a laser
US4229636A (en) Spark erosion machining process
CN114871520B (en) Wire-cut electric discharge machine and method for synchronously performing rough machining and finish machining