JPS6333767B2 - - Google Patents

Info

Publication number
JPS6333767B2
JPS6333767B2 JP57176872A JP17687282A JPS6333767B2 JP S6333767 B2 JPS6333767 B2 JP S6333767B2 JP 57176872 A JP57176872 A JP 57176872A JP 17687282 A JP17687282 A JP 17687282A JP S6333767 B2 JPS6333767 B2 JP S6333767B2
Authority
JP
Japan
Prior art keywords
heat
diisocyanate
isocyanurate
molecule
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57176872A
Other languages
Japanese (ja)
Other versions
JPS5966416A (en
Inventor
Taisuke Okada
Juichi Osada
Yasushi Shinho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP57176872A priority Critical patent/JPS5966416A/en
Publication of JPS5966416A publication Critical patent/JPS5966416A/en
Publication of JPS6333767B2 publication Critical patent/JPS6333767B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

近幎、電気絶瞁甚ワニス、特に゚ナメル線甚ワ
ニスずしおは、比范的、機械的特性、化孊的特
性、電気的特性、耐熱性、䟡栌などのバランスが
ずれおいるためポリ゚ステルワニスが倚く䜿甚さ
れおいる。 しかし、電気機噚の小型軜量化や信頌性向䞊
のための耐熱性の向䞊、コむル補造時の合理化
のための耐摩耗性の向䞊、含浞ワニスの加熱時
間短瞮のための耐熱衝撃性の向䞊、密閉タむプ
の機噚の増加に䌎う耐加氎分解性の向䞊などが、
芁求されおおり、ポリ゚ステル線ではこれらの芁
求に察しお察応できなくな぀おいる。 このような垂堎ニヌズを満たすものずしおポリ
アミドむミドワニスがある。しかしポリアミドむ
ミド暹脂は䞀般にクレゟヌル系の安䟡な汎甚溶剀
に䞍溶で、―メチル――ピロリドン、ゞメチ
ルアセトアミド、ゞメチルホルムアミド等の高䟡
な極性溶剀を䜿甚せざるを埗ない䞊に暹脂合成の
ための原料も高䟡なためにワニス䟡栌が高いずい
う欠点がある。そこで、ポリ゚ステルワニスの䞊
述の欠点をおぎない、か぀ポリアミドむミドワニ
スの䟡栌的な問題を解決するために、ポリアミド
むミド暹脂をクレゟヌル類に可溶にしおそれをポ
リ゚ステルワニスの改質剀ずする怜蚎も行なわれ
おきた。しかし、各皮のクレゟヌル可溶化剀を䜿
甚し、たた分子量を䜎䞋せしめ、クレゟヌル類に
可溶ずしたポリアミドむミド暹脂のクレゟヌル溶
液を、クレゟヌル類を溶媒ずしたポリ゚ステルワ
ニスに改質剀ずしお添加するず、暹脂の盞溶性に
起因しおワニスに濁りや盞分離が生じたり、この
ワニスを甚いお䜜補したフむルムや゚ナメル線皮
膜の透明性や光沢が倱われるずいう問題があ぀
た。 このような問題を回避するために、ポリ゚ステ
ル暹脂ずクレゟヌル類に可溶なポリアミドむミド
暹脂を加熱反応させる方法が提案されおいる特
願55―123806号。この方法によればワニスが均
䞀透明で盞分離せず、このワニスを甚いお䜜補し
たフむルムや゚ナメル線の皮膜は透明で光沢があ
る。しかしこの方法ではポリアミドむミド暹脂ず
ポリ゚ステル暹脂をあらかじめ別途合成し、次で
䞡者を加熱反応させるために〜段階の工皋を
経るこずになり、通垞の段階の合成工皋ず比范
するず工業䞊䞍利な点が倚い。 本発明者らはこれらの問題に察凊するために鋭
意怜蚎した結果、む゜シアヌレヌト環含有倚䟡む
゜シアネヌト、む゜シアヌレヌト環を含たない倚
䟡む゜シアネヌト、ラクタム、䞀分子䞭に䞀個以
䞊の酞無氎物基を有する倚䟡カルボン酞又はその
機胜誘導䜓及び必芁に応じお䞀分子䞭に二個以䞊
のカルボキシル基を有する倚䟡カルボン酞又はそ
の機胜誘導䜓を反応させたのち、曎に䞀分子䞭に
二個以䞊の氎酞基を有する倚䟡アルコヌルを反応
させるこずにより、連続した䞀段階の合成工皋で
前述の垂堎ニヌズを満足する耐熱性暹脂が埗られ
るこずを芋出し、本発明にいた぀た。 本発明における前段階の反応であるむ゜シアヌ
レヌト環含有倚䟡む゜シアネヌト、む゜シアヌレ
ヌト環を含たない倚䟡む゜シアネヌト、ラクタ
ム、䞀分子䞭に䞀個以䞊の酞無氎物基を有する倚
䟡カルボン酞又はその機胜誘導䜓及び必芁に応じ
お䞀分子䞭に二個以䞊のカルボキシル基を有する
倚䟡カルボン酞又はその機胜誘導䜓の反応に぀い
おは、耐熱性ず可ずう性の点からむ゜シアネヌト
成分ず酞成分の䜿甚量は、カルボキシル基に察す
るむ゜シアネヌト基の圓量比が0.6〜1.5になるよ
うにするこずが奜たしく、0.7〜1.15の範囲がよ
り奜たしい。 反応は、党おの原料を同時に仕蟌んでもよい
し、目的に応じお段階的に仕蟌み、反応を進めお
もよい。反応枩床は党成分を仕蟌んだ埌の䞻反応
を170〜220℃で行なうのが奜たしい。反応の進行
状態は発生する炭酞ガスの気泡及び溶液の粘床を
枬定するこずで把握可胜である。 む゜シアヌレヌト環含有倚䟡む゜シアネヌトは
分岐成分ずしお䜿甚されそのむ゜シアヌレヌト環
骚栌はすぐれた耐熱性を付䞎する。む゜シアヌレ
ヌト環含有倚䟡む゜シアネヌトは党む゜シアネヌ
ト圓量の〜50圓量、より奜適には0.01〜30圓
量の範囲で䜿甚される。50圓量を越えるず合
成䞭にゲル化するこずがあり、たた埗られる暹脂
の可ずいう性が䜎䞋する。たた0.01圓量未満で
は䜿甚目的によ぀おは耐熱性が䞍十分な堎合があ
る。 ラクタムの䜿甚量は党む゜シアネヌト圓量の
100圓量未満が奜たしく、〜40圓量の範囲
がより奜たしい。ラクタムの䜿甚量が100圓量
を越えた堎合には、生成した暹脂の耐熱性が䜎䞋
し、たた、圓量未満では、生成した耐熱性暹
脂がプノヌル系溶媒に難溶ずなる。ラクタムの
配合量の蚈算に際しおは、ラクタムモルは圓
量ずしお取扱うものずする。反応は無溶媒で行な
぀おもよいが、反応の制埡のし易さの点から溶媒
を䜿甚するこずが奜たしい。 む゜シアヌレヌト環含有倚䟡む゜シアネヌトず
しおは、䟋えばトリレンゞむ゜シアネヌト、キシ
リレンゞむ゜シアネヌト、4′―ゞプニルメ
タンゞむ゜シアネヌト、ナフタレン――ゞ
む゜シアネヌト等の芳銙族ゞむ゜シアネヌト、゚
チレンゞむ゜シアネヌト、―テトラメチレ
ンゞむ゜シアネヌト、―ヘキサメチレンゞ
む゜シアネヌト等の脂肪族ゞむ゜シアネヌト、シ
クロブテン―ゞむ゜シアネヌト、シクロヘ
キサン―ゞむ゜シアネヌト、シクロヘキサ
ン―ゞむ゜シアネヌト、む゜フオロンゞむ
゜シアネヌト等の脂環匏ゞむ゜シアネヌト、トリ
プニルメタン―4′4″―トリむ゜シアネヌ
ト等の倚䟡む゜シアネヌトの倚量化反応によ぀お
埗られるむ゜シアヌレヌト環含有倚䟡む゜シアネ
ヌトが䜿甚される。耐熱性等を考慮するず、奜適
にはトリレンゞむ゜シアネヌト、4′―ゞプ
ニルメタンゞむ゜シアネヌト、などの芳銙族ゞむ
゜シアネヌトの倚量化反応又はむ゜フオロンゞむ
゜シアネヌトの倚量化反応によ぀お埗られるむ゜
シアヌレヌト環含有倚䟡む゜シアネヌトを甚いる
こずが奜たしい。 奜適なむ゜シアヌレヌト環含有倚䟡む゜シアネ
ヌトの補造は特願昭53―148820号等に瀺されおい
る。 む゜シアヌレヌト環を含たない倚䟡む゜シアネ
ヌトの䟋ずしおは、䞊蚘したむ゜シシアヌレヌト
環含有倚䟡む゜シアネヌトの原料ずしお䜿甚され
る各皮倚䟡む゜シアネヌトがあげられる。耐熱性
を考慮するず、4′―ゞプニルメタンゞむ゜
シアネヌト4′―ゞプニル゚ヌテルゞむ゜シ
アネヌト、トリレンゞむ゜シアネヌト、キシレン
ゞむ゜シアネヌトなどの芳銙族ゞむ゜シアネヌト
が奜たしい。 ラクタムの䟋ずしおは―ピロリドン、ω―ラ
りリルラクタム、ε―カプロラクタムがあげられ
る。反応性、経枈性を考慮するずε―カプロラク
タムを䜿甚するこずが奜たしい。ラクタム䞀分子
䞭に䞀個以䞊の酞無氎物基を有する倚䟡カルボン
酞又はその機胜誘導䜓ずしおは、無氎トリメリツ
ト酞、無氎ピロメリツト酞、無氎ベンゟプノン
テトラカルボン酞、無氎―ブタン
テトラカルボン酞、無氎―ブタントリ
カルボン酞、無氎―ブタントリカルボ
ン酞、無氎ビシクロヌ〔〕―オクト―
(7)―゚ン――テトラカルボン酞等
を䜿甚するこずができる。 䞀分子䞭に二個以䞊のカルボキシル基を有する
倚䟡カルボン酞又はその機胜誘導䜓の䟋ずしお
は、テレフタル酞、む゜フタル酞、フタル酞、ア
ゞピン酞、コハク酞、トリメシン酞等があげられ
る。性胜及び䟡栌を考慮するず、䞀分子䞭に䞀個
以䞊の酞無氎物基を有する倚䟡カルボン酞又はそ
の機胜誘導䜓ずしおは無氎トリメリツト酞を甚い
るこずが奜たしい。 本発明においお倚䟡カルボン酞の機胜誘導䜓ず
は、これらの倚䟡カルボン酞から誘導される䞀無
氎物、二無氎物、゚ステル、アミド、クロラむド
等を意味する。 たた圓量比の蚈算においお、無氎物基、゚ステ
ル、アミド、クロラむド等はカルボキシル基圓
量ずしお取扱う。反応溶媒の䟋ずしおはプノヌ
ル、クレゟヌル、キシレノヌル等のプノヌル系
化合物、―メチル――ピロリドン、―メチ
ル―カプロラクタム、―ゞメチルアセトア
ミド、―ゞメチルホルムアミド、ゞメチル
スルホキシド、ヘキサメチルフオスフオンアミド
等が䟋ずしおあげられる。 本発明の埌段階の反応、即ち前段階の反応で生
成したポリアミドむミド暹脂又はポリむミド暹脂
ず䞀分子䞭に二個以䞊の氎酞基を有する倚䟡アル
コヌルを反応させる工皋に぀いおは、枩床は160
〜220℃が奜たしく、180〜205℃がより奜たしい。
枩床が高すぎるず反応系がゲル化し易く、逆に枩
床が䜎すぎるず埗られた反応生成物を甚いお補造
した゚ナメル銅線の可ずう性耐熱衝撃性などが
䜎䞋する。反応は無觊媒で行な぀おもよいが、ゞ
ブチルスズオキシド、酢酞鉛、酢酞亜鉛、リサヌ
ゞ、テトラブチルチタネヌト等の゚ステル化又は
゚ステル亀換反応を促進するような觊媒を甚いる
こずが奜たしい。たた、前段階の反応ず同様、溶
媒系、無溶媒系いずれの系で反応させおもよい
が、反応制埡の容易さの点から先に䟋瀺したよう
な溶媒を甚いるこずが奜たしい。 䞀分子䞭に二個以䞊の氎酞基を有する倚䟡アル
コヌルの䟋ずしおは、゚チレングリコヌル、ネオ
ペンチルグリコヌル、―ブタンゞオヌル、
―ヘキサンゞオヌル、―シクロヘキ
サンゞメタノヌル、ゞ゚チレングリコヌル、トリ
゚チレングリコヌル、グリセリン、トリメチロヌ
ルプロパン、トリス―ヒドロキシ゚チルむ
゜シアヌレヌト、トリス―ヒドロキシプロピ
ルむ゜シアヌレヌト、ペンタ゚リスリトヌル、
゜ルビトヌル、ゞグリセリン等があげられる。耐
熱性を考慮するず、党アルコヌル成分の30圓量
以䞊が䟡以䞊の倚䟡アルコヌルであるこずが奜
たしい。必芁に応じおメタノヌル、゚タノヌル、
゚チレングリコヌルモノメチル゚ヌテル、ゞ゚チ
レングリコヌルモノメチル゚ヌテル、プノキシ
メタノヌル等の䟡アルコヌルを䜵甚しおもよ
い。 性胜ず経枈性を考慮すれば゚チレングリコヌ
ル、グリセリン、トリス―ヒドロキシ゚チ
ルむ゜シアヌレヌトを䜿甚するこずが奜たし
い。 前段階で埗られたポリアミドむミド暹脂又はポ
リむミド暹脂これをずするず䞀分子䞭に二
個以䞊の氎酞基を有する倚䟡アルコヌルこれを
ずするずの比率に぀いおは質量比
が9010〜4060が奜たしく、8020〜6040が
より奜たしい。 の量が倚すぎるず耐熱性が䜎䞋し、の量が
倚すぎるず耐熱性塗料ずした堎合、塗料䞭の暹脂
分濃床が䜎䞋し、たた䟡栌の点でも奜たしくな
い。 本発明の方法によ぀お補造された耐熱性暹脂
は、前述した各皮溶媒のほか、曎に、キシレン、
芳銙族炭化氎玠混合物日本石油補ハむゟヌル
100ハむゟヌル150等等の溶媒で適圓な粘床に
なるように垌釈しお゚ナメル綿甚ワニス等の耐熱
性暹脂組成物ずされる。 このようにしお䜜補された耐熱性暹脂組成物は
そのたたで、又は必芁に応じお゚ポキシ暹脂、フ
゚ノヌルホルムアルデヒド暹脂、ブロツクポリむ
゜シアネヌト、チタン酞゚ステル及びその誘導
䜓、有機酞金属塩、ポリ゚ヌテル暹脂、ポリアミ
ド暹脂、ポリ゚ステルむミド暹脂、ポリヒダント
むン暹脂、アルコキシ倉性アミノ暹脂、ポリスル
ホン暹脂、フラン暹脂、プノキシ暹脂などの添
加剀を暹脂分に察しお0.1〜25質量パヌセントの
割合で加えお、各皮の甚途に䟛するこずができ
る。 以䞋本発明を比范䟋及び実斜䟋によ぀おさらに
詳现に説明する。 比范䟋 
In recent years, polyester varnishes have been widely used as electrical insulating varnishes, especially varnishes for enameled wires, because they have a relatively good balance of mechanical properties, chemical properties, electrical properties, heat resistance, and price. . However, improvements in heat resistance are needed to reduce the size and weight of electrical equipment and improve reliability, improvements in abrasion resistance to streamline coil manufacturing, improvements in thermal shock resistance to shorten the heating time of impregnated varnish, and sealing. Improvements in hydrolysis resistance due to the increase in types of equipment, etc.
Polyester wires are no longer able to meet these demands. Polyamide-imide varnishes meet these market needs. However, polyamide-imide resins are generally insoluble in inexpensive general-purpose solvents such as cresol, which necessitates the use of expensive polar solvents such as N-methyl-2-pyrrolidone, dimethylacetamide, and dimethylformamide. The disadvantage is that the varnish is expensive because the raw materials are expensive. Therefore, in order to overcome the above-mentioned drawbacks of polyester varnishes and to solve the price problem of polyamide-imide varnishes, we have also investigated making polyamide-imide resin soluble in cresols and using it as a modifier for polyester varnishes. It's been coming. However, when a cresol solution of polyamide-imide resin, which has been made soluble in cresols by using various cresol solubilizers and whose molecular weight has been lowered, is added as a modifier to polyester varnish using cresols as a solvent, the resin Due to the compatibility of these varnishes, there were problems in that turbidity and phase separation occurred in the varnish, and that films and enameled wire coatings made using this varnish lost their transparency and gloss. In order to avoid such problems, a method has been proposed in which a polyester resin and a polyamideimide resin soluble in cresols undergo a thermal reaction (Japanese Patent Application No. 55-123806). According to this method, the varnish is uniform and transparent and does not undergo phase separation, and films and enameled wire films made using this varnish are transparent and glossy. However, in this method, the polyamide-imide resin and the polyester resin are synthesized separately in advance, and then a 2-3 step process is required to heat and react the two, which is industrially disadvantageous compared to the usual one-step synthesis process. There are many points. As a result of intensive studies to address these problems, the present inventors found that polyvalent isocyanates containing isocyanurate rings, polyvalent isocyanates that do not contain isocyanurate rings, lactams, and polyvalent isocyanates containing one or more acid anhydride groups in one molecule. After reacting a polyvalent carboxylic acid or a functional derivative thereof with a polyvalent carboxylic acid or a functional derivative thereof having two or more carboxyl groups in one molecule as necessary, The inventors have discovered that a heat-resistant resin that satisfies the aforementioned market needs can be obtained in a continuous one-step synthesis process by reacting a polyhydric alcohol having the following, leading to the present invention. Polyvalent isocyanates containing isocyanurate rings, polyvalent isocyanates not containing isocyanurate rings, lactams, polyvalent carboxylic acids having one or more acid anhydride groups in one molecule, or functional derivatives thereof, which are the pre-stage reaction in the present invention. For reactions with polyhydric carboxylic acids or their functional derivatives having two or more carboxyl groups in one molecule, if necessary, the amounts of isocyanate components and acid components to be used are determined from the viewpoint of heat resistance and flexibility. The equivalent ratio of isocyanate groups to groups is preferably 0.6 to 1.5, more preferably 0.7 to 1.15. The reaction may be carried out by charging all the raw materials at the same time, or by charging them in stages depending on the purpose. The reaction temperature is preferably 170 to 220°C for the main reaction after all components have been charged. The progress of the reaction can be determined by measuring the generated carbon dioxide gas bubbles and the viscosity of the solution. Isocyanurate ring-containing polyvalent isocyanates are used as branching components and their isocyanurate ring skeleton provides excellent heat resistance. The isocyanurate ring-containing polyvalent isocyanate is used in an amount of 0 to 50 equivalents, more preferably 0.01 to 30 equivalents, based on the total isocyanate equivalents. If it exceeds 50 equivalent %, gelation may occur during synthesis, and the flexibility of the resulting resin will decrease. Moreover, if it is less than 0.01 equivalent %, the heat resistance may be insufficient depending on the purpose of use. The amount of lactam used is based on the total isocyanate equivalent.
It is preferably less than 100 equivalent %, and more preferably in the range of 1 to 40 equivalent %. The amount of lactam used is 100 equivalent%
If the amount exceeds this amount, the heat resistance of the produced resin will decrease, and if it is less than 1 equivalent %, the produced heat resistant resin will be poorly soluble in the phenolic solvent. When calculating the blending amount of lactam, 1 mole of lactam shall be treated as 1 equivalent. Although the reaction may be carried out without a solvent, it is preferable to use a solvent from the viewpoint of ease of controlling the reaction. Examples of the isocyanurate ring-containing polyvalent isocyanate include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, 4,4'-diphenylmethane diisocyanate, naphthalene-1,5-diisocyanate, ethylene diisocyanate, and 1,4-tetra Aliphatic diisocyanates such as methylene diisocyanate and 1,6-hexamethylene diisocyanate, cycloaliphatic diisocyanates such as cyclobutene 1,3-diisocyanate, cyclohexane 1,3-diisocyanate, cyclohexane 1,4-diisocyanate, isophorone diisocyanate, and triphenylmethane. An isocyanurate ring-containing polyisocyanate obtained by a polymerization reaction of a polyvalent isocyanate such as -4,4',4''-triisocyanate is used. Considering heat resistance etc., tolylene diisocyanate is preferably used. , 4,4'-diphenylmethane diisocyanate, etc., or isophorone diisocyanate. It is preferable to use an isocyanurate ring-containing polyvalent isocyanate obtained by a polymerization reaction of aromatic diisocyanate such as 4,4'-diphenylmethane diisocyanate. The production of ring-containing polyvalent isocyanates is shown in Japanese Patent Application No. 148820/1983. Examples of polyvalent isocyanates that do not contain isocyanurate rings include the raw materials for the above-mentioned isocyanurate ring-containing polyisocyanates. Various polyvalent isocyanates can be used. Considering heat resistance, aromatic diisocyanates such as 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, tolylene diisocyanate, and xylene diisocyanate are preferred. Examples of lactams include 2-pyrrolidone, ω-lauryllactam, and ε-caprolactam. Considering reactivity and economic efficiency, it is preferable to use ε-caprolactam. One or more acid anhydrides in one lactam molecule. Examples of polycarboxylic acids having groups or functional derivatives thereof include trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, 1,2,3,4-butanetetracarboxylic anhydride, 1,2,3 anhydride -Butanetricarboxylic acid, 1,2,4-butanetricarboxylic anhydride, bicyclo[2,2,2]-oct anhydride
(7)-Ene-2:3,5:6-tetracarboxylic acid, etc. can be used. Examples of polycarboxylic acids having two or more carboxyl groups in one molecule or functional derivatives thereof include terephthalic acid, isophthalic acid, phthalic acid, adipic acid, succinic acid, trimesic acid, and the like. Considering performance and cost, it is preferable to use trimellitic anhydride as the polycarboxylic acid or its functional derivative having one or more acid anhydride groups in one molecule. In the present invention, the functional derivatives of polyvalent carboxylic acids mean monoanhydrides, dianhydrides, esters, amides, chlorides, etc. derived from these polyvalent carboxylic acids. In addition, in calculating the equivalent ratio, anhydride groups, esters, amides, chlorides, etc. are treated as one equivalent of carboxyl group. Examples of reaction solvents include phenolic compounds such as phenol, cresol, and xylenol, N-methyl-2-pyrrolidone, N-methyl-caprolactam, N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, and hexamethyl. Examples include phosphonamide and the like. In the second stage reaction of the present invention, that is, the step of reacting the polyamide-imide resin or polyimide resin produced in the first stage reaction with a polyhydric alcohol having two or more hydroxyl groups in one molecule, the temperature is 160°C.
~220°C is preferred, and 180~205°C is more preferred.
If the temperature is too high, the reaction system tends to gel; on the other hand, if the temperature is too low, the flexibility, thermal shock resistance, etc. of the enamelled copper wire produced using the obtained reaction product will decrease. Although the reaction may be carried out without a catalyst, it is preferable to use a catalyst that promotes the esterification or transesterification reaction, such as dibutyltin oxide, lead acetate, zinc acetate, litharge, or tetrabutyl titanate. Further, like the reaction in the previous stage, the reaction may be carried out in either a solvent system or a solvent-free system, but from the viewpoint of ease of reaction control, it is preferable to use the solvents exemplified above. Examples of polyhydric alcohols having two or more hydroxyl groups in one molecule include ethylene glycol, neopentyl glycol, 1,4-butanediol,
1,6-hexanediol, 1,6-cyclohexanedimethanol, diethylene glycol, triethylene glycol, glycerin, trimethylolpropane, tris(2-hydroxyethyl)isocyanurate, tris(2-hydroxypropyl)isocyanurate, pentaerythritol,
Examples include sorbitol and diglycerin. Considering heat resistance, 30 equivalent% of total alcohol content
It is preferable that the above is a trivalent or higher polyhydric alcohol. Methanol, ethanol, if necessary
Monohydric alcohols such as ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, and phenoxymethanol may be used in combination. In consideration of performance and economy, it is preferable to use ethylene glycol, glycerin, and tris(2-hydroxyethyl) isocyanurate. The ratio of the polyamide-imide resin or polyimide resin obtained in the previous step (this is referred to as A) and the polyhydric alcohol having two or more hydroxyl groups in one molecule (this is referred to as B) is A/B ( mass ratio)
is preferably 90/10 to 40/60, more preferably 80/20 to 60/40. If the amount of B is too large, the heat resistance will decrease, and if the amount of A is too large, the resin concentration in the paint will decrease when used as a heat-resistant paint, which is also undesirable from the point of view of price. In addition to the various solvents mentioned above, the heat-resistant resin produced by the method of the present invention can also contain xylene,
Aromatic hydrocarbon mixture (Nippon Oil Hysol)
100, Hysol 150, etc.) to an appropriate viscosity to make a heat-resistant resin composition such as varnish for enamel cotton. The heat-resistant resin composition produced in this way can be used as is, or as necessary, epoxy resin, phenol formaldehyde resin, blocked polyisocyanate, titanate ester and its derivatives, organic acid metal salt, polyether resin, polyamide resin. Additives such as polyesterimide resin, polyhydantoin resin, alkoxy-modified amino resin, polysulfone resin, furan resin, and phenoxy resin can be added at a ratio of 0.1 to 25% by mass based on the resin content for various purposes. can. The present invention will be explained in more detail below using comparative examples and examples. Comparative example 1

【衚】 䞊蚘成分を枩床蚈、かきたぜ機、分留管を぀け
た四぀口フラスコに入れ窒玠気流䞭で150℃に昇
枩し、反応により留出するメタノヌルを陀去しな
がら反応枩床を230℃で時間かけお昇枩し、同
枩床で250℃熱板䞊でのゲル化時間が160秒以䞋に
なるたで反応を進めた。熱い暹脂にクレゟヌルを
加え暹脂分濃床を40重量にした。曎に暹脂溶液
を120℃に保ち暹脂分に察しお重量のテトラ
ブチルチタネヌトを埐々に加え30分間かくはんを
続けおポリ゚ステルワニスを埗た。 実斜䟋  む゜シアヌレヌト環含有ポリむ゜シアネヌトの
合成 成 分 グラム トリレンゞむ゜シアネヌト 600 キシレン 600 ―ゞメチルアミノ゚タノヌル觊媒 1.8 䞊蚘成分を枩床蚈、かきたぜ機を぀けた四぀口
フラスコに入れ、窒玠気流䞭で140℃に昇枩し、
同枩床でむ゜シアネヌト基の含有量初期濃床
48重量が25重量になるたで反応を進めた。 このものの赀倖スペクトルには1710cm-1、1410
cm-1にむ゜シアヌレヌト環の吞収が認められ、
2260cm-1にはむ゜シアネヌト基の吞収が認められ
た。 このようにしお埗られたむ゜シアヌレヌト環含
有倚䟡む゜シアネヌト溶液223gε―カプロラ
クタム125g、ゞプニルメタンゞむ゜シアネヌ
ト470g、クレゟヌル1035gを160℃で時間加熱
し、次で無氎トリメリツト酞446gを加えお210℃
で時間反応させ、ポリアミドむミド暹脂組成物
を埗た。このポリアミドむミド暹脂組成物890g
にトリス―ヒドロキシ゚チルむ゜シアヌレ
ヌト50g及びテトラブチルチタネヌト1.5gを加え
お200℃で2.5時間反応させた。その埌、クレゟヌ
ルずキシレンの80/20質量比混合液で暹脂分
濃床が30質量粘床33ポアズになるように垌
釈し、バむ゚ル瀟補ブロツクむ゜シアネヌトデス
モゞナヌルCTステヌブルを暹脂分に察しお質
量添加した。 比范䟋  実斜䟋で埗たポリアミドむミド暹脂組成物の
䞀郚をずり、これをクレゟヌルキシレン80/2
、重量比の混合液で暹脂分濃床が30重量に
なるように垌釈するずその粘床は1000ポアズ以䞊
あり、垞枩では流動性がなか぀た。これを、゚ナ
メル線甚塗料に適した粘床33ポアズになるた
で曎に垌釈するず暹脂分濃床は21重量であ぀
た。 実斜䟋  実斜䟋で埗られたポリアミドむミド暹脂組成
物841gにトリス―ヒドロキシ゚チルむ゜
シアヌレヌト75g及びテトラブチルチタネヌト
1.5gを加えお200℃で2.7時間反応させた。その
埌、実斜䟋ず同様にしお暹脂分濃床が30質量
になるように垌釈し、デスモデナヌルCTステヌ
ブルずテトラブチルチタネヌトを暹脂分に察しお
それぞれ質量、質量添加した。 実斜䟋  デスモデナヌルCTステヌブルむ゜シアヌレ
ヌト環含有倚䟡む゜シアネヌト31g、ε―カプ
ロラクタム59g、ゞプニルメタンゞむ゜シアネ
ヌト150g、クレゟヌル263gを160℃で時間加熱
し、次で無氎トリメリツト酞120g、無氎ベンゟ
プノンテトラカルボン酞23gを加えお210℃で
時間反応させた。その埌、曎にトリス―ヒ
ドロキシ゚チルむ゜シアヌレヌト129g及びテ
トラブチルチタネヌト1.4gを加えお200℃で2.8時
間反応させた。次で実斜䟋ず同様にしお暹脂分
濃床が30質量になるように垌釈し、デスモゞナ
ヌルCTステブルずテトラブチルチタネヌトを暹
脂分に察しおそれぞれ質量、質量添加し
た。 実斜䟋〜で埗られた塗料及び比范䟋で埗ら
れた塗料を垞法によ぀お盎埄mmの銅線に塗垃
し、炉枩300350400℃入口䞭倮出口
で焌付けお埗られた゚ナメル銅線の特性を衚に
瀺した。
[Table] The above ingredients were placed in a four-necked flask equipped with a thermometer, stirrer, and fractionator tube, heated to 150°C in a nitrogen stream, and the reaction temperature was increased to 230°C while removing methanol distilled out during the reaction. The temperature was raised over 6 hours, and the reaction was continued at the same temperature until the gelation time on a 250°C hot plate became 160 seconds or less. Cresol was added to the hot resin to make the resin concentration 40% by weight. Further, the resin solution was kept at 120°C, and 3% by weight of tetrabutyl titanate based on the resin content was gradually added, and stirring was continued for 30 minutes to obtain a polyester varnish. Example 1 Synthesis components of isocyanurate ring-containing polyisocyanate Gram tolylene diisocyanate 600 Xylene 600 2-dimethylaminoethanol (catalyst) 1.8 The above components were placed in a four-necked flask equipped with a thermometer and a stirrer, and placed in a nitrogen stream. The temperature was raised to 140℃,
At the same temperature, the content of isocyanate groups (initial concentration:
48% by weight) was reduced to 25% by weight. The infrared spectrum of this thing has 1710 cm -1 , 1410
Absorption of isocyanurate rings was observed at cm -1 ,
Absorption of isocyanate groups was observed at 2260 cm -1 . 223 g of the isocyanurate ring-containing polyisocyanate solution obtained in this way, 125 g of ε-caprolactam, 470 g of diphenylmethane diisocyanate, and 1035 g of cresol were heated at 160°C for 1 hour, and then 446 g of trimellitic anhydride was added and heated to 210°C.
The mixture was reacted for 6 hours to obtain a polyamide-imide resin composition. 890g of this polyamide-imide resin composition
50 g of tris(2-hydroxyethyl) isocyanurate and 1.5 g of tetrabutyl titanate were added to the mixture and reacted at 200°C for 2.5 hours. Then, dilute the resin content with an 80/20 (mass ratio) mixture of cresol and xylene to a resin concentration of 30% by mass (viscosity 33 poise), and add Bayer's blocked isocyanate desmodule CT stable to the resin content. It was added in an amount of 5% by mass. Comparative Example 2 A part of the polyamideimide resin composition obtained in Example 1 was taken and mixed with cresol/xylene (80/2
When diluted with a mixed solution of 0.0% by weight to a resin concentration of 30% by weight, the viscosity was over 1000 poise and had no fluidity at room temperature. When this was further diluted to a viscosity (33 poise) suitable for enameled wire paint, the resin concentration was 21% by weight. Example 2 75 g of tris(2-hydroxyethyl) isocyanurate and tetrabutyl titanate were added to 841 g of the polyamideimide resin composition obtained in Example 1.
1.5g was added and reacted at 200°C for 2.7 hours. Thereafter, the resin concentration was adjusted to 30% by mass in the same manner as in Example 1.
Desmodeleur CT stable and tetrabutyl titanate were added in an amount of 5% by mass and 1% by mass, respectively, based on the resin content. Example 3 31 g of Desmodeur CT stable (polyvalent isocyanate containing an isocyanurate ring), 59 g of ε-caprolactam, 150 g of diphenylmethane diisocyanate, and 263 g of cresol were heated at 160°C for 1 hour, and then 120 g of trimellitic anhydride and benzophyl anhydride were heated. 23 g of nontetracarboxylic acid was added and reacted at 210°C for 6 hours. Thereafter, 129 g of tris(2-hydroxyethyl) isocyanurate and 1.4 g of tetrabutyl titanate were further added and reacted at 200° C. for 2.8 hours. Next, the resin was diluted in the same manner as in Example 1 so that the resin concentration was 30% by mass, and 4% by mass and 2% by mass of Desmodyur CT Stable and tetrabutyl titanate were added to the resin, respectively. The paints obtained in Examples 1 to 3 and the paints obtained in Comparative Examples were applied to a copper wire with a diameter of 1 mm by a conventional method, and the furnace temperature was 300/350/400°C (inlet/center/outlet).
Table 1 shows the properties of the enamelled copper wire obtained by baking.

【衚】 実斜䟋〜ず比范䟋を比范しお明らかなよ
うに、本発明の補造方法によ぀お埗られる耐熱性
暹脂はポリ゚ステル暹脂に比范しお耐熱衝撃性、
耐熱性耐劣化性、耐摩耗性等がすぐれおおり、
絶瞁電線甚ずしおのみならず、金属衚面保護塗
料、フむルム、積局品、接着剀、粉末成型品等の
各皮の甚途に広く応甚するこずが可胜であり、工
業䞊有甚である。
[Table] As is clear from a comparison of Examples 1 to 3 and Comparative Example 1, the heat-resistant resin obtained by the production method of the present invention has better thermal shock resistance and better thermal shock resistance than polyester resin.
It has excellent heat resistance (deterioration resistance), abrasion resistance, etc.
It is industrially useful and can be widely applied not only to insulated wires but also to various uses such as metal surface protection paints, films, laminated products, adhesives, and powder molded products.

Claims (1)

【特蚱請求の範囲】  む゜シアヌレヌト環含有倚䟡む゜シアネヌ
ト、む゜シアヌレヌト環を含たない倚䟡む゜シア
ネヌト、ラクタム、䞀分子䞭に䞀個以䞊の酞無氎
物基を有する倚䟡カルボン酞又はその機胜誘導䜓
及び必芁に応じお䞀分子䞭に二個以䞊のカルボキ
シル基を有する倚䟡カルボン酞又はその機胜誘導
䜓を反応させたのち、曎に䞀分子䞭に二個以䞊の
氎酞基を有する倚䟡アルコヌルを反応させるこず
を特城ずする耐熱性暹脂の補造法。  む゜シアヌレヌト環含有倚䟡む゜シアネヌト
の䜿甚量を党む゜シアネヌト圓量の〜30圓量
ずする特蚱請求の範囲第項蚘茉の耐熱性暹脂の
補造法。  む゜シアヌレヌト環含有倚䟡む゜シアネヌト
が4′―ゞプニルメタンゞむ゜シアネヌト、
トリレンゞむ゜シアネヌト又はむ゜フオロンゞむ
゜シアネヌトから埗られるむ゜シアヌレヌト環含
有ポリむ゜シアネヌトである特蚱請求の範囲第
項又は第項蚘茉の耐熱性暹脂の補造法。  む゜シアヌレヌト環を含たない倚䟡む゜シア
ネヌトが4′―ゞプニルメタンゞむ゜シアネ
ヌト、4′―ゞプニル゚ヌテルゞむ゜シアネ
ヌト、トリレンゞむ゜シアネヌト又はキシリレン
ゞむ゜シアネヌトである特蚱請求の範囲第項、
第項又は第項蚘茉の耐熱性暹脂の補造法。  䞀分子䞭に䞀個以䞊の酞無氎物基を有する倚
䟡カルボン酞又はその機胜誘導䜓が無氎トリメリ
ツト酞である特蚱請求の範囲第項、第項、第
項又は第項蚘茉の耐熱性暹脂の補造法。  ラクタムがε―カプロラクタムである特蚱請
求の範囲第項、第項、第項、第項又は第
項蚘茉の耐熱性暹脂の補造法。  䞀分子䞭に二個以䞊の氎酞基を有する倚䟡ア
ルコヌルがトリス―ヒドロキシ゚チルむ゜
シアヌレヌトである特蚱請求の範囲第項、第
項、第項、第項、第項又は第項蚘茉の耐
熱性暹脂の補造法。
[Scope of Claims] 1. Polyvalent isocyanates containing isocyanurate rings, polyvalent isocyanates not containing isocyanurate rings, lactams, polyvalent carboxylic acids having one or more acid anhydride groups in one molecule, or functional derivatives thereof, and necessary It is characterized by reacting a polyhydric carboxylic acid having two or more carboxyl groups in one molecule or a functional derivative thereof according to the conditions, and then reacting a polyhydric alcohol having two or more hydroxyl groups in one molecule. A method for producing heat-resistant resin. 2. The amount of isocyanurate ring-containing polyvalent isocyanate used is 0 to 30 equivalent% of the total isocyanate equivalent.
A method for producing a heat-resistant resin according to claim 1. 3 The isocyanurate ring-containing polyvalent isocyanate is 4,4'-diphenylmethane diisocyanate,
Claim 1 is an isocyanurate ring-containing polyisocyanate obtained from tolylene diisocyanate or isophorone diisocyanate.
A method for producing a heat-resistant resin according to item 1 or 2. 4. Claim 1, wherein the polyvalent isocyanate not containing an isocyanurate ring is 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, tolylene diisocyanate or xylylene diisocyanate,
A method for producing a heat-resistant resin according to item 2 or 3. 5. Heat resistance according to claim 1, 2, 3, or 4, wherein the polyhydric carboxylic acid having one or more acid anhydride groups in one molecule or its functional derivative is trimellitic anhydride. manufacturing method of synthetic resin. 6. The method for producing a heat-resistant resin according to claim 1, 2, 3, 4, or 5, wherein the lactam is ε-caprolactam. 7 Claims 1 and 2, wherein the polyhydric alcohol having two or more hydroxyl groups in one molecule is tris(2-hydroxyethyl)isocyanurate.
A method for producing a heat-resistant resin according to item 1, 3, 4, 5, or 6.
JP57176872A 1982-10-07 1982-10-07 Preparation of heat-resistant resin Granted JPS5966416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57176872A JPS5966416A (en) 1982-10-07 1982-10-07 Preparation of heat-resistant resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57176872A JPS5966416A (en) 1982-10-07 1982-10-07 Preparation of heat-resistant resin

Publications (2)

Publication Number Publication Date
JPS5966416A JPS5966416A (en) 1984-04-14
JPS6333767B2 true JPS6333767B2 (en) 1988-07-06

Family

ID=16021261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57176872A Granted JPS5966416A (en) 1982-10-07 1982-10-07 Preparation of heat-resistant resin

Country Status (1)

Country Link
JP (1) JPS5966416A (en)

Also Published As

Publication number Publication date
JPS5966416A (en) 1984-04-14

Similar Documents

Publication Publication Date Title
JPS5836018B2 (en) Manufacturing method of heat-resistant resin
JPS6049666B2 (en) wire enamel mixture
US3609113A (en) Poly-(arylene-triketoimidazolidines and process for preparing the same
US4614782A (en) Heat resistant resin composition
US4477624A (en) Heat-resistant synthetic resin composition
US3634304A (en) Novel polyimides and compositions thereof that are soluble in phenolic solvents
JPS6333767B2 (en)
JPS5964633A (en) Production of heat-resistant resin
JP2570207B2 (en) Enameled wire
JPS5927921A (en) Production of heat-resistant resin
JPS58174441A (en) Heat-resistant resin composition
US4115337A (en) Process for manufacturing enamels of polyester-polyimide resins, particularly for coating electric conductors
JPS5855168B2 (en) Polyamideimide resin composition and method for producing the same
JPH04226179A (en) Coating composition
KR0156783B1 (en) Preparation process of polyamideimide resin for polyamideimide resin varnish composition
JPS61275327A (en) Polyamide resin composition and its production
JPS58175203A (en) Insulated wire
JPS5962662A (en) Heat-resistant resin composition
JPS61285211A (en) Polyamide-imide resin composition
JPH0333121A (en) Resin composition and insulated wire prepared by using same
JPS5815517B2 (en) Manufacturing method of electrical insulation paint
JPS6241606B2 (en)
JPS6235431B2 (en)
JPS6144946A (en) Heat-resistant resin composition
JPS61130323A (en) Polyamide-imide resin composition and its production