JPS6333889B2 - - Google Patents

Info

Publication number
JPS6333889B2
JPS6333889B2 JP55038005A JP3800580A JPS6333889B2 JP S6333889 B2 JPS6333889 B2 JP S6333889B2 JP 55038005 A JP55038005 A JP 55038005A JP 3800580 A JP3800580 A JP 3800580A JP S6333889 B2 JPS6333889 B2 JP S6333889B2
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
ammonia
dinitrogen oxide
gas containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55038005A
Other languages
Japanese (ja)
Other versions
JPS56136629A (en
Inventor
Shinji Aoki
Keita Kawamura
Toshiaki Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP3800580A priority Critical patent/JPS56136629A/en
Publication of JPS56136629A publication Critical patent/JPS56136629A/en
Publication of JPS6333889B2 publication Critical patent/JPS6333889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、攟射線照射排ガス凊理プロセス副生
物の利甚法に関する。さらに詳しく蚀えば、本発
明は、排ガス䞭に含たれるSO2およびたたは
NOxが、攟射線の圱響䞋に添加されたNH3ず盞
互反応するこずによ぀お生じた゚アロゟル状の反
応生成物を無害化し、さらに䞀歩進めおこれを有
効利甚する方法に関する。 攟射線照射排ガス凊理プロセスの兞型的なフロ
ヌシヌトは第図に瀺す通りである。このプロセ
スを、第図に埓぀お説明するず、排ガス発生源
で発生した排ガスは、照射宀内のリアクタヌ
に導入され、こゝで攟射線発生装眮電子線発
生装眮からの攟射線通垞、電子線を照射
され、排ガス䞭に含たれるSO2およびたたは
NOxは、リアクタヌ前方たたは埌方に蚭けられ
たアンモニア添加装眮たたはから添加される
アンモニアず盞互に反応しお゚アロゟル状の反応
生成物副生物を生成する。これらの生成物は
集塵噚で捕集され、陀塵された排ガスはブロワ
ヌおよび煙突を経お倧気ぞ攟出される。 䞊蚘プロセスにおいお、集塵噚で捕集される
副生物は、線回折分析、赀倖吞光、化孊分析等
の分析結果から硫安および硫安ず硝安ずの耇塩
硫硝安を䞻成分ずする物質であるこずが確か
められおいる。 本明现曞䞭でいう排ガスずは、石油、石炭等の
燃焌排ガスおよび各皮産業プロセスからの排ガス
を指す。前蚘排ガス凊理プロセス副生物の利甚法
ずしおは、窒玠質肥料ずしおの利甚および熱分解
による有効成分の回収利甚が考えられおいるが、
本発明の方法は埌者に属する総合的な方法であ぀
お、熱分解によ぀お生じるガスを有効利甚するず
共に、最終生成物を取扱い䟿利で無害な固圢粒状
物のみずするこずを特城ずする。埓来、前蚘副生
物は比重が小さい埮粉䜓であるために取扱いが困
難であり、取扱い時に䞀郚が凝集したり、熱分解
凊理に際しおは局郚加熱による䞍玔物酞性硫安
などの生成があ぀たり、爆発の危険性が増倧す
るなどの欠点があ぀たが、本発明の方法はこれら
の欠点がなく、奜郜合に実斜するこずができる。 本発明の方法は、亜硫酞ガスSO2および
たたは窒玠酞化物NOxを含む排ガスにアン
モニアNH3を添加しお電子線照射するかた
たは前蚘排ガスを電子線照射した埌、NH3を添
加するこずにより埗られる゚アロゟル状反応生成
物を、集塵装眮でガス流から分離回収した埌、こ
れを無機物ず共に必芁な量の氎の存圚䞋に、流動
局造粒装眮内で比范的䜎枩床でNH3を含むガス
を発生させるず共に造粒し固圢粒状䜓を生成せし
めるこず、このようにしお埗られた固圢粒状䜓
を、さらに、も぀ず高い枩床で熱分解しお、酞化
二窒玠を含むガスを発生せしめ、粒状䜓の䞻成分
を石こうに倉えるこず、さらに、前蚘酞化二窒玠
含有ガスを燃料の助燃剀ずしお有効に䜿甚するず
共に、酞化二窒玠を分解しお完党に無害化するこ
ずを特城ずする、前蚘副生物の利甚法である。 第図は、本発明の奜たしい具䜓䟋を瀺すフ
ロヌシヌトである。以䞋第図に埓぀お説明する
ず、攟射線照射排ガス凊理プロセスの反応生成物
副生物は、溶解槜−で氎溶液にされる。
この際、前蚘副生物氎の重量比は10以䞋ずする
こずが奜たしい。最適の比率は流動局造粒装眮
−の運転条件などで定たる。流動局造粒装眮
−では、溶解槜−からの氎溶液がスプレヌ
装眮−により噎霧され、䞀方、無機物たず
えば酞化カルシりム、CaOが定量フむヌダヌ
−および最終固䜓生成物たずえば石こうの
䞀郚が定量フむヌダヌ−を介しお䟛絊管によ
り䟛絊される。 無機物質の添加量は、前蚘副生物原料に察
しお20重量以䞊ずすべきであり、副生物の0.5
倍〜20倍重量比の範囲内ずするこずが奜たし
い。その最適量は、造粒条件により異なるが、生
成物䞭のSO4 2-量の圓量に察し0.9〜1.3倍量甚い
れば良い結果が埗られる。添加し埗る無機物質は
酞化カルシりム、酞化マグネシりム、石灰石䞻
成分CaCO3、消石灰、ドロマむト䞻成分
CaCO3、MgCO3、ドロマむトの氎酞化物などで
あり、400℃以䞊の融点をも぀物質を䞻成分ずす
るものが奜たしい。 流動局造粒装眮−に䟛絊管を通しお送られ
た粒子は、熱颚炉−からの空気およびスプレ
ヌ装眮−からの噎霧により匷制埪環流動させ
られ、粒子ず液䜓ずの反応や物理的結合により粒
状䜓が圢成される。原料副生物前蚘攟射線照射
プロセスの反応生成物䞭の硫安成分をなしおい
たアンモニア態窒玠は脱離しおアンモニアガスが
発生する。流動局装眮内の粒子は所定の粒埄に至
るたで成長させる。この堎合の反応は次の(1)匏に
瀺す通りである。 は造粒による生成粒子の成分を衚わす。 (1)の反応が進行するずきの枩床は80〜150℃、
奜たしくは90〜110℃である。(1)匏の反応によ぀
お発生したアンモニア含有ガスは、アンモニア回
収装眮−で、アンモニアガスたたは安氎ずし
お回収され、アンモニアタンク−に貯蔵され
る。回収したアンモニアガスたたは安氎は、攟射
線照射排ガス凊理プロセスの添加甚アンモニアず
しお利甚するこずができる。 圢成される粒子は、その粒埄が0.2〜mmの球
圢粒ずなるように制埡するこずが奜たしくこのよ
うに制埡するこずが可胜である。粒埄は装眮内の
滞留時間、氎溶液の噎霧量、石こう等のフむヌド
バツク量および粒埄、枩床、生成物䞭のNH4 +、
NO3 -、SO4 2-などの濃床、酞化カルシりム添加
量および粒埄などにより倉化するので、䞎えられ
た条件の䞋で、可倉条件を倉化させお最適条件を
決定すればよい。 滞留時間は〜40分が奜たしい。最も奜たしく
は15〜25分である。 原料䞭の硝安分は、(1)匏で瀺されるように、生
成する石こうず共に造粒化されるが、埗られた粒
状䜓を、さらに熱分解装眮−で凊理するこず
により、硝安分を熱分解しお、酞化二窒玠を含む
ガスを発生させるこずができる。この反応は、次
の(2)匏で瀺すこずができる。 〔NH4NO3、2CaSO4・nH2O〕―→ 3N20N21/2O28H2O 8CaSO4・nH2O 
(2) (2)匏で衚わされる反応は、100〜350℃、奜たし
くは180〜250℃の枩床で進行する。分解残枣の石
こうは、必芁に応じ䞀定量が流動局造粒装眮−
ぞフむヌドバツクされ、残りの石こうは回収さ
れる。酞化二窒玠を含むガスは酞化二窒玠回収装
眮−により酞化二窒玠を回収し、酞化二窒
玠タンク−に貯蔵するこずができる。ある
いは酞化二窒玠を分離せずに混合ガスのたたで燃
料、特に気䜓燃料の助燃剀ずしお甚いるこずもで
きる。燃焌埌、酞化二窒玠はN2ずO2ずに分解し、
完党に無害化されるのでNOxが再び生成するよ
うなこずはない。 酞化二窒玠N2Oの凊理利甚方法の䞀䟋ず
しお、これを気䜓燃料の助燃剀ずしお甚いる堎合
に䜿甚できる燃焌バヌナヌの䞀䟋を第図に瀺
す。なお、本発明の方法によ぀お生じるN2Oは
気䜓燃料ず共に甚いる堎合に限らず石炭、石油等
の固䜓および液䜓燃料ず共に甚いる堎合、あるい
は䞡者を混合燃焌する堎合にも有効である。 第図においお気䜓燃料は気䜓燃料䟛絊管よ
り䟛絊される。ここで蚀う気䜓燃料ずは也性ガ
ス、湿性ガス、石炭ガス、発生炉ガス、氎性ガ
ス、増熱氎性ガス、熱分解油ガス、接觊分解油ガ
スなどのこずであり、これらが単独たたは皮以
䞊混合しお甚いられる。 䞀方、酞化二窒玠は、酞化二窒玠導入管より
䟛絊される。気䜓燃料ず酞化二窒玠ずの割合は甚
いる気䜓燃料の皮類、バヌナの圢状などにより最
適比が異なるが䞀般的には、酞化二窒玠気䜓燃
料の䜓積比が0.1〜20の範囲内ずなるようにする
こずが望たしい。 このようにしお䟛絊された燃料およびN2Oは
燃焌宀で混合され燃焌し、ノズルから高速で
炉倖に噎出する。燃焌宀の枩床は、N2Oの助
燃䜜甚の効率を良くするために、300℃以䞊に保
枩するこずが望たしい。 燃料ずしお倩然ガスを甚いる堎合の燃焌宀にお
ける反応は次の匏に埓぀お進行する。 2N2O→O22N2 

(3) CH42O2→CO22H2O 

(4) 䞊蚘反応匏からわかるように、N2OはO2の䟛
絊源ずなる。たた、N2Oを甚いるこずによ぀お、
倩然ガスを埓来の方法で燃焌させる堎合よりも発
熱量の増加をきたす。発熱量の増加割合は燃料の
皮類、N2Oの混合比、燃焌方法、燃焌条件、燃
焌装眮の構造などにより異なるが䞀般には、
〜50皋床の増加を埗るこずができる。以䞋、実
斜䟋によ぀お説明する。 実斜䟋  攟射線照射排ガス凊理プロセスにおいお集塵噚
で回収した反応生成物硝安硫安0.6、重量
比を44Kg時の割合で連続的に溶解槜に䟛絊
し、䞀方、同じく溶解槜に47Kg時の割合で氎を
連続的に䟛絊した。このようにしお溶解槜で埗ら
れた溶液を、91Kg時の割合で溶解槜から抜きず
り、スプレヌ装眮を介しお流動造粒装眮内に噎霧
した。これず同時に、酞化カルシりム12Kg時お
よび石こう15Kg時をそれぞれ定量フむヌダヌで
造粒装眮に送り、か぀熱颚炉からの゚アヌ110
℃を100Kg時の割合で造粒装眮に吹き蟌んだ。
造粒装眮内における副生物の滞留時間を20分ずし
お造粒を行な぀た。流動局造粒装眮内でアンモニ
アを含むガスが発生した。分析結果から、アンモ
ニアガスの発生量は第衚に瀺す通りであ぀た。
The present invention relates to a method for utilizing irradiated exhaust gas treatment process by-products. More specifically, the present invention provides SO 2 and/or
This invention relates to a method for rendering harmless an aerosol-like reaction product produced by the mutual reaction of NOx with NH 3 added under the influence of radiation, and taking it a step further to effectively utilize it. A typical flow sheet for the radiation irradiation exhaust gas treatment process is shown in FIG. This process will be explained according to FIG. 1. The exhaust gas generated in the exhaust gas generation source 1 is introduced into the reactor 3 in the irradiation chamber 2, where it is exposed to radiation from the radiation generator (electron beam generator) 4. (usually an electron beam) and SO 2 and/or contained in the exhaust gas
NOx reacts with ammonia added from the ammonia addition device 5 or 6 provided at the front or rear of the reactor to generate an aerosol-like reaction product (by-product). These products are collected by a dust collector 7, and the dust-removed exhaust gas is discharged into the atmosphere via a blower 8 and a chimney 9. In the above process, the by-products collected by the dust collector 7 are mainly composed of ammonium sulfate and a double salt of ammonium sulfate and ammonium nitrate (ammonium sulfate), based on the results of X-ray diffraction analysis, infrared absorption, chemical analysis, etc. It has been confirmed that it is a substance that In this specification, exhaust gas refers to combustion exhaust gas from petroleum, coal, etc., and exhaust gas from various industrial processes. Possible ways to use the byproducts of the exhaust gas treatment process are to use them as nitrogenous fertilizers and to recover and use active ingredients through thermal decomposition.
The method of the present invention is a comprehensive method belonging to the latter category, and is characterized in that it makes effective use of the gas produced by thermal decomposition and that the final product is only solid particles that are convenient to handle and harmless. Conventionally, the above-mentioned by-products are difficult to handle because they are fine powders with low specific gravity, and some of them may aggregate during handling, and during thermal decomposition treatment, impurities (such as acidic ammonium sulfate) may be generated due to local heating. Although there have been disadvantages such as an increased risk of explosion, the method of the present invention is free from these disadvantages and can be carried out conveniently. The method of the present invention uses sulfur dioxide gas (SO 2 ) and/or
Alternatively, ammonia (NH 3 ) is added to exhaust gas containing nitrogen oxides (NOx) and irradiated with an electron beam, or an aerosol-like reaction product obtained by adding NH 3 after irradiating the exhaust gas with an electron beam. After being separated and recovered from the gas stream in a dust collector, it is granulated together with inorganic substances in the presence of the required amount of water in a fluidized bed granulator at a relatively low temperature while generating gas containing NH3 . The solid granules obtained in this way are further thermally decomposed at a high temperature to generate a gas containing dinitrogen oxide, and the main component of the granules is converted to gypsum. A method of utilizing the by-product, which further comprises effectively using the dinitrogen oxide-containing gas as a combustion aid for fuel, and decomposing the dinitrogen oxide to completely render it harmless. . FIG. 2 is a flow sheet showing a preferred embodiment of the present invention. Referring to FIG. 2 below, the reaction products (by-products) of the radiation irradiation exhaust gas treatment process are made into an aqueous solution in a dissolution tank 2-1.
At this time, the weight ratio of the byproduct/water is preferably 10 or less. The optimal ratio is fluidized bed granulator 2
-2 is determined by the operating conditions. Fluidized bed granulation device 2
-2, the aqueous solution from the dissolution tank 2-1 is sprayed by the spray device 2-5, while inorganic substances (e.g. calcium oxide, CaO) are sprayed into the quantitative feeder 2-2.
-3 and a portion of the final solid product (e.g. gypsum) are fed by feed pipes via metering feeder 2-4. The amount of inorganic substances added should be 20% by weight or more based on the by-products (raw materials), and 0.5% by weight of the by-products (raw materials) should be added.
It is preferably within the range of 20 times to 20 times (weight ratio). The optimum amount thereof varies depending on the granulation conditions, but good results can be obtained by using 0.9 to 1.3 times the equivalent amount of SO 4 2- in the product. Inorganic substances that can be added include calcium oxide, magnesium oxide, limestone (main component CaCO 3 ), slaked lime, dolomite (main component
CaCO 3 , MgCO 3 ), dolomite hydroxide, etc., and those whose main component is preferably a substance with a melting point of 400°C or higher. The particles sent to the fluidized bed granulator 2-2 through the supply pipe are forced to circulate and flow by the air from the hot blast furnace 2-6 and the spray from the spray device 2-5, and the reaction between the particles and the liquid and the physical A granule is formed by this combination. Ammonia nitrogen, which was an ammonium sulfate component in the raw material by-product (reaction product of the radiation irradiation process), is desorbed to generate ammonia gas. The particles in the fluidized bed apparatus are grown to a predetermined particle size. The reaction in this case is as shown in the following equation (1). * represents the component of particles produced by granulation. The temperature at which the reaction (1) proceeds is 80-150℃,
Preferably it is 90-110°C. The ammonia-containing gas generated by the reaction of formula (1) is recovered as ammonia gas or ammonium water by an ammonia recovery device 2-7 and stored in an ammonia tank 2-8. The recovered ammonia gas or ammonium water can be used as additive ammonia in the radiation irradiation exhaust gas treatment process. The particles formed are preferably controlled so that they are spherical particles with a particle size of 0.2 to 6 mm, and can be controlled in this manner. Particle size depends on residence time in the device, amount of aqueous solution sprayed, amount of feedback such as gypsum, particle size, temperature, NH 4 + in the product,
Since it changes depending on the concentration of NO 3 - , SO 4 2- , etc., the amount of calcium oxide added, the particle size, etc., the optimum conditions can be determined by changing the variable conditions under the given conditions. The residence time is preferably 5 to 40 minutes. Most preferably 15-25 minutes. As shown in equation (1), the ammonium nitrate content in the raw material is granulated together with the generated gypsum, but the nitrate ammonium content is reduced by further processing the obtained granules in the pyrolysis device 2-9. can be thermally decomposed to generate a gas containing dinitrogen oxide. This reaction can be expressed by the following equation (2). 4 [NH 4 NO 3 , 2CaSO 4・nH 2 O] - → 3N 2 0 + N 2 + 1/2O 2 + 8H 2 O + 8CaSO 4・nH 2 O...(2) The reaction expressed by formula (2) is 100 to 350 ℃, preferably 180-250℃. A certain amount of the decomposition residue gypsum is transferred to the fluidized bed granulator 2- as necessary.
2, and the remaining gypsum is collected. The gas containing dinitrogen oxide can be recovered by a dinitrogen oxide recovery device 2-11 and stored in a dinitrogen oxide tank 2-12. Alternatively, dinitrogen oxide can be used as a mixed gas without being separated, as a fuel, particularly as a combustion improver for gaseous fuels. After combustion, dinitrogen oxide decomposes into N 2 and O 2 ,
Since it is completely rendered harmless, NOx will not be generated again. As an example of a method for processing and utilizing dinitrogen oxide (N 2 O), an example of a combustion burner that can be used when using dinitrogen oxide (N 2 O) as a combustion improver for gaseous fuel is shown in FIG. Note that the N 2 O produced by the method of the present invention is effective not only when used with gaseous fuel but also when used with solid and liquid fuels such as coal and oil, or when both are mixed and burned. In FIG. 3, gaseous fuel is supplied from a gaseous fuel supply pipe A. The gaseous fuels mentioned here include dry gas, wet gas, coal gas, generator gas, water gas, heated water gas, pyrolysis oil gas, catalytic cracking oil gas, etc., and these may be used singly or in combination. A mixture of the above is used. On the other hand, dinitrogen oxide is supplied from dinitrogen oxide introduction pipe B. The optimal ratio of gaseous fuel to dinitrogen oxide varies depending on the type of gaseous fuel used, the shape of the burner, etc., but in general, the volume ratio of dinitrogen oxide/gaseous fuel should be within the range of 0.1 to 20. It is desirable to The fuel and N 2 O thus supplied are mixed and combusted in the combustion chamber C, and are ejected from the nozzle D to the outside of the furnace at high speed. The temperature of the combustion chamber C is desirably kept at 300° C. or higher in order to improve the efficiency of the auxiliary combustion effect of N 2 O. Reactions in the combustion chamber when natural gas is used as fuel proceed according to the following equation. 2N 2 O→O 2 +2N 2 ...(3) CH 4 +2O 2 →CO 2 +2H 2 O ...(4) As can be seen from the above reaction formula, N 2 O serves as a source of O 2 . Moreover, by using N 2 O,
This results in an increase in calorific value compared to when natural gas is combusted using conventional methods. The rate of increase in calorific value varies depending on the type of fuel, N 2 O mixture ratio, combustion method, combustion conditions, structure of the combustion device, etc., but in general it is 5%.
You can get an increase of ~50%. Examples will be explained below. Example 1 The reaction product (ammonium nitrate/ammonium sulfate = 0.6, weight ratio) collected by a dust collector in the radiation irradiation exhaust gas treatment process was continuously supplied to the dissolution tank at a rate of 44 kg/hour. Water was continuously supplied at a rate of 47 Kg/hr. The solution thus obtained in the dissolution tank was withdrawn from the dissolution tank at a rate of 91 kg/hour and sprayed into a fluidized granulation device via a spray device. At the same time, 12Kg/hour of calcium oxide and 15Kg/hour of gypsum were sent to the granulator using quantitative feeders, and air (110Kg/hour) was fed from the hot blast furnace.
℃) was blown into the granulator at a rate of 100 kg/hour.
Pelletization was carried out with the residence time of the by-products in the granulator being 20 minutes. Gas containing ammonia was generated in the fluidized bed granulator. From the analysis results, the amount of ammonia gas generated was as shown in Table 1.

【衚】 流動造粒装眮で圢成された造粒ペレツトはmm
φの球状䜓であり、線回折分析の結果は第衚
に瀺す通りであ぀た。
[Table] Granulated pellets formed with a fluidized granulator are 2 mm.
It was a spherical body with a diameter of φ, and the results of X-ray diffraction analysis were as shown in Table 2.

【衚】 実斜䟋  実斜䟋においお流動造粒装眮で圢成されたペ
レツトを63Kg時の割合で熱分解炉に䟛絊し、同
時に230℃の熱颚を60Kg時の割合で熱分解炉に
吹きこみ熱分解を行な぀た。熱分解炉内で、酞化
二窒玠を含むガスが発生した。分析結果から求め
たガス量および分解残枣の線分析結果は第衚
に瀺す通りであ぀た。
[Table] Example 2 The pellets formed in the fluidized granulator in Example 1 were supplied to the pyrolysis furnace at a rate of 63 kg/hour, and at the same time hot air at 230°C was blown into the pyrolysis furnace at a rate of 60 kg/hour. Pyrolysis was carried out. Gas containing dinitrogen oxide was generated in the pyrolysis furnace. The gas amount determined from the analysis results and the X-ray analysis results of the decomposition residue were as shown in Table 3.

【衚】 比范䟋  実斜䟋で原料ずしお甚いたものず同じ、攟射
線照射排ガス凊理プロセス副生物を、流動局造粒
するこずなく、盎接熱分解炉に入れ、220℃で熱
分解した。酞化二窒玠を発生させお硝安分を陀い
た埌、取り出しお化孊分析および線回折分析を
行な぀た。分析の結果、䞻成分は硫安であるが、
10皋床の酞性硫安、および数の硫酞氎玠アン
モニりム、ピロ硫酞アンモニりムを含有しおいる
こずが認められた。 たた、熱分解炉で䞀郚の生成物が凝集、付着し
た。実斜䟋においおはこのような凝集、付着は
認められず、分解残枣は石こうのみであ぀た。 実斜䟋  実斜䟋においお熱分解炉で発生した二酞化窒
玠を含むガスを、攟射ノズルバヌナヌを備えた燃
焌装眮に、二酞化窒玠含有ガス倩然ガスの䜓積
比が10ずなる割合で、倩然ガスず共に䟛絊し、燃
焌させた。燃焌装眮出口で、N2O濃床および枩
床を枬定した。N2O濃床は怜出されなか぀た。
枩床は1250℃であ぀た。 比范䟋  実斜䟋ず同じ燃焌装眮により、空気倩然ガ
スの䜓積比が1.0ずる割合で実斜䟋ず同じ倩然
ガスを燃焌し、実斜䟋ず同様に燃焌装眮の出口
で枩床を枬定したずころ、1210℃であり、実斜䟋
の堎合ず、ほずんど倉わらなか぀た。 䞊蚘より明らかなごずく本発明の方法により、
攟射線照射排ガス凊理プロセス副生物を、効率よ
く䞍玔物の生成が少なく、か぀安党性の高い熱分
解凊理するこずができるようにな぀た。たた、造
粒時に硫安䞭のアンモニアの凊理ができるため、
熱分解装眮を簡易化できる。熱分解により発生す
るN2O含有ガスはこれよりN2Oを分離しおN2O
のの通垞の甚途に䟛するこずもできるが、混合ガ
スのたゝで燃料、特に気䜓燃料の助燃剀ずしお甚
いるこずができるので、特別の回収、分離装眮を
必芁ずするこずなく、倧量のN2Oを工業的に極
めお有利に利甚するこずができる。 以䞊の諞効果により、アンモニア添加攟射線照
射排ガス凊理プロセスを䞀局有利に実斜できるよ
うにな぀た。
[Table] Comparative Example 1 A by-product of the irradiated exhaust gas treatment process, which was the same as that used as the raw material in Example 1, was directly put into a pyrolysis furnace without fluidized bed granulation and pyrolyzed at 220°C. After removing ammonium nitrate by generating dinitrogen oxide, it was taken out and subjected to chemical analysis and X-ray diffraction analysis. As a result of analysis, the main component is ammonium sulfate,
It was found that it contained about 10% of acidic ammonium sulfate, and several percent of ammonium hydrogen sulfate and ammonium pyrosulfate. In addition, some products agglomerated and adhered in the pyrolysis furnace. In Example 2, such aggregation and adhesion were not observed, and the decomposition residue was only gypsum. Example 3 The nitrogen dioxide-containing gas generated in the pyrolysis furnace in Example 2 was fed together with natural gas into a combustion device equipped with a radiant nozzle burner at a volume ratio of nitrogen dioxide-containing gas/natural gas of 10. supplied and burned. N 2 O concentration and temperature were measured at the combustor outlet. No N 2 O concentration was detected.
The temperature was 1250℃. Comparative Example 2 The same natural gas as in Example 3 was combusted using the same combustion device as in Example 3 at an air/natural gas volume ratio of 1.0, and the temperature was measured at the outlet of the combustion device in the same manner as in Example 3. However, the temperature was 1210°C, which was almost the same as in Example 3. As is clear from the above, by the method of the present invention,
It has become possible to thermally decompose by-products of the radiation irradiation exhaust gas treatment process efficiently, with less impurity generation, and with high safety. In addition, since ammonia in ammonium sulfate can be treated during granulation,
The pyrolysis equipment can be simplified. The N 2 O-containing gas generated by thermal decomposition is separated from the N 2 O and converted into N 2 O.
Although it can be used for normal purposes, it can also be used as a fuel as a mixed gas, especially as a combustion aid for gaseous fuels, so a large amount of N 2 can be removed without the need for special recovery and separation equipment. O can be used industrially with great advantage. Owing to the above-mentioned effects, the ammonia-added radiation irradiation exhaust gas treatment process can now be carried out more advantageously.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は兞型的な攟射線照射排ガス凊理プロセ
スのフロヌシヌトを瀺す。第図は、本発明の方
法の奜たしい具䜓䟋のフロヌシヌトを瀺す。第
図は、本発明の方法により発生するN2Oガス
を本発明の方法に埓぀お、気䜓燃料の助燃剀ずし
お䜿甚するために甚いうる燃焌装眮の䞀䟋を瀺
す。図䞭の蚘号は䞋蚘のものをそれぞれ衚わす。   排ガス発生源、  照射宀、  リ
アクタヌ、  攟射線電子線発生装眮、
  アンモニア添加装眮、  集塵噚、
  ブロワヌ、  煙突、−  溶解
槜、−  流動槜造粒装眮、−  定量
フむダヌ、−  定量フむヌダヌ、− 
 スプレヌ装眮、−  熱颚炉、−  
アンモニア回収装眮、−  アンモニアタン
ク、−  熱分解装眮、−  ふるい
分け装眮、−  酞化二窒玠回収装眮、
−  酞化二窒玠回収タンク、  気䜓燃
料䟛絊管、  酞化二窒玠導入管、  燃焌
宀、  ノズル、GF  気䜓燃料、N2O


酞化二窒玠、BG  熱流燃焌ガス。
FIG. 1 shows a flow sheet for a typical irradiation exhaust gas treatment process. FIG. 2 shows a flow sheet of one preferred embodiment of the method of the invention. FIG. 3 shows an example of a combustion apparatus that can be used to use the N 2 O gas produced by the method of the invention as a combustion improver for gaseous fuels according to the method of the invention. The symbols in the figure represent the following. 1... Exhaust gas generation source, 2... Irradiation chamber, 3... Reactor, 4... Radiation (electron beam) generator,
5, 6... Ammonia addition device, 7... Dust collector,
8... Blower, 9... Chimney, 2-1... Dissolution tank, 2-2... Fluidized tank granulation device, 2-3... Quantitative feeder, 2-4... Quantitative feeder, 2-5...
...Spray device, 2-6...Hot air stove, 2-7...
Ammonia recovery device, 2-8...Ammonia tank, 2-9...Pyrolysis device, 2-10...Sieving device, 2-11...Dinitrogen oxide recovery device, 2
-12... Dinitrogen oxide recovery tank, A... Gaseous fuel supply pipe, B... Dinitrogen oxide introduction pipe, C... Combustion chamber, D... Nozzle, GF... Gaseous fuel, N 2 O...
Dinitrogen oxide, BG...heat flow (combustion gas).

Claims (1)

【特蚱請求の範囲】  亜硫酞ガスSO2およびたたは窒玠酞化
物NOxを含む排ガスにアンモニアNH3
を添加しお電子線照射するか、たたは前蚘排ガス
を電子線照射した埌、NH3を添加するこずによ
り埗られる反応生成物を氎分の存圚䞋に、無機物
質ず共に、流動局造粒装眮内で造粒するず共に、
アンモニアを含むガスを発生させるこずを特城ず
する、電子線照射排ガス凊理プロセス副生物の利
甚法。  前蚘無機物質が、酞化カルシりムたたはお
よび氎酞化カルシりムであるこずを特城ずする、
特蚱請求の範囲第項の方法。  前蚘流動局造粒を滞留時間〜40分で行ない
盎埄0.2〜mmの球圢粒を埗るこずを特城ずする、
特蚱請求の範囲第項たたは第項の方法。  亜硫酞ガスSO2およびたたは窒玠酞化
物NOxを含む排ガスにアンモニアNH3
を添加しお電子線照射するか、たたは前蚘排ガス
を電子線照射した埌、NH3を添加するこずによ
り埗られる反応生成物を、氎分の存圚䞋に無機物
質ず共に、流動局造粒装眮内で造粒するず共に、
アンモニアを含むガスを発生させ、次いで埗られ
た造粒生成物を熱分解装眮で熱分解しお、酞化二
窒玠を含むガスを発生させるこずを特城ずする、
電子線照射排ガス凊理プロセス副生物の利甚法。  前蚘熱分解を100〜350℃の範囲内の枩床で行
なうこずを特城ずする特蚱請求の範囲第項の方
法。  亜硫酞ガスSO2およびたたは窒玠酞化
物NOxを含む排ガスにアンモニアNH3
を添加しお電子線照射するか、たたは前蚘排ガス
を電子線照射した埌、NH3を添加するこずによ
り埗られる反応生成物を氎分の存圚䞋に無機物質
ず共に、流動局造粒装眮内で造粒するず共に、ア
ンモニアを含むガスを発生させ、次いで埗られた
造粒生成物を熱分解装眮で熱分解しお、酞化二窒
玠を含むガスを発生させ、該酞化二窒玠含有ガス
を燃料ず共に燃焌宀に䟛絊するこずを特城ずす
る、電子線照射排ガス凊理副生物の利甚法。  前蚘酞化二窒玠含有ガスを、気䜓燃料ず共
に、酞化二窒玠察気䜓燃料酞化二窒玠気䜓燃
料の䜓積比が0.1〜20ずなる割合で燃焌宀に䟛
絊するこずを特城ずする、特蚱請求の範囲第項
の方法。  前蚘気䜓燃料が也性ガス、湿性ガス、石炭ガ
ス、発出炉ガス、氎性ガス、増熱氎性ガス、油ガ
スのいずれか皮たたは、これらから遞ばれる
皮以䞊の混合ガスであるこずを特城ずする、特蚱
請求の範囲第項の方法。
[Claims] 1. Ammonia (NH 3 ) is added to the exhaust gas containing sulfur dioxide gas (SO 2 ) and/or nitrogen oxides (NOx).
or after irradiating the exhaust gas with electron beams, the reaction product obtained by adding NH 3 is placed in a fluidized bed granulator together with an inorganic substance in the presence of moisture. Along with granulation,
A method of using a byproduct of an electron beam irradiation exhaust gas treatment process, which is characterized by generating a gas containing ammonia. 2. The inorganic substance is calcium oxide or/and calcium hydroxide,
The method according to claim 1. 3. The fluidized bed granulation is carried out for a residence time of 5 to 40 minutes to obtain spherical particles with a diameter of 0.2 to 6 mm.
The method according to claim 1 or 2. 4 Ammonia (NH 3 ) is added to exhaust gas containing sulfur dioxide gas (SO 2 ) and/or nitrogen oxides (NOx).
The reaction product obtained by adding NH 3 and irradiating the exhaust gas with an electron beam or by adding NH 3 after irradiating the exhaust gas with an electron beam is placed in a fluidized bed granulator together with an inorganic substance in the presence of moisture. Along with granulation,
It is characterized by generating a gas containing ammonia, and then thermally decomposing the obtained granulated product in a pyrolysis device to generate a gas containing dinitrogen oxide.
How to use byproducts of electron beam irradiation exhaust gas treatment process. 5. A method according to claim 4, characterized in that the thermal decomposition is carried out at a temperature within the range of 100 to 350°C. 6 Ammonia (NH 3 ) in exhaust gas containing sulfur dioxide gas (SO 2 ) and/or nitrogen oxides (NOx)
or by irradiating the exhaust gas with electron beams, or by irradiating the exhaust gas with electron beams and then adding NH 3 , the reaction product obtained is granulated in the presence of moisture together with an inorganic substance in a fluidized bed granulator. While granulating, a gas containing ammonia is generated, and then the obtained granulated product is thermally decomposed in a pyrolysis device to generate a gas containing dinitrogen oxide, and the gas containing dinitrogen oxide is combusted together with fuel. A method of utilizing an electron beam irradiation exhaust gas treatment byproduct, characterized by supplying it to a room. 7. A patent characterized in that the dinitrogen oxide-containing gas is supplied to the combustion chamber together with gaseous fuel at a volume ratio of dinitrogen oxide to gaseous fuel (dinitrogen oxide/gaseous fuel) of 0.1 to 20. The method of claim 6. 8 The gaseous fuel is any one of dry gas, wet gas, coal gas, generating furnace gas, water gas, heating water gas, oil gas, or 2 selected from these.
8. A method according to claim 7, characterized in that it is a mixture of more than one species of gas.
JP3800580A 1980-03-25 1980-03-25 Method for utilization of by-product of electron beam-irradiating exhaust gas treatment process Granted JPS56136629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3800580A JPS56136629A (en) 1980-03-25 1980-03-25 Method for utilization of by-product of electron beam-irradiating exhaust gas treatment process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3800580A JPS56136629A (en) 1980-03-25 1980-03-25 Method for utilization of by-product of electron beam-irradiating exhaust gas treatment process

Publications (2)

Publication Number Publication Date
JPS56136629A JPS56136629A (en) 1981-10-26
JPS6333889B2 true JPS6333889B2 (en) 1988-07-07

Family

ID=12513450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3800580A Granted JPS56136629A (en) 1980-03-25 1980-03-25 Method for utilization of by-product of electron beam-irradiating exhaust gas treatment process

Country Status (1)

Country Link
JP (1) JPS56136629A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525142A (en) * 1984-06-11 1985-06-25 Research-Cottrell, Inc. Process for treating flue gas with alkali injection and electron beam
JPH0640945B2 (en) * 1987-12-10 1994-06-01 株匏䌚瀟荏原補䜜所 Radiation irradiation exhaust gas treatment method

Also Published As

Publication number Publication date
JPS56136629A (en) 1981-10-26

Similar Documents

Publication Publication Date Title
US5171552A (en) Dry processes for treating combustion exhaust gas
US4859438A (en) Method for separation of impurities from flowing gas
US8999278B2 (en) Method and apparatus for on-site production of lime and sorbents for use in removal of gaseous pollutants
US4499833A (en) Thermal conversion of wastes
CN106861431A (en) Quadruple effect denitrfying agent composition and its method of denitration
CN106102867B (en) Reactive composition based on sodium bicarbonate and method for the production thereof
JPH01155935A (en) Treatment of exhaust gas by irradiating radiation rays
CN105142755A (en) Process and apparatus for improving the operation of wet scrubbers
CN111121048B (en) Efficient control method for dioxin in waste incineration
WO1986005714A1 (en) Method for the preparation of a bicarbonate sorbent in flue gas desulfurization
US5002743A (en) Process for the removal of sulfur dioxide from hot flue gases
HU202422B (en) Method for removing gaseous sulfur compounds from flue gas of boilers
JP2944742B2 (en) Method for reducing NOx in a combustion process
JPS6333889B2 (en)
US20150175423A1 (en) Process and plant for separating heavy metals from phosphoric starting material
EP0875587A1 (en) Iron or sintering process with reduced emissions of toxic gases
HU202423B (en) Method for removing gaseous sulfur compounds from flue gas of boilers
JP3790890B2 (en) Production inhibitor and production inhibition method for chlorinated aromatic compounds
US6395246B1 (en) Preparation of calcium silicate and sulfur dioxide
JP2000119049A (en) Production of cement
GB2324789A (en) Sintering iron ore
JP3591587B2 (en) Processing method of fly ash containing dioxin
JPS5850785B2 (en) How to dry nitrate solution
JP5945774B2 (en) Urea production method
JPH04197423A (en) Method for removing nitrous oxide in flue gas