JPS6333615A - Three-phase variable reluctance type resolver - Google Patents

Three-phase variable reluctance type resolver

Info

Publication number
JPS6333615A
JPS6333615A JP17657786A JP17657786A JPS6333615A JP S6333615 A JPS6333615 A JP S6333615A JP 17657786 A JP17657786 A JP 17657786A JP 17657786 A JP17657786 A JP 17657786A JP S6333615 A JPS6333615 A JP S6333615A
Authority
JP
Japan
Prior art keywords
phase
circuit
resolver
windings
variable reluctance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17657786A
Other languages
Japanese (ja)
Inventor
Kenichi Otsuka
賢一 大塚
Atsushi Uchiyama
敦 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP17657786A priority Critical patent/JPS6333615A/en
Publication of JPS6333615A publication Critical patent/JPS6333615A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect an angle accurately, by exciting two three-phase winding series circuits different in the array sequence with the same voltage. CONSTITUTION:In a three-phase variable reluctance type resolver 20, a series circuit 21 of three-phase windings (a), (b) and (c) is connected in parallel to a series circuit 22 of the windings (b), (c) and (a) arranged in the array sequence of being shifted by one phase. An arithmetic circuit 27 draws connection point potentials of circuits 21 and 22 at terminals 23-26 and performs a computation using operational amplifiers 28-31 to obtain a potential difference (b-c) corresponding to sintheta of a rotor angle theta and a potential difference (a-(b+c)/2) corresponding to costheta to be outputted to a resolver digital converter section 13. As an interphase potential is drawn by the series connection of the windings (a), (b) and (c), there is no deviation in the phase between a synchronous rectification signal obtained at a transmission circuit 11 for exciting the resolver 20 and signals to be fetched at terminals 23-26. This eliminates fluctuation of an output signal theta depending on angle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はモータ、工作機械あるいは各種測定装置におけ
る回転量(角度)検出センサであるレゾルバに関するも
のであり、特に三相可変リラクタンス形レゾルバに関す
るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a resolver that is a rotation amount (angle) detection sensor for a motor, machine tool, or various measuring devices, and particularly relates to a three-phase variable reluctance type resolver. It is.

〔従来の技術〕[Conventional technology]

第2図は三相可変リラクタンス形レゾルバの構造を示す
部分構造図である。この可変リラクタンス形レゾルバは
それぞれIEIの巻線部を有する内外ステータ1.2を
持ち、両者の間にはその内外両表面に1周150個の突
極が等間隔に設けられたロータ3が配置されている。内
外ステータ1゜2の各種の先端部にもそれぞれ複数の突
極が設けられており、隣合わせの3つの掻(外ステータ
2を例にとれば、2a、2b、2C)に注目したとき、
各種の先端に設けられた突極とロータ3の突極との相対
的な位置関係は互いにずれている。すなわち、第3図は
外ステータ2の突極とロータの突極との位置関係を示し
たものであり、同図(a)に示すように極2aの突極と
ロータ3の突極を正対させたとき、極2bの突極とロー
タ3の突極は、突極間を360”として同図(b)に示
すようにと120@のずれが生じている。同様に、極2
Cの突極とロータ3の突極は同図(c)に示すように2
40@のずれが生じている。
FIG. 2 is a partial structural diagram showing the structure of a three-phase variable reluctance resolver. This variable reluctance resolver has an inner and outer stator 1.2 each having an IEI winding part, and a rotor 3 having 150 salient poles arranged at equal intervals on both the inner and outer surfaces is disposed between them. has been done. A plurality of salient poles are also provided at various tips of the inner and outer stators 1.2, and when paying attention to the three adjacent poles (taking the outer stator 2 as an example, 2a, 2b, and 2C),
The relative positions of the salient poles provided at the various tips and the salient poles of the rotor 3 are shifted from each other. That is, FIG. 3 shows the positional relationship between the salient poles of the outer stator 2 and the salient poles of the rotor, and as shown in FIG. When matched, the salient pole of pole 2b and the salient pole of rotor 3 are offset by 120@ as shown in FIG.
The salient poles of C and the salient poles of rotor 3 are 2 as shown in the same figure (c).
There is a deviation of 40@.

第4図は、このような構造のレゾルバを用いた角度検出
装置を示す回路図であり、レゾルバ10はステータの各
種a、b、cにそれぞれ抵抗Rを直列に接続した形で構
成されている。このレゾルバ10に対して発振回路(O
3C)11で周波数f0の交流励磁を行うと、ロータの
回転に応じて各種のコイルのL分が変化し、コイルに流
れる電流が変化する。電流が変化すれば、各種の電流変
化に応じた電圧変化がレゾルバ10の3つの出力端子に
それぞれ現れる。そして、互いに120”位相のずれた
これらの信号を三相−二相変換回路12にて90″位相
のずれた二相の信号に変換し、最後にレゾルバ・デジタ
ル変換部(RDC部)13によりロータの回転角度θを
デジタル値で抽出する。
FIG. 4 is a circuit diagram showing an angle detection device using a resolver having such a structure, and the resolver 10 is constructed by connecting resistors R in series to each of the various types a, b, and c of the stator. . The oscillation circuit (O
3C) When alternating current excitation at frequency f0 is performed at 11, the L portion of the various coils changes according to the rotation of the rotor, and the current flowing through the coils changes. When the current changes, voltage changes corresponding to various current changes appear at the three output terminals of the resolver 10, respectively. These signals, which are 120" out of phase with each other, are converted into two-phase signals with a 90" phase shift in a three-phase to two-phase conversion circuit 12, and finally converted into two-phase signals with a 90" phase shift. Extract the rotation angle θ of the rotor as a digital value.

このように、従来の可変リラクタンス形レゾルバでは、
各種のLの変化により電流iが変化することを利用して
、その変化を電圧値iRとして取り出している。
In this way, in the conventional variable reluctance resolver,
Utilizing the fact that the current i changes due to various changes in L, the change is extracted as a voltage value iR.

第5図は、レゾルバ10の出力端子の一つに現れる信号
の一例を示す波形図、第6図はそのベクトル図であるが
、このベクトル図かられかるように電流は位相φだけ遅
れが生じる。そのため、RDC部13では、03CII
からの信号を位相遅れ回路14によって遅れ角φに相当
する位相量だけ遅らせて同期整流信号としている。
Fig. 5 is a waveform diagram showing an example of a signal appearing at one of the output terminals of the resolver 10, and Fig. 6 is its vector diagram.As can be seen from this vector diagram, the current is delayed by the phase φ. . Therefore, in the RDC section 13, 03CII
The phase delay circuit 14 delays the signal from the signal by a phase amount corresponding to the delay angle φ to generate a synchronous rectification signal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、検出される電流の位相φは固定値ではなくLの
変化に伴って、すなわち、ロータの位置の変化に伴って
変化してしまい、入力のキャリアと同期位相信号との間
に位相ずれが生じてしまう。このような位相ずれは、R
DC部1部内3内相弁別のゲインを低下させるように作
用するため、その出力電圧はロータの角度位置によって
変化してしまう。すなわち、RDC部13の出力に回転
角によるゆらぎを与えることになる。
However, the phase φ of the detected current is not a fixed value but changes as L changes, that is, as the rotor position changes, and a phase shift occurs between the input carrier and the synchronous phase signal. It will happen. Such a phase shift is R
Since it acts to reduce the gain of the three internal phase discrimination in the DC section 1, its output voltage changes depending on the angular position of the rotor. That is, the output of the RDC section 13 is given fluctuations due to the rotation angle.

また、レゾルバIOの出力信号を利用する際には、三相
二相変換回路12を通して、90°位相のずれたsin
 、 cosの信号を得るが、この3相2相変換の過程
でキャリアのバイアス成分を取り去り、第7図に示すよ
うな信号にすることが必要であるが、正確にバイアス成
分を除去することは非常に困難である。
In addition, when using the output signal of the resolver IO, it is passed through the three-phase to two-phase conversion circuit 12 to generate a sine signal with a phase shift of 90°.
, a cos signal is obtained, but in the process of this three-phase two-phase conversion, it is necessary to remove the carrier bias component and create a signal as shown in Figure 7, but it is difficult to accurately remove the bias component. Very difficult.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の三相可変リラクタンス形レゾルバは上記問題点
に鑑みてなされたものであり、三相の巻線を直列に結線
した第1の回路と、巻線の配列順序が第1の回路に対し
て1相分ずれている第2の回路とを有し、第1の回路と
第2の回路とを並列接続して同電位の交流励磁を行える
ようにすると共に各相の巻線の電位を出力として取り出
せるようにしたものである。
The three-phase variable reluctance resolver of the present invention has been developed in view of the above problems, and includes a first circuit in which three-phase windings are connected in series, and a winding arrangement order that is different from that of the first circuit. The first circuit and the second circuit are connected in parallel so that AC excitation of the same potential can be performed, and the potential of the windings of each phase can be adjusted. This allows it to be taken out as output.

〔作用〕[Effect]

3相のコイルは直列に接続されているので、各コイルに
流れる電流の大きさは全て等しく、また、各コイルで生
じる電圧降下分は、コイルのL分によってそれぞれ変化
するが、3相の合計は常に励vAt圧に等しい。したが
って、各出力端子では各相のL分の変化に正確に対応し
た電位の変化が得られる。
Since the three-phase coils are connected in series, the magnitude of the current flowing through each coil is the same, and the voltage drop that occurs in each coil varies depending on the L portion of the coil, but the total of the three phases is always equal to the excitation vAt pressure. Therefore, at each output terminal, a change in potential can be obtained that accurately corresponds to a change by L in each phase.

〔実施例〕〔Example〕

以下、実施例と共に本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail along with examples.

第1図は本発明の一実施例を示す回路図であり、第4図
と同一もしくは相当部分には同一の符号を付しである。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and the same or corresponding parts as in FIG. 4 are given the same reference numerals.

本実施例の三相可変リラクタンス形レゾルバ20は、三
相の巻線a、b、cを直列に結線した第1の回路21と
、巻線の配列1頓序が第1の回路21に対して1相分ず
れて巻線順序がす。
The three-phase variable reluctance resolver 20 of this embodiment has a first circuit 21 in which three-phase windings a, b, and c are connected in series, and the windings are arranged in one order relative to the first circuit 21. The winding order is shifted by one phase.

c、aとなっている第2の回路22とを有している。こ
の第1の回路21と第2の回路22は並列接続されてお
り、03CIIにより同電位の交流励磁が行えるように
なっている。そして、出力端子23および26にはそれ
ぞれ第1の回路21のa相巻線−す相巻線間の電位およ
びb相巻線−C相巻線間の電位が取り出せるようになっ
ている。
c and a second circuit 22. The first circuit 21 and the second circuit 22 are connected in parallel so that AC excitation at the same potential can be performed by 03CII. Then, the potential between the a-phase winding and the sub-phase winding and the potential between the b-phase winding and the C-phase winding of the first circuit 21 can be taken out from the output terminals 23 and 26, respectively.

また、出力端子24および25にはそれぞれ第2の回路
22のb相巻線−C相巻線間の電位およびC相巻線−a
相巻線間の電位が取り出せるようになっている。
Further, the potential between the b-phase winding and the C-phase winding of the second circuit 22 and the potential between the C-phase winding and the a
The potential between the phase windings can be extracted.

このように、3相のコイルは直列に接続されているので
、各コイルに流れる電流の大きさは全て等しい。また、
各コイルで生じる電圧降下分は、コイルのL分によって
それぞれ変化するが、3相の合計は常に励磁電圧に等し
い。したがって、出力端子23〜26では、各相のL分
の変化に応じて電位が変化する。
In this way, since the three-phase coils are connected in series, the magnitude of the current flowing through each coil is all equal. Also,
The voltage drop generated in each coil varies depending on the L portion of the coil, but the sum of the three phases is always equal to the excitation voltage. Therefore, at the output terminals 23 to 26, the potential changes according to the change of L in each phase.

出力端子23〜26に現れる電圧は、a相巻線での電圧
降下分をa、b相巻線での電圧降下分をす、c相巻線で
の電圧降下分をCとしたときに、それぞれ(b+c)、
(c+a)、a、cとなる。この4種の信号は演算回路
27に入力され、最終的に(b−c)と(a −(b+
c)/2 )を得る。演算回路27の内部はオペアンプ
28〜31による一般的な演算手段により構成されてい
おり、初めに、端子23と端子24の電位差(a −b
)および端子25と端子26の電位差(c−a)を得る
。ついで、オペアンプ30.31を用いて(b−c)と
(a −(b+c)/2 )を得る。演算回路27の出
力−(b−c)はsin θに相当し、(a −(b+
c)/2 )はcos θに相当する。この2つの信号
は周知のRDC部13に入力され、θの値がデジタル値
で抽出される。演算回路27の出力(b−c)と(a−
(b+c)/2 )のキャリア成分の位相は03CII
の出力f0の位相と一致しているので、位相遅れ回路は
不要となっている。
The voltage appearing at the output terminals 23 to 26 is as follows: where the voltage drop in the A-phase winding is a, the voltage drop in the B-phase winding is C, and the voltage drop in the C-phase winding is C. (b+c), respectively.
(c+a), a, c. These four types of signals are input to the arithmetic circuit 27, and finally (b-c) and (a-(b+)
c)/2) is obtained. The inside of the arithmetic circuit 27 is composed of general arithmetic means using operational amplifiers 28 to 31, and first, the potential difference (a - b) between the terminals 23 and 24 is calculated.
) and the potential difference (c-a) between the terminals 25 and 26. Then, (b-c) and (a-(b+c)/2) are obtained using operational amplifiers 30 and 31. The output −(b−c) of the arithmetic circuit 27 corresponds to sin θ, and (a−(b+
c)/2) corresponds to cos θ. These two signals are input to a well-known RDC unit 13, and the value of θ is extracted as a digital value. The output of the arithmetic circuit 27 (b-c) and (a-
The phase of the carrier component of (b+c)/2) is 03CII
Since the phase of the output f0 coincides with that of the output f0, a phase delay circuit is not required.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の三相可変リラクタンス形レ
ゾルバによれば、ロータの角度変化を従来のようにコイ
ルの電流変化で取り出すのではなく、相間の電位で取り
出しているので、従来のように電流位相の遅れによる同
期整流信号との位相ずれが無い。したがって、RDCの
出力が位相変化の影響を受けず、しかも位相遅れ回路が
不要となる。また、キャリアのバイアス分が容易にキャ
ンセルできゲインの調整が不要である。さらに、各種の
コイルでブリッジ回路を構成しているので、1極当たり
の変化が従来の2倍となるという利点を有する。
As explained above, according to the three-phase variable reluctance resolver of the present invention, the change in rotor angle is not taken out by the current change in the coil as in the conventional case, but by the potential between the phases. There is no phase shift with the synchronous rectification signal due to current phase delay. Therefore, the output of the RDC is not affected by phase changes, and a phase delay circuit is not required. Further, the bias component of the carrier can be easily canceled and no gain adjustment is required. Furthermore, since the bridge circuit is composed of various coils, there is an advantage that the change per pole is twice that of the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は三相
可変リラクタンス形レゾルバの構造を示す部分構造図、
第3図はロータの突極とステータの突極の相対位置関係
を示す説明図、第4図は従来の三相可変リラクタンス形
レゾルバを用いた角度検出装置の回路図、第5図は第4
図のレゾルバの出力波形図、第6図はそのベクトル図、
第7図は第4図の装置における中間出力波形図である。 20・・・三相可変リラクタンス形レゾルバ、21・・
・第1の回路、22・・・第2の回路、23〜26・・
・出力端子。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a partial structural diagram showing the structure of a three-phase variable reluctance resolver,
Fig. 3 is an explanatory diagram showing the relative positional relationship between the salient poles of the rotor and the salient poles of the stator, Fig. 4 is a circuit diagram of an angle detection device using a conventional three-phase variable reluctance resolver, and Fig. 5 is a diagram showing the relative positional relationship between the salient poles of the rotor and the stator.
Figure 6 is the resolver output waveform diagram, Figure 6 is its vector diagram,
FIG. 7 is an intermediate output waveform diagram of the device of FIG. 4. 20... Three-phase variable reluctance resolver, 21...
・First circuit, 22...Second circuit, 23-26...
・Output terminal.

Claims (1)

【特許請求の範囲】[Claims] 三相の巻線を直列に結線した第1の回路と、巻線の配列
順序が第1の回路に対して1相分ずれている第2の回路
とを有し、第1の回路と第2の回路とを並列接続して同
電位の交流励磁を行えるようにすると共に各相の巻線の
電位を出力として取り出せるようにした三相可変リラク
タンス形レゾルバ。
It has a first circuit in which three-phase windings are connected in series, and a second circuit in which the arrangement order of the windings is shifted by one phase with respect to the first circuit. A three-phase variable reluctance resolver in which the two circuits are connected in parallel to perform alternating current excitation at the same potential, and the potential of the windings of each phase can be taken out as output.
JP17657786A 1986-07-29 1986-07-29 Three-phase variable reluctance type resolver Pending JPS6333615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17657786A JPS6333615A (en) 1986-07-29 1986-07-29 Three-phase variable reluctance type resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17657786A JPS6333615A (en) 1986-07-29 1986-07-29 Three-phase variable reluctance type resolver

Publications (1)

Publication Number Publication Date
JPS6333615A true JPS6333615A (en) 1988-02-13

Family

ID=16015992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17657786A Pending JPS6333615A (en) 1986-07-29 1986-07-29 Three-phase variable reluctance type resolver

Country Status (1)

Country Link
JP (1) JPS6333615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242293A (en) * 1993-02-23 1994-09-02 Ngk Insulators Ltd Ceramic filter and incinerator using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242293A (en) * 1993-02-23 1994-09-02 Ngk Insulators Ltd Ceramic filter and incinerator using it

Similar Documents

Publication Publication Date Title
US11876477B2 (en) Position observer for electrical machines
JPH06213614A (en) Position detection device
JP3060525B2 (en) Resolver device
JP3047565B2 (en) Variable reluctance resolver
JP2001235307A (en) Rotary type position detecting apparatus
JP2624747B2 (en) Resolver
JP4557591B2 (en) Angular position detector
JPH08178610A (en) Variable reluctance type angle detector
JPS6333615A (en) Three-phase variable reluctance type resolver
JP2016039774A (en) Permanent magnet type motor, position estimation device, and motor drive controller
JPS5917781B2 (en) Rotation speed detection method using multipolar resolver
JPH11118521A (en) Vr type resolver and resolver signal processing circuit
JP2001272204A (en) Torsion quantity measuring apparatus
JPS6347613A (en) Three-phase variable reluctance type resolver
JPH11313470A (en) Angle detecting device having non-interfering windings for two inputs and outputs
JPH0720389B2 (en) AC signal generator
JP2005091269A (en) Angle position detecting device and driving system using the same
JP3100841B2 (en) Rotational position detecting device and method
JPH0219720B2 (en)
JP7186846B1 (en) Control system for angle detector and AC rotating machine
JP2554472B2 (en) Rotation position detector
JPS6333616A (en) Resolver digital converter
JPS6030897B2 (en) speed detection device
JPS60207489A (en) Rotor position detector of commutatorless motor
JP2007166687A (en) Motor unit and motor drive control device