JPS6333774B2 - - Google Patents

Info

Publication number
JPS6333774B2
JPS6333774B2 JP58093405A JP9340583A JPS6333774B2 JP S6333774 B2 JPS6333774 B2 JP S6333774B2 JP 58093405 A JP58093405 A JP 58093405A JP 9340583 A JP9340583 A JP 9340583A JP S6333774 B2 JPS6333774 B2 JP S6333774B2
Authority
JP
Japan
Prior art keywords
pps
polymer
aromatic
impurities
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58093405A
Other languages
Japanese (ja)
Other versions
JPS59219331A (en
Inventor
Toheiji Kawabata
Toshio Inoe
Toshinori Sugie
Fumihiro Furuhata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP58093405A priority Critical patent/JPS59219331A/en
Priority to US06/513,659 priority patent/US4507468A/en
Publication of JPS59219331A publication Critical patent/JPS59219331A/en
Publication of JPS6333774B2 publication Critical patent/JPS6333774B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規にして有用なるポリフエニレンス
ルフイドの精製方法に関し、さらに詳しくは、芳
香族溶媒中でポリフエニレンスルフイドを加熱処
理することから成る方法に関する。 ポリフエニレンスルフイド(以下、これを
「PPS」と略記する。)は射出成形または押出成形
などの方法で、エンジニアリング・プラスチツク
ス、フイルムあるいは繊維などに溶融成形せしめ
ることによつて耐熱性および耐薬品性などを生か
した各種の成形品の用途に広く利用されている。 こうしたPPSの一般的な製造法としては、有機
アミド溶媒中で、p―ジクロルベンゼンなどの如
き芳香族ハライドと硫化ナトリウムとを反応させ
るという方法が、既に特公昭45―3368号公報に、
他方、高重合度のPPSを得るための改良された重
合反応方法として、アルカリ金属のカルボン酸塩
を重合助剤として添加せしめることもまた、特公
昭52―12240号公報に開示されている。 これとは別に、かかるPPSをフイルム、繊維あ
るいは各種の電気ないし電子部品類に応用する場
合には、このPPS本来の成形加工性および電気絶
縁性を保持するために当該ポリマー中に含まれる
食塩(NaCl)などの如き無機電解質不純物(別
名をアツシユともいう。)をできるだけ少なくす
ることが望ましい。 とりわけ、当該PPSをIC、トランジスタある
いはコンデンサなどの電子部品類の被覆ないしは
封止用材料として使用する場合には、これら部品
類の電極や配線の如き部位が腐食されたり、断線
されたりしてリーク電流が大きくなるなどの不都
合事が生じるが、こうしたトラブルの発生を未然
に防止するためには、前述した如き電解質不純物
を可及的に減少させたポリマーを用いることが是
非とも必要となる。 ところで、前述した如きPPSの製造法による場
合は、どうしても生成ポリマーとほぼ同量の食塩
が副次的に生成して析出してくる結果、通常の処
理による程度の処理のみで得られるポリマー中に
は、かなりの食塩が残存して含まれることになる
から、このように電解質不純物含有量の多いPPS
を用いて得られる樹脂組成物では、抵含有量の
PPSを用いたものに比して電気的特性が著しく劣
るという欠点がある。 そこで、こうした欠点を除去して電気的特性を
改善するための方策として、一旦、通常の処理に
よつて得られたPPS粉末を再び、脱イオン水で長
時間を要して熱水煮沸を繰り返して行に、この
PPSから水抽出可能な電解質成分を溶出させるこ
とによつて不純物を可及的に低減させるという方
法が、特開昭55―156342号公報に記載されてい
る。 ところが、本発明者らの研究によれば、上述し
た如き熱水煮沸での抽出方法によつて不純物の低
減化を実施した場合には、徒らに長時間を要する
というのみに止らず、この電解質不純物の含有量
もまた思つたほど低減下されていなく、しかもか
かる抽出操作を幾回、幾十回と繰り返して行つて
みても決してそれ以上の純度を有するポリマーが
得られないという欠点は除去されなかつたし、他
方、米国特許第4071509号明細書に開示されてい
るような、有機アミド溶媒中でPPSとアルカリ金
属カルボキシレートまたはハロゲン化リチウムと
の混合物を加熱させることによつて、当該PPS中
の無機質成分の含有量を低減せしめる方法につい
て実施してみた場合にも、やはり、これらのいず
れの方法によつて精製されたPPSは電子部品類の
被覆ないしは封止用材料として用いるのには依然
として満足すべき純度のものではなかつた。 しかるに、本発明者らは以上に記述した如き、
これまでの各種の精製方法における欠点を解消す
る有用なる精製法を確立すべく鋭意検討した結
果、溶媒として芳香族炭化水素などの如き一分子
中に芳香核を1個以上含む有機溶媒(以下、芳香
族溶媒と称す。)を用い、その中でPPMポリマー
を加熱処理したところ、何らポリマー自体の分解
もなく、ナトリウムイオンを含む電解質成分から
成る不純物のみを除去でき、しかもかかる無機電
解質不純物の含有量を極めて短時間に、かつ効率
よく低減させうることを見出して、本発明を完成
させるに到つた。 すなわち、本発明は電解質成分から成る不純物
を含むPPSを、芳香族溶媒中で100〜350℃で0.1
〜10時間処理して、ポリマーを分解させることな
く上記不純物のみを除去して該不純物含有量を効
率よく低減させうることを特徴とする極めて高純
度のPPSの精製方法を提供するものである。 本発明の方法を実施するに当り、まず用いられ
るPPSとしては、ASTM D1238―70の方法に準
じて測定されたMI(メルト・インデツクス)値、
つまり荷重5Kg、温度315.6℃(600〓)で測定さ
れた値が10000(g/10分)以下、あるいは固有粘
度、つまり0.4g/100mlなるポリマー溶液濃度の
試料をα―クロルナフタレン中、206℃(403〓)
で測定した粘度を基礎にした“相対粘度値”の自
然対数を“ポリマー濃度”で除した値、すなわち
次式 〔η〕=ln(相対粘度値)/ポリマー濃度 〔〕 により算出され、ポリマー濃度を無限小、すなわ
ち「ゼロ」に外挿して得られる値が0.05以上であ
るようなPPSが適当である。 また、本発明の方法を実施するに当つて用いら
れるPPSとしては、次式 で示される繰り返し単位をもつた構造のものが70
モル%以上、好ましくは90モル%以上含まれるも
のであれば、他の成分が共重合されたもの、ある
いはその一部が分岐された構造のもの、もしくは
その一部が架橋された構造のものであつても使用
することができるのは無論である。 この場合共重合成分として代表的なものには
The present invention relates to a new and useful method for purifying polyphenylene sulfide, and more particularly to a method comprising heat treating polyphenylene sulfide in an aromatic solvent. Polyphenylene sulfide (hereinafter abbreviated as "PPS") can be melt-molded into engineering plastics, films, fibers, etc. using methods such as injection molding or extrusion. It is widely used in various molded products that take advantage of its chemical properties. A common method for producing PPS is to react an aromatic halide such as p-dichlorobenzene with sodium sulfide in an organic amide solvent, as described in Japanese Patent Publication No. 3368/1983.
On the other hand, as an improved polymerization reaction method for obtaining PPS with a high degree of polymerization, the addition of an alkali metal carboxylate as a polymerization aid is also disclosed in Japanese Patent Publication No. 52-12240. Separately, when such PPS is applied to films, fibers, or various electrical or electronic parts, the salt contained in the polymer ( It is desirable to minimize the amount of inorganic electrolyte impurities (also called ash) such as NaCl). In particular, when the PPS is used as a coating or sealing material for electronic components such as ICs, transistors, and capacitors, there is a risk of leakage due to corrosion or disconnection of electrodes and wiring of these components. Inconveniences such as an increase in current occur, but in order to prevent such troubles from occurring, it is absolutely necessary to use a polymer in which electrolyte impurities as described above are reduced as much as possible. By the way, in the case of the PPS production method as described above, as a result of the secondary production and precipitation of almost the same amount of salt as the produced polymer, there is PPS contains a large amount of residual salt, so PPS with a high electrolyte impurity content
In the resin composition obtained using
The drawback is that the electrical characteristics are significantly inferior to those using PPS. Therefore, as a measure to eliminate these defects and improve the electrical characteristics, PPS powder obtained through normal processing was repeatedly boiled in deionized water for a long time. In this line,
A method of reducing impurities as much as possible by eluting water-extractable electrolyte components from PPS is described in JP-A-55-156342. However, according to the research conducted by the present inventors, when reducing impurities by the above-mentioned hot water boiling extraction method, it not only takes an unnecessarily long time; The content of electrolyte impurities has also not been reduced as much as expected, and the disadvantage is that no matter how many times or dozens of times the extraction operation is repeated, a polymer with higher purity cannot be obtained. However, on the other hand, the PPS can be prepared by heating a mixture of PPS and an alkali metal carboxylate or lithium halide in an organic amide solvent, as disclosed in U.S. Pat. No. 4,071,509. Even when methods are tried to reduce the content of inorganic components, PPS purified by any of these methods cannot be used as a coating or sealing material for electronic components. The purity was still not satisfactory. However, as described above, the present inventors
As a result of intensive studies to establish a useful purification method that eliminates the drawbacks of various conventional purification methods, we found that organic solvents containing one or more aromatic nuclei in one molecule, such as aromatic hydrocarbons (hereinafter referred to as When the PPM polymer was heat-treated in an aromatic solvent (referred to as an aromatic solvent), only the impurities consisting of electrolyte components containing sodium ions could be removed without any decomposition of the polymer itself, and the content of such inorganic electrolyte impurities could be removed. The present invention was completed by discovering that the amount can be efficiently reduced in an extremely short period of time. That is, in the present invention, PPS containing impurities consisting of electrolyte components is heated to 0.1
The present invention provides a method for purifying PPS of extremely high purity, which is characterized in that it is possible to efficiently reduce the content of impurities by removing only the above-mentioned impurities without decomposing the polymer by treatment for ~10 hours. In carrying out the method of the present invention, the PPS used is an MI (melt index) value measured according to the method of ASTM D1238-70,
In other words, a sample with a polymer solution concentration of 10,000 (g/10 min) or less when measured at a load of 5 kg and a temperature of 315.6°C (600〓), or an intrinsic viscosity of 0.4 g/100ml, is placed in α-chlornaphthalene at 206°C. (403〓)
The value is calculated by dividing the natural logarithm of the "relative viscosity value" based on the viscosity measured by the "polymer concentration", that is, the following formula [η] = ln (relative viscosity value) / polymer concentration [ ], and the polymer concentration A suitable PPS is one in which the value obtained by extrapolating to infinitesimal, ie, "zero" is 0.05 or more. In addition, the PPS used in carrying out the method of the present invention is the following formula: The structure with the repeating unit shown is 70
If it contains mol% or more, preferably 90 mol% or more, it is copolymerized with other components, or has a partially branched structure, or a partially crosslinked structure. Of course, it can be used even if In this case, typical copolymer components include

【式】などの如き三官能単位、Trifunctional units such as [Formula],

【式】などの如きエーテ ル単位、Ethe like [formula] etc. unit,

【式】などの 如きスルホン単位、
Sulfone units such as [Formula],

【式】などの如きケトン 単位、Ketones such as [formula] unit,

【式】などの如きメタ単位、ま たは一般式 〔但し、式中のRはアルキル基、フエニル基、
アルコキシ基、カルボキシル基、アミノ基、スル
ホン基、またはニトロ基である。〕 で示される如き置換スルフイド単位などがある。 さらに、本発明の方法を実施するに当つて、用
いられるPPSとしては、当該ポリマー中に含有さ
れる電機電解質不純物の量は任意であり、特に制
限はないけれども、少なくとも0.2重量%の、た
とえばナトリウム・イオンが電解質成分として含
まれるものなどが用いられる。 以上のようなPPSは前掲した如き特公昭52―
3368号公報および52―12240号公報に記載されて
いる如き方法に従つて製造される。 本発明の方法において、PPSポリマーから食塩
の如き不純物を分離除去するための溶媒として芳
香族溶媒を用いることが必要である。かかる芳香
族溶媒とは一分子中に芳香核を1個以上含む有機
溶媒であり、芳香族炭化水素、芳香族アルコー
ル、芳香族エーテル、ハロゲン化芳香族炭化水
素、芳香族ニトリルおよび芳香族アミンなどであ
る。 上記芳香族溶媒の代表的なものとしては、トル
エン、キシレン、エチルベンゼン、ナフタレン、
テトラリン、クメン、ジフエニル、トリフエニル
などの芳香族炭化水素;ベンジルアルコール、フ
エノール、クレゾール、p―クロルフエノルなど
の芳香族アルコール;ベンジルエチルエーテル、
アニソール、エチルフエニルエーテル、ジフエニ
ルエーテルなどの芳香族エーテル;フルオロベン
ゼン、クロルベンゼン、1―クロルナフタレン、
ジクロルベンゼンなどのハロゲン化芳香族炭化水
素;ベンゾニトリルなどの芳香族ニトリル、ベン
ゾフエノンなどの芳香族ケトン;およびキノリン
などの芳香族アミンなどが挙げられ、これらは二
種以上混合する形で用いてもよい。これらのうち
特に好ましいものはジフエニルエーテルである。 当該芳香族溶媒の使用量は通常前記したPPSの
1重量部に対して1〜100重量部となる範囲が好
ましい。 他方、本発明の方法を実施するに当つて、前記
した如き無機電解質不純物を除去する効果をさら
に高めるために、以下に示すポリオキシアルキレ
ン系化合物を添加することができる。 ポリオキシアルキレン系化合物の代表的なもの
には、ポリオキシエチレングリコールもしくはポ
リオキシプロピレングリコールなどの如き数平均
分子量(以下、「分子量」と略記する。)が150以
上なるポリオキシアルキレングリコール類、ある
いはこれらグリコール類中の末端水酸基を、C1
〜C30なるアルキル基および/またはアリール基
でエーテル化もしくはエステル化せしめた非イオ
ン性の界面活性剤などが挙げられ、そのうちでも
特に好ましい化合物を挙げればポリオキシエチレ
ン、モノオクチルエーテル、ポリオキシエチレ
ン・モノラウリルエーテル、ポリオキシエチレ
ン・モノオクチルフエニルエーテル、ポリオキシ
エチレン、ノニルフエニル・アルデヒド縮合物、
ポリオキシエチレン・モノラウリルエステル;あ
るいはポリオキシプロピレン・モノオクチルエー
テル、ポリオキシプロピレン・モノラウリルエー
テル、ポリオキシプロピレン・モノオクチルフエ
ニルエーテル、ポリオキシプロピレン、ノニルフ
エニル・アルデヒド縮合物、ポリオキシプロピレ
ン・モノラウリルエステルなどである。これらは
二種以上の混合物として使用してもよい。 さらに、かかるポリオキシアルキレン系化合物
として、15―クラウン−5,18−クラウン―6、
ジベンゾ―18―クラウン―6、ジシクロヘキシル
―18―クラウン―6、ジベンゾ―24―クラウン―
8またはジシクロヘキシル―24―クラウン―8な
どの如きクラウンエーテル系化合物をも使用する
ことができる。 そして、これらのポリオキシアルキレン系化合
物の使用量は前記のPPSに対して0.01〜200重量
%、好ましくは0.5〜100重量%なる範囲が適当で
ある。 さらに、前記ポリオキシアルキレン系化合物と
同様に無機電解質不純物を分離除去する効果をよ
り高めるための添加剤として下記式Aで示される
アルキルフエニルホルムアルデヒド縮合物を用い
ることもできる。 式A: (式中、R1は炭素数ないし4のアルキレン基、
R2は水素、あるいは炭素数1ないし30のアルキ
ル基および/あるいはアリール基、mおよびnは
平均重合度を示し、それぞれ2ないし50、好まし
くは2〜10;0ないし90、好ましくは3〜20をあ
らわす。) 上記式A中のR1の例としては、―CH2CH2―、
Meta units such as [formula] or general formulas [However, R in the formula is an alkyl group, a phenyl group,
It is an alkoxy group, carboxyl group, amino group, sulfone group, or nitro group. ] There are substituted sulfide units as shown in the following. Further, in carrying out the method of the present invention, the amount of electrolyte impurities contained in the polymer is arbitrary, and there is no particular restriction on the amount of electrolyte impurities contained in the PPS used, but at least 0.2% by weight of, for example, sodium・Those containing ions as electrolyte components are used. The above-mentioned PPS is a special public service issued in 1973 as mentioned above.
It is manufactured according to the method described in Japanese Patent No. 3368 and Japanese Patent No. 52-12240. In the method of the present invention, it is necessary to use an aromatic solvent as a solvent to separate and remove impurities such as common salt from the PPS polymer. Such aromatic solvents are organic solvents containing one or more aromatic nuclei in one molecule, such as aromatic hydrocarbons, aromatic alcohols, aromatic ethers, halogenated aromatic hydrocarbons, aromatic nitriles, and aromatic amines. It is. Representative aromatic solvents include toluene, xylene, ethylbenzene, naphthalene,
Aromatic hydrocarbons such as tetralin, cumene, diphenyl, triphenyl; Aromatic alcohols such as benzyl alcohol, phenol, cresol, p-chlorophenol; Benzyl ethyl ether,
Aromatic ethers such as anisole, ethyl phenyl ether, diphenyl ether; fluorobenzene, chlorobenzene, 1-chloronaphthalene,
Examples include halogenated aromatic hydrocarbons such as dichlorobenzene; aromatic nitriles such as benzonitrile; aromatic ketones such as benzophenone; and aromatic amines such as quinoline. Good too. Among these, diphenyl ether is particularly preferred. The amount of the aromatic solvent used is preferably in the range of 1 to 100 parts by weight per 1 part by weight of the above-mentioned PPS. On the other hand, when carrying out the method of the present invention, the following polyoxyalkylene compounds can be added in order to further enhance the effect of removing inorganic electrolyte impurities as described above. Typical polyoxyalkylene compounds include polyoxyalkylene glycols with a number average molecular weight (hereinafter abbreviated as "molecular weight") of 150 or more, such as polyoxyethylene glycol or polyoxypropylene glycol; The terminal hydroxyl group in these glycols is C 1
Examples include nonionic surfactants etherified or esterified with an alkyl group and/or an aryl group consisting of ~ C30 , among which particularly preferred compounds include polyoxyethylene, monooctyl ether, and polyoxyethylene.・Monolauryl ether, polyoxyethylene monooctylphenyl ether, polyoxyethylene, nonylphenyl aldehyde condensate,
Polyoxyethylene monolauryl ester; or polyoxypropylene monooctyl ether, polyoxypropylene monolauryl ether, polyoxypropylene monooctylphenyl ether, polyoxypropylene, nonylphenyl aldehyde condensate, polyoxypropylene mono lauryl ester, etc. These may be used as a mixture of two or more. Furthermore, such polyoxyalkylene compounds include 15-crown-5,18-crown-6,
Dibenzo-18-crown-6, dicyclohexyl-18-crown-6, dibenzo-24-crown-
Crown ether compounds such as 8 or dicyclohexyl-24-crown-8 can also be used. The appropriate amount of these polyoxyalkylene compounds to be used is 0.01 to 200% by weight, preferably 0.5 to 100% by weight, based on the PPS. Furthermore, as with the polyoxyalkylene compound, an alkyl phenyl formaldehyde condensate represented by the following formula A can also be used as an additive to further enhance the effect of separating and removing inorganic electrolyte impurities. Formula A: (In the formula, R 1 is an alkylene group having 4 to 4 carbon atoms,
R 2 is hydrogen, or an alkyl group and/or an aryl group having 1 to 30 carbon atoms; m and n each represent an average degree of polymerization; 2 to 50, preferably 2 to 10; 0 to 90, preferably 3 to 20; represents. ) Examples of R 1 in the above formula A are -CH 2 CH 2 -,

【式】(―CH2)―3[Formula] (-CH 2 )- 3 ,

【式】 (―CH2)―4[Formula] (-CH 2 )- 4 ,

〔実施例 1〕[Example 1]

撹拌機付の5オートクレーブに、N―メチル
ピロリドンの1993gと硫化ナトリウム2.7水塩の
537g(4.1モル)、水酸化ナトリウムの1.6g
(0.04モル)および安息香酸ナトリウムの144g
(1.0モル)とを仕込み、窒素雰囲気下に200℃ま
で約2時間かけて撹拌しながら徐々に昇温させて
102mlの水を留出させた。 次いで、反応系を150℃に冷却したのちp―ジ
クロロベンゼンの603g(4.1モル)とN―メチル
ピロリドンの250gとを加え、230℃で2時間、さ
らに260℃で3時間反応させたが、この間、重合
反応終了時の内圧は9.0Kg/cm2であつた。 しかるのち、オートクレーブを冷却して内容物
を濾別し、次いでケーキ(固形分)を熱水で3回
洗滌し、さらにアセトンで2回洗滌してから120
℃で乾燥せしめて、412gの淡灰褐色をした粒状
のPPSを得た(収率=93%)。 ここに得られたPPSの固有粘度〔η〕は0.27
で、かつナトリウムイオンの含有量は1230ppmで
あつた。 次いで、このPPSの20gとジフエニルエーテル
の200gおよび安息香酸ナトリウムの26.6gを撹
拌機付1オートクレーブ中に仕込んで窒素雰囲
気下に昇温し、撹拌しながら265℃で2時間加熱
を続けた。加熱終了時の内圧は1.0Kg/cm2であつ
た。 しかるのち、オートクレーブを冷却して内容物
を別し、ケーキ(固形分)を熱水で3回、次い
でアセトンで2回洗浄してから乾燥しポリマーを
回収した処、20gのポリマーが得られたが、この
ポリマーの固有粘度値は0.29で、ナトリウムイオ
ン含有量は26ppmであつた。 このように、本発明の方法に従う場合はPPS中
のナトリウムイオンから成る不純物の含有量が顕
著に低減化されるばかりでなく、何らのポリマー
の分解はなく、むしろ若干ながら分子量が増大さ
れるという好ましい結果が得られる。 〔実施例 2〕 実施例1の重合によつて得られたポリマーを精
製する工程で、安息香酸ナトリウムの使用を欠如
させた以外は、実施例1と同様の操作をくり返し
た処、最終的に得られたポリマーは固有粘度値が
0.26でナトリウムイオン含有量が25ppmであつ
た。 このことは安息香酸ナトリウムの不存在下にお
いても同様の効果が期待できることを示す。 〔比較例 1〕 ジフエニルエーテルの代わりに水200gを使用
し200℃で2時間加熱した以外は、実施例1と同
様の操作をくり返した。加熱終了時の内圧は15.3
Kg/cm2であつた。最終的に得られたポリマーは固
有粘度値が0.25とやや低下し、かつナトリウムイ
オン含有量が980ppmとまだまだ高いものであつ
た。 〔比較例 2〕 ジフエニルエーテルの代わりにN―メチルピロ
リドンの200gを使用した以外は、実施例2と同
様の操作をくり返した処、最終的に得られたポリ
マーの固有粘度値は0.17と低く、ナトリウムイオ
ン含有量は570ppmで満足すべきものではなかつ
た。 〔実施例 3〜10〕 実施例1の重合によつて得られたPPSを精製す
る工程で、表1に記載されている如き溶媒、アル
カリ金属塩およびその使用量に変更させた以外
は、実施例1と同様に行つたものである。その結
果を表1に示す。 〔実施例 11〜14〕 安息香酸ナトリウムの代わりに、418g(4.1モ
ル)の酢酸リチウム・2水塩を用い、かつポリハ
ロ芳香族化合物として1.8g(0.01モル)の1,
2,4―トリクロルベンゼンを加えると共にN―
メチルピロリドンの量を310gに増量させた以外
は、実施例1と同様に重合反応せしめたところ、
その間の留出水量は250mlであり、重合終了時の
内圧は9.6Kg/cm2であり、淡灰褐色粒状のPPSの
収量および収率は394gおよび89%であり、また
このPPSは固有粘度値が0.34で、ナトリウムイオ
ン含有量が860ppmであつた。 以後、このポリマーを精製する工程で表2に記
載されている溶媒、ポリオキシアルキレン系化合
物およびその使用量に変更した以外は実施例1と
同様に行つた。その結果を表2に示す。 〔実施例 15〜19〕 実施例11〜14に示した重合によつて得られたポ
リマーを精製する工程で、表3に記載されている
溶媒、アルキルフエニルホルムアルデヒド縮合物
およびその使用量に変更させた以外は、実施例1
と同様に行つた。その結果を表3に示す。
In an autoclave equipped with a stirrer, 1993 g of N-methylpyrrolidone and sodium sulfide 2.7 hydrate were added.
537g (4.1 moles), 1.6g of sodium hydroxide
(0.04 mol) and 144 g of sodium benzoate
(1.0 mol) and gradually raised the temperature to 200℃ under a nitrogen atmosphere over about 2 hours while stirring.
102ml of water was distilled off. Next, after cooling the reaction system to 150°C, 603g (4.1 mol) of p-dichlorobenzene and 250g of N-methylpyrrolidone were added, and the reaction was carried out at 230°C for 2 hours and then at 260°C for 3 hours. The internal pressure at the end of the polymerization reaction was 9.0 Kg/cm 2 . After that, the autoclave was cooled and the contents were filtered, and the cake (solid content) was washed three times with hot water and twice with acetone, and then washed with 120 ml of water.
After drying at °C, 412 g of pale gray-brown granular PPS was obtained (yield = 93%). The intrinsic viscosity [η] of the PPS obtained here is 0.27
And the content of sodium ions was 1230 ppm. Next, 20 g of this PPS, 200 g of diphenyl ether, and 26.6 g of sodium benzoate were charged into an autoclave equipped with a stirrer, the temperature was raised under a nitrogen atmosphere, and heating was continued at 265° C. for 2 hours while stirring. The internal pressure at the end of heating was 1.0 Kg/cm 2 . After that, the autoclave was cooled and the contents were separated, and the cake (solid content) was washed three times with hot water and then twice with acetone, and then dried to recover the polymer, yielding 20 g of polymer. However, the intrinsic viscosity value of this polymer was 0.29, and the sodium ion content was 26 ppm. In this way, when the method of the present invention is followed, not only is the content of impurities consisting of sodium ions in PPS significantly reduced, but there is no decomposition of the polymer, but rather the molecular weight is slightly increased. Favorable results are obtained. [Example 2] The same operations as in Example 1 were repeated, except that sodium benzoate was not used in the step of purifying the polymer obtained by polymerization in Example 1, and the final result was obtained. The obtained polymer has an intrinsic viscosity value of
0.26 and the sodium ion content was 25 ppm. This indicates that similar effects can be expected even in the absence of sodium benzoate. [Comparative Example 1] The same operation as in Example 1 was repeated, except that 200 g of water was used instead of diphenyl ether and heated at 200° C. for 2 hours. Internal pressure at the end of heating is 15.3
It was Kg/ cm2 . The finally obtained polymer had a slightly lower intrinsic viscosity value of 0.25, and the sodium ion content was still high at 980 ppm. [Comparative Example 2] The same operation as in Example 2 was repeated except that 200 g of N-methylpyrrolidone was used instead of diphenyl ether, and the intrinsic viscosity of the final polymer obtained was as low as 0.17. The sodium ion content was 570 ppm, which was not satisfactory. [Examples 3 to 10] In the process of purifying PPS obtained by polymerization in Example 1, the same procedure was carried out except that the solvent, alkali metal salt, and the amount used were changed as listed in Table 1. This was carried out in the same manner as in Example 1. The results are shown in Table 1. [Examples 11 to 14] Instead of sodium benzoate, 418 g (4.1 mol) of lithium acetate dihydrate was used, and 1.8 g (0.01 mol) of 1,
While adding 2,4-trichlorobenzene, N-
A polymerization reaction was carried out in the same manner as in Example 1, except that the amount of methylpyrrolidone was increased to 310 g.
The amount of distilled water during this period was 250 ml, the internal pressure at the end of polymerization was 9.6 Kg/ cm2 , the yield and yield of pale gray-brown granular PPS was 394 g and 89%, and this PPS had an intrinsic viscosity value of was 0.34, and the sodium ion content was 860 ppm. Thereafter, in the step of purifying this polymer, the same procedure as in Example 1 was carried out except that the solvent, polyoxyalkylene compound, and amount used were changed as shown in Table 2. The results are shown in Table 2. [Examples 15 to 19] In the process of purifying the polymer obtained by the polymerization shown in Examples 11 to 14, the solvent, alkyl phenyl formaldehyde condensate, and the amount used were changed as listed in Table 3. Example 1 except that
I went in the same way. The results are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 電解質成分から成る不純物を含むポリフエニ
レンスルフイドを、一分子中に芳香核を1個以上
含む有機溶媒中で、100〜350℃で0.1〜10時間処
理して上記電解質成分の含有量を低減せしめるこ
とを特徴とするポリフエニレンスルフイドの精製
方法。
1 Polyphenylene sulfide containing impurities consisting of electrolyte components is treated in an organic solvent containing one or more aromatic nuclei in one molecule at 100 to 350°C for 0.1 to 10 hours to reduce the content of the electrolyte components. A method for purifying polyphenylene sulfide, characterized by reducing the amount of polyphenylene sulfide.
JP58093405A 1982-07-16 1983-05-27 Purification of polyphenylene sulfide Granted JPS59219331A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58093405A JPS59219331A (en) 1983-05-27 1983-05-27 Purification of polyphenylene sulfide
US06/513,659 US4507468A (en) 1982-07-16 1983-07-14 Method for purifying polyphenylene sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093405A JPS59219331A (en) 1983-05-27 1983-05-27 Purification of polyphenylene sulfide

Publications (2)

Publication Number Publication Date
JPS59219331A JPS59219331A (en) 1984-12-10
JPS6333774B2 true JPS6333774B2 (en) 1988-07-06

Family

ID=14081385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093405A Granted JPS59219331A (en) 1982-07-16 1983-05-27 Purification of polyphenylene sulfide

Country Status (1)

Country Link
JP (1) JPS59219331A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214452A (en) * 1985-03-20 1986-09-24 Toray Ind Inc Resin sealed electronic part
JPS62148567A (en) * 1985-12-23 1987-07-02 Toyo Soda Mfg Co Ltd Polyphenylene sulfide resin composition
JP2525357B2 (en) * 1985-12-25 1996-08-21 東レ株式会社 Resin-sealed electronic components
JPH0653846B2 (en) * 1985-12-27 1994-07-20 東レ株式会社 Polyphenylene sulfide resin composition
JPH0643490B2 (en) * 1986-03-24 1994-06-08 東都化成株式会社 Purification method of polyphenylene sulfide
JPH0717750B2 (en) * 1986-04-28 1995-03-01 呉羽化学工業株式会社 Method for producing polyarylene sulfide
JPS63159436A (en) * 1986-12-23 1988-07-02 Idemitsu Petrochem Co Ltd Aftertreatment of polyarylene sulfide resin
JP2879804B2 (en) * 1992-11-30 1999-04-05 東レ株式会社 Method for producing polyphenylene sulfide resin composition
JPH08157719A (en) * 1994-12-09 1996-06-18 Idemitsu Petrochem Co Ltd Polyarylene sulfide resin composition
JP2003096298A (en) * 2001-09-25 2003-04-03 Toray Ind Inc Polyphenylene sulfide resin composition and condenser part
EP2305737A4 (en) 2008-07-22 2015-03-04 Kureha Corp Process for production of polyarylene sulfide having reduced terminal halogen group content
CN106633062B (en) 2016-12-30 2018-12-28 浙江新和成特种材料有限公司 A kind of polyphenylene sulfide of low chlorine content and preparation method thereof, resin combination and formed body

Also Published As

Publication number Publication date
JPS59219331A (en) 1984-12-10

Similar Documents

Publication Publication Date Title
JPS6333774B2 (en)
EP2695906B1 (en) Polybenzoxazole resin and precursor thereof
JPH05163349A (en) Polyarylene sulfide and its production
US4507468A (en) Method for purifying polyphenylene sulfide
JP3203285B2 (en) Method for producing low-corrosion polyarylene sulfide
JP2008201885A (en) Polyphenylenesulfide film
JP2010095614A (en) Process for producing polyetheretherketone
JP2010070658A (en) Method for manufacturing polyether-ether-ketone
JPH0657747B2 (en) Method for purifying polyphenylene sulfide
JPH0798901B2 (en) Polyphenylene sulfide composition
JPH0254370B2 (en)
JPS639530B2 (en)
JPS6363721A (en) Microspherulitic polyarylene thioether and its production
JP2012072222A (en) Cyclic polyphenylene sulfide mixture, and method for producing the same
JPS62138528A (en) Production of polyphenylene sulfide
JP2003502312A (en) Removal of contaminants from N-methyl-2-pyrrolidone
JPS59115331A (en) Production of polyphenylene sulfide polymer
US5239054A (en) Treatment of polyarylene sulfide resins with zinc compound
JP3866822B2 (en) Method for purifying polyarylene sulfide
JPH044224A (en) Purification of polymer
JPS62252430A (en) Production of polyphenylene sulfide
JPH072847B2 (en) Method for purifying polyphenylene sulfide
KR20180035221A (en) Polyphenylene sulfide resin composition and method for producing the same
KR960005067B1 (en) Process for preparation polyarylene-sulfides
JP2008297417A (en) Method for producing cyclic polyarylene sulfide mixture