JPS6333601B2 - - Google Patents

Info

Publication number
JPS6333601B2
JPS6333601B2 JP16337681A JP16337681A JPS6333601B2 JP S6333601 B2 JPS6333601 B2 JP S6333601B2 JP 16337681 A JP16337681 A JP 16337681A JP 16337681 A JP16337681 A JP 16337681A JP S6333601 B2 JPS6333601 B2 JP S6333601B2
Authority
JP
Japan
Prior art keywords
water
cooled wall
orifice
pipe
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16337681A
Other languages
Japanese (ja)
Other versions
JPS5864403A (en
Inventor
Tomotsuchi Kawamura
Masatoshi Kudome
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16337681A priority Critical patent/JPS5864403A/en
Publication of JPS5864403A publication Critical patent/JPS5864403A/en
Publication of JPS6333601B2 publication Critical patent/JPS6333601B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、貫流ボイラの殊に水冷壁管系統に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to once-through boilers, in particular to water-cooled wall tube systems.

従来の技術 一般にボイラにおいては火炉水冷壁は高い熱負
荷を受けるが、その熱負荷の水冷壁管に対する分
布は一様でなく、ボイラの運転条件によつても変
化する。これらの条件に関して信頼性の高い火炉
水冷壁管系統を設けることは重要であり、この設
計においては熱負荷および熱吸収に見合つた流量
を安定して確保することが要件であり、このため
従来は分配管および水冷壁管入口部にオリフイス
装置を装着して対応している。
BACKGROUND OF THE INVENTION Generally, in a boiler, the water-cooled walls of the furnace are subjected to a high heat load, but the distribution of the heat load to the water-cooled wall tubes is not uniform and changes depending on the operating conditions of the boiler. It is important to provide a highly reliable furnace water-cooled wall pipe system under these conditions, and in this design, it is a requirement to stably secure a flow rate commensurate with the heat load and heat absorption. Orifice devices are installed at the distribution piping and water cooling wall pipe inlet.

そこで、このようなオリフイス装置を配設した
従来の貫流ボイラについて説明する。
Therefore, a conventional once-through boiler equipped with such an orifice device will be described.

第1図は従来の水冷壁管系統例を示し、この場
合には、給水は節炭器出口降水管1を経て分水装
置2すなわち分水球または分配管寄せに供給さ
れ、この分水装置から分配管4−1,4−2,4
−3を経て各水冷壁入口管寄せ5−1,5−2,
5−3に流入する。前記管寄せ5−1,5−2か
ら出る水冷管7−1,7−2は熱負荷、熱吸収の
条件で区分される流動安定性の高い水冷壁管で構
成される系統で、これらの系統は前記分水装置2
における分配管4−1,4−2の入口に設けられ
たオリフイス3により流量が分配される。前記管
寄せ5−3から出る水冷壁7−3の系統は流動安
定性の低い水冷壁管で構成される系統で、この系
統に対しては前記分水装置2にオリフイスを設け
ずに、管寄せ5−3における水冷壁管7−3の入
口に設けたオリフイス6により各水冷管における
流量配分を行なつている。各水冷壁管を流れる流
体は出口管寄せ8−1,8−2,8−3から出口
連絡管9−1,9−2,9−3を経て送出管10
を通つて対流伝熱面または気水分離器へ流れる。
FIG. 1 shows an example of a conventional water-cooled wall pipe system, in which the water supply is supplied via a economizer outlet downcomer pipe 1 to a water diversion device 2, i.e., a water bulb or a distribution pipe stopper, and from this water diversion device. Distribution pipe 4-1, 4-2, 4
-3, each water cooling wall inlet header 5-1, 5-2,
It flows into 5-3. The water-cooled pipes 7-1 and 7-2 coming out of the headers 5-1 and 5-2 are a system consisting of water-cooled wall pipes with high flow stability that are classified according to heat load and heat absorption conditions. The system is the water diversion device 2
The flow rate is distributed by orifices 3 provided at the entrances of the distribution pipes 4-1 and 4-2. The system of the water-cooled wall 7-3 coming out from the header 5-3 is a system composed of water-cooled wall pipes with low flow stability. An orifice 6 provided at the inlet of the water-cooled wall tube 7-3 in the stopper 5-3 distributes the flow rate in each water-cooled tube. The fluid flowing through each water-cooled wall pipe passes from the outlet header 8-1, 8-2, 8-3 to the outlet connecting pipe 9-1, 9-2, 9-3 to the delivery pipe 10.
through to a convection heat transfer surface or water separator.

しかし乍ら、貫流ボイラの運転においては水冷
壁管通過流量はボイラ負荷に比例して減少し、起
動および低負荷の流量は最大流量の1/4程度まで
減少する。このような水冷壁管を通過する流体の
少ない運転域では内部流体条件および外面の加熱
条件によつて流動の安定性が低い水冷壁管も生じ
得る。このような水冷壁管の内部流体の流動の安
定性の低下を防ぎ、管内の流体の流動特性を改善
し流量増加を図るには全面的にオリフイス効果を
大きくすることが必要である。
However, in the operation of a once-through boiler, the flow rate passing through the water-cooled wall tube decreases in proportion to the boiler load, and the flow rate at startup and low load decreases to about 1/4 of the maximum flow rate. In such an operating region where a small amount of fluid passes through the water-cooled wall tube, there may be a water-cooled wall tube with low flow stability depending on internal fluid conditions and external heating conditions. In order to prevent such a decrease in the stability of the fluid flow inside the water-cooled wall tube, improve the flow characteristics of the fluid inside the tube, and increase the flow rate, it is necessary to increase the orifice effect in all aspects.

発明が解決しようとする問題点 ところが、水冷壁管7−3の圧力損失が大きい
場合、あるいは水冷壁管7−3の径が小さい場合
には水冷壁管入口オリフイス効果を増大すること
ができず、またオリフイス6を小口径化すると給
水中の異物付着により閉塞の問題が起り易い。ま
た流動不安定な系統に対して必要流量を確保する
ためには安定な系統7−1,7−2の分配管オリ
フイス3の絞り込みが必要となるために、このよ
うなオリフイス設備にすると、絞り効果の必要な
極低負荷時以外は不要な圧力損失を火炉水令壁管
系統に与えることとなり、給水ポンプ(図示せ
ず)吐出圧力の増加、オリフイス3,6上流側設
計圧力の上昇を必要とし、運転動力、設備費の増
加をもたらすことになる。
Problems to be Solved by the Invention However, if the pressure loss of the water-cooled wall tube 7-3 is large or if the diameter of the water-cooled wall tube 7-3 is small, the effect of the water-cooled wall tube inlet orifice cannot be increased. Furthermore, if the orifice 6 is made smaller in diameter, the problem of clogging is likely to occur due to foreign matter adhering to the water supply. In addition, in order to secure the necessary flow rate for systems with unstable flow, it is necessary to restrict the distribution pipe orifices 3 of stable systems 7-1 and 7-2. This will cause unnecessary pressure loss to the furnace water control pipe system except at extremely low loads where the effect is required, and it will be necessary to increase the discharge pressure of the water supply pump (not shown) and the design pressure upstream of orifices 3 and 6. This results in an increase in operating power and equipment costs.

問題点を解決するための手段 本発明は、このような従来の問題点を解決する
ために、水冷壁管系統を低負荷時に流動安定性の
高い系統と低い系統とに区分して成る貫流ボイラ
において、前記流動安定性の高い水冷壁管系統の
各分配管入口に配設するオリフイスと、このオリ
フイスを通じて給水を供給する分水装置と、この
分水装置の上流側の第1入口連絡管に配設する可
変オリフイスと、この可変オリフイスの上流側に
配置した前記流動安定性の低い水冷壁管系統の水
令壁入口管寄せに配設するオリフイスと、このオ
リフイスを通じて給水を供給する第2入口連絡管
とをそなえたものである。
Means for Solving the Problems In order to solve these conventional problems, the present invention provides a once-through boiler in which a water-cooled wall pipe system is divided into a system with high flow stability and a system with low flow stability at low loads. , an orifice disposed at the entrance of each distribution pipe of the water-cooled wall pipe system with high flow stability, a water distribution device that supplies water through this orifice, and a first inlet communication pipe on the upstream side of this water distribution device. a variable orifice disposed, an orifice disposed upstream of the variable orifice at the water control wall inlet header of the water-cooled wall pipe system with low flow stability, and a second inlet for supplying water through the orifice; It is equipped with a connecting pipe.

作 用 このような手段によれば、流動安定性の高い水
冷壁管系統の第1入口連絡管に設けた可変オリフ
イスを絞るので、極低負荷時に流動安定性の低い
水冷壁管系統内に必要な流量を確保することがで
きるため、流動安定性を向上させることが可能で
ある。
Effect: According to this method, the variable orifice provided in the first inlet connecting pipe of the water-cooled wall pipe system with high flow stability is narrowed, so that it is necessary for the water-cooled wall pipe system with low flow stability at extremely low loads. Since a suitable flow rate can be secured, it is possible to improve flow stability.

実施例 以下第2図を参照して、本発明による貫流ボイ
ラの一実施例について説明する。
Embodiment An embodiment of the once-through boiler according to the present invention will be described below with reference to FIG.

第2図は水冷壁管系統を示し、給水は節炭器出
口降水管1を経て、分岐点Aにおいて第1及び2
入口連絡管11−1,11−2に分流する。熱負
荷、熱吸収条件で区分される流動安定性の高い系
統は第1入口連絡管11−1からこの連絡管の途
中に配設した可変オリフイス12を経て分水装置
2に至り、その後は従来の系統と同様に、そこに
設けられたオリフイス3により流量が配分され、
分配管4−1,4−2、水冷壁管系統7−1,7
−2、水冷壁出口管寄せ8−1,8−2、及び出
口連絡管9−1,9−2に通じている。
Figure 2 shows a water-cooled wall pipe system, where the water supply passes through the economizer outlet downcomer pipe 1, and at the branch point A, the first and second
The flow is divided into inlet communication pipes 11-1 and 11-2. A system with high flow stability divided by heat load and heat absorption conditions runs from the first inlet connecting pipe 11-1 through a variable orifice 12 placed in the middle of this connecting pipe, and then reaches the water diversion device 2. Similar to the system, the flow rate is distributed by the orifice 3 installed there,
Distribution piping 4-1, 4-2, water cooling wall pipe system 7-1, 7
-2, it communicates with the water-cooled wall outlet header 8-1, 8-2, and the outlet connecting pipe 9-1, 9-2.

これに対して流動安定性の低い系統は入口連絡
管11−2から水冷壁入口管寄せ5−3に至り、
そこに設けられたオリフイス6により各水冷管に
おける流量配分を受けてから、水冷壁管系統7−
3、水冷管出口管寄せ8−3、及び出口連絡管9
−3に通じている。そして、出口連絡管9−1,
9−2,9−3を通つた流体は送出管10により
対流伝熱面または気水分離器を流れる。
On the other hand, the system with low flow stability runs from the inlet connecting pipe 11-2 to the water-cooled wall inlet header 5-3,
After receiving the flow rate distribution in each water-cooled pipe by the orifice 6 provided there, the water-cooled wall pipe system 7-
3. Water cooling pipe outlet header 8-3 and outlet connecting pipe 9
-It is familiar with 3. And exit connecting pipe 9-1,
The fluid passing through 9-2 and 9-3 flows through a convection heat transfer surface or a steam/water separator via a delivery pipe 10.

この場合、前述の如き火炉の水冷壁管系統7−
1〜7−3夫々の流動安定性の高低については、
管の長さ、曲部の数、管径や水頭差等で決まる水
冷壁管の抵抗燃焼と、熱吸収量や熱吸収パターン
等で決める被加熱状態とにより異なる。
In this case, the water-cooled wall pipe system 7-
Regarding the level of flow stability of each of 1 to 7-3,
It differs depending on the resistance combustion of the water-cooled wall tube, which is determined by the length of the tube, the number of curved parts, the tube diameter, the difference in water head, etc., and the heated state, which is determined by the amount of heat absorption, the heat absorption pattern, etc.

また、水冷壁管7−1〜7−3はこれらの条件
が一様でなく、火炉壁の配置上、例えばバーナか
らの火炎に直接晒される炉面等を構成する水冷壁
管では云うまでもなく熱吸収量が大きく、一方バ
ーナ部まわり(図示せず)等を構成する水冷壁管
では熱吸収量が少なく、形状的にも曲部が多いの
で抵抗が大きく水冷管中の蒸気(水)は流動し難
い。特に低負荷時の水冷壁管内の流動は自然循環
力の影響が大きくこのように熱吸収量の少ない系
統では流動安定性が低くなる。
In addition, these conditions are not uniform for the water-cooled wall tubes 7-1 to 7-3, and due to the arrangement of the furnace wall, for example, it goes without saying that water-cooled wall tubes that constitute the furnace surface directly exposed to the flame from the burner On the other hand, the water-cooled wall tubes that make up the area around the burner (not shown) absorb less heat, and their shape has many curved parts, so the resistance is large and the steam (water) in the water-cooled tubes absorbs less heat. is difficult to flow. In particular, the flow in the water-cooled wall tube at low loads is greatly influenced by natural circulation forces, and in systems with such a small amount of heat absorption, the flow stability becomes low.

さて、前述のような水冷壁管内流体の流動安定
特性を把握して、流動安定性の高い水冷壁管系統
7−1及び7−2にはその第1入口連絡管11−
1に可変オリフイス12を配設して熱吸収量基準
に水冷壁を区分して、その入口分配管4−1,4
−2への流量配分のために圧力損失の少ない、好
適には最小のオリフイス3を設けている。
Now, understanding the flow stability characteristics of the fluid in the water-cooled wall pipes as described above, the first inlet connecting pipe 11-
A variable orifice 12 is installed in 1 to divide the water cooling wall based on the amount of heat absorption, and the inlet distribution piping 4-1, 4
In order to distribute the flow rate to -2, an orifice 3 with a small pressure loss and preferably the smallest size is provided.

そして、流動安定性の低い水冷壁管系統7−3
では流量配分のため水冷壁管入口にオリフイス6
を水冷壁入口管寄せ5−3に設けると共に、降水
管1から分岐した第2入口連絡管11−2をその
管寄せ5−3に接続する。
And water-cooled wall pipe system 7-3 with low flow stability.
Then, orifice 6 is installed at the water cooling wall pipe inlet for flow distribution.
is provided in the water-cooled wall inlet header 5-3, and a second inlet communication pipe 11-2 branched from the downcomer pipe 1 is connected to the header 5-3.

以上のような構成により、貫流ボイラの極低負
荷時における運転では可変オリフイス12を絞つ
て、その後流側の流動安定性の高い水冷壁管系統
7−1及び7−2への給水量を制限し、その上流
側の流動安定性の低い系統の給水量を増大して安
定性の向上を図り、極低負荷時以外では可変オリ
フイスの絞りを全開として、水冷壁系の圧力損失
低下を図ることとなる。
With the above configuration, when the once-through boiler is operated at extremely low loads, the variable orifice 12 is throttled to limit the amount of water supplied to the water-cooled wall pipe systems 7-1 and 7-2 on the downstream side, which have high flow stability. However, in order to improve stability by increasing the amount of water supplied to systems with low flow stability on the upstream side, the variable orifice should be fully throttled except at times of extremely low load to reduce pressure loss in the water cooling wall system. becomes.

即ち、第3図に示すように、貫流ボイラを含め
てボイラ火炉を構成する水冷壁管のような炉内側
から加熱される被加熱管の管内流体の一般的な流
動特性において、まず、水冷壁入口管寄せ5−3
の途中にオリフイス6を配設していない場合の特
性を説明すると、S線で示す流動安定性の低い水
冷壁管系統7−3の状態では流量を増加していく
と、圧力損失量は単調に増加する(0〜A点過熱
蒸気域)。
That is, as shown in Fig. 3, in the general flow characteristics of the fluid in the tubes of heated tubes that are heated from the inside of the furnace, such as water-cooled wall tubes that constitute a boiler furnace including a once-through boiler, firstly, the water-cooled wall Inlet header 5-3
To explain the characteristics when the orifice 6 is not installed in the middle of the flow, in the state of the water-cooled wall pipe system 7-3 with low flow stability shown by the S line, as the flow rate increases, the amount of pressure loss is monotonous. (0 to point A superheated steam range).

更に、流量を増加していくと、管内を流動する
蒸気が気相と液相となり(A〜B点二相流域)、
圧力損失量が一旦減少する。
Furthermore, as the flow rate increases, the steam flowing inside the pipe becomes a gas phase and a liquid phase (two-phase region between points A and B),
The amount of pressure loss decreases once.

続けて流量を増加していくと、管内は液相の水
となり(B〜C点液相流域)、圧力損失量は再び
単調に増加する、いわゆる「鞍形特性」と呼称さ
れる公知の特性が表われる。従つて、このような
特性を有する水冷壁管系統7−3においては、三
種類の異なつた管内状態が存在し得ることとな
り、管内の蒸気(水)の流動状態が不安定である
と共に、流量の少ない水冷壁管7−3では過熱又
は焼損の危険性がある。(特に0〜A点の状態)。
As the flow rate continues to increase, water becomes liquid in the pipe (liquid phase region at points B to C), and the pressure loss increases monotonically again, a well-known characteristic known as the so-called "saddle-shaped characteristic." appears. Therefore, in the water-cooled wall pipe system 7-3 having such characteristics, three different types of pipe conditions can exist, and the flow state of steam (water) in the pipes is unstable, and the flow rate is There is a risk of overheating or burnout in the water-cooled wall tube 7-3 with a small amount of water. (Especially the state of 0 to A point).

そこで、このような鞍形特性を改善したのが、
水冷壁入口管寄せ5−3の途中にオリフイス6、
換言すれば、管内流体に対する抵抗体の導入であ
る。
Therefore, we improved this saddle shape characteristic by
An orifice 6 is installed in the middle of the water cooling wall inlet header 5-3.
In other words, it is the introduction of a resistor to the fluid within the pipe.

このオリフイス6を装着することにより、その
流動(安定性の低い)特性が、図中のS′線で示す
流動安定性の高い水冷壁管系統7−1及び7−2
の状態の如く圧力損失量の変化が全域に渡り単調
増加に転ずることとなる。即ち、このことは流動
が安定化することを意味しており、ある圧力損失
に対しては、一定の流量が確保できる。
By installing this orifice 6, the flow (low stability) characteristics of the water-cooled wall pipe systems 7-1 and 7-2, which have high flow stability as shown by the S' line in the figure, can be improved.
As in the situation shown in FIG. That is, this means that the flow is stabilized, and a constant flow rate can be ensured for a certain pressure loss.

そして、流動特性の改善は前述の如く水冷壁入
口管寄せ5−3にオリフイス6を配設することに
より、そのより良い改善が可能となるが、しかし
乍ら、このような処置だけでは不十分で、水冷壁
管7−3の圧力損失にオリフイス6自体の圧力損
失が加わり結果的に圧力損失量は増加してしまう
ため、圧力損失(水頭差)が一定ならば流量が減
少する傾向となる。
The flow characteristics can be further improved by installing the orifice 6 in the water cooling wall inlet header 5-3 as described above, but such measures alone are insufficient. Then, the pressure loss of the orifice 6 itself is added to the pressure loss of the water-cooled wall pipe 7-3, and as a result, the amount of pressure loss increases, so if the pressure loss (water head difference) is constant, the flow rate tends to decrease. .

この場合、必要流量を確保するためには、他の
並列に接続する流動安定性の高い水冷壁管系統7
−1及び7−2への給水量を減少させて、流動安
定性の低い水冷壁管系統7−3へその減らした給
水量を補給してやれば良いことになる。
In this case, in order to secure the required flow rate, it is necessary to use another water-cooled wall pipe system 7 that is connected in parallel and has a high flow stability.
It is sufficient to reduce the amount of water supplied to -1 and 7-2 and replenish the reduced amount of water to the water-cooled wall pipe system 7-3, which has low flow stability.

このために前者の系統7−1及び7−2の圧力
損失を増加するよう入口連絡管11−1から各入
口分配管4−1,4−2へオリフイス3を配設す
るが、しかし乍ら、この場合にも通常は固定オリ
フイスを使用するので、全運転負荷域において水
冷壁管系統7−3の圧力損失はまだ大きく、前述
の如く給水ポンプ動力の増大を来し、オリフイス
3,6上流側の設計圧力も高くする必要がある。
For this purpose, an orifice 3 is provided from the inlet connecting pipe 11-1 to each inlet distribution pipe 4-1, 4-2 in order to increase the pressure loss in the former system 7-1 and 7-2. In this case as well, a fixed orifice is usually used, so the pressure loss in the water-cooled wall pipe system 7-3 is still large in the entire operating load range, causing an increase in the power of the water supply pump as described above. It is also necessary to increase the design pressure on the side.

しかして、本発明によれば、可変オリフイス1
2を用いることにより、これらの問題を解決する
ことができる。即ち、安定性の高い水冷壁管系統
7−1及び7−2への入口連絡管11−1の途中
にこの可変オリフイス12を配設し、安定性の低
い水冷壁管系統7−3の安定性が特に低い状態に
ある極低負荷時に、そのオリフイス効果を持た
せ、つまり可変オリフイス12を絞つて給水流路
の調整をし、後者の系統7−3側へ流量を所定量
流入させる。
According to the present invention, the variable orifice 1
By using 2, these problems can be solved. That is, this variable orifice 12 is arranged in the middle of the inlet connecting pipe 11-1 to the water-cooled wall pipe systems 7-1 and 7-2, which have high stability, and stabilize the water-cooled wall pipe system 7-3, which has low stability. At extremely low loads when the performance is particularly low, the orifice effect is applied, that is, the variable orifice 12 is throttled to adjust the water supply flow path and allow a predetermined amount of flow to flow into the latter system 7-3.

このような操作をすることにより、流動安定性
の低い水冷壁管系統7−3の流動特性を系統入口
の固定オリフイス6による絞りを与えることによ
り改善しつつ、更に可変オリフイス12による系
統への流量増加により安定流量を確保するため、
低負荷時での流動安定性が容易に改善されると共
に、高負荷時の圧力損失の増大をも防止すること
ができる。
By performing such an operation, the flow characteristics of the water-cooled wall pipe system 7-3, which has low flow stability, are improved by providing a restriction with the fixed orifice 6 at the system inlet, and the flow rate to the system is further improved with the variable orifice 12. To ensure stable flow rate by increasing
Flow stability at low loads can be easily improved, and an increase in pressure loss at high loads can also be prevented.

発明の効果 この結果、水冷壁管入口に固定オリフイスによ
り絞りを与えることで水冷壁の流動特性は、第3
図のS′線で示す如く、流量を増加することにより
熱吸収の流動に対する影響が小さくなり、管内流
動が安定すると共に、流動安定性の高い系統に可
変オリフイスを設けて絞ることにより、流動不安
定な系統の流量を増加することができるので、流
動安定性は高くなり、流量増と相俟つて管の過熱
や損傷を回避でき、信頼性が増大する。
Effects of the invention As a result, by providing a restriction with a fixed orifice at the inlet of the water-cooled wall pipe, the flow characteristics of the water-cooled wall can be improved by
As shown by the S' line in the figure, increasing the flow rate reduces the effect of heat absorption on the flow and stabilizes the flow in the pipe. At the same time, by installing a variable orifice in a system with high flow stability and restricting it, the flow is stabilized. Since the flow rate of a stable system can be increased, the flow stability is increased, and together with the increased flow rate, overheating and damage to the pipes can be avoided and reliability is increased.

しかも、固定絞りの圧力損失は最少限とし、極
低負荷時にのみ可変オリフイスを絞るので通常運
用条件における各水冷壁管系統の圧力損失の増加
がないため、オリフイス上流側設計圧力および給
水ポンプ吐出圧力を高める必要もなく、最少にす
ることができるので、設備費の低減が可能とな
り、さらに給水ポンプ消費動力も最少にできるの
で運転経費の節約が可能になる。
In addition, the pressure loss of the fixed throttle is minimized, and the variable orifice is throttled only at extremely low loads, so there is no increase in pressure loss in each water cooling wall pipe system under normal operating conditions, so the design pressure upstream of the orifice and the water pump discharge pressure Since it is not necessary to increase the amount of water and can be minimized, equipment costs can be reduced, and the power consumption of the water pump can also be minimized, making it possible to save on operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の貫流ボイラを示す水冷壁管系統
図、第2図は本発明による貫流ボイラの一例を示
す水冷壁管系統図である。第3図は水冷壁管の安
定性向上を示す流量と圧力損失との関係特性曲線
図である。 2……分水装置、3,6……オリフイス、4−
1,4−2……各分配管、5−1〜5−3……水
冷壁入口管寄せ、7−1〜7−3……水冷壁管系
統、11−1,11−2……各第1及び第2入口
連絡管、12……可変オリフイス。
FIG. 1 is a water-cooled wall tube system diagram showing a conventional once-through boiler, and FIG. 2 is a water-cooled wall tube system diagram showing an example of a once-through boiler according to the present invention. FIG. 3 is a characteristic curve diagram showing the relationship between flow rate and pressure loss, which shows the improvement in stability of the water-cooled wall tube. 2... Water diversion device, 3, 6... Orifice, 4-
1, 4-2...Each distribution pipe, 5-1 to 5-3...Water-cooled wall inlet header, 7-1 to 7-3...Water-cooled wall pipe system, 11-1, 11-2...Each First and second inlet communication pipes, 12...variable orifice.

Claims (1)

【特許請求の範囲】[Claims] 1 水冷壁管系統を低負荷時に流動安定性の高い
系統と低い系統とに区分して成る貫流ボイラにお
いて、前記流動安定性の高い水冷壁管系統の各分
配管入口に配設するオリフイスと、このオリフイ
スを通じて給水を供給する分水装置と、この分水
装置の上流側の第1入口連絡管に配設する可変オ
リフイスと、この可変オリフイスの上流側に配置
した前記流動安定性の低い水冷壁管系統の水冷壁
入口管寄せに配設するオリフイスと、このオリフ
イスを通じて給水を供給する第2入口連絡管とを
そなえたことを特徴とする貫流ボイラ。
1. In a once-through boiler in which a water-cooled wall pipe system is divided into a system with high flow stability and a system with low flow stability at low loads, an orifice disposed at each distribution pipe inlet of the water-cooled wall pipe system with high flow stability; A water diversion device that supplies water through this orifice, a variable orifice disposed in the first inlet communication pipe on the upstream side of this water diversion device, and the water cooling wall with low flow stability disposed on the upstream side of this variable orifice. A once-through boiler characterized by comprising an orifice disposed at the water-cooled wall inlet header of a pipe system, and a second inlet connecting pipe for supplying water through the orifice.
JP16337681A 1981-10-15 1981-10-15 Once-through boiler Granted JPS5864403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16337681A JPS5864403A (en) 1981-10-15 1981-10-15 Once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16337681A JPS5864403A (en) 1981-10-15 1981-10-15 Once-through boiler

Publications (2)

Publication Number Publication Date
JPS5864403A JPS5864403A (en) 1983-04-16
JPS6333601B2 true JPS6333601B2 (en) 1988-07-06

Family

ID=15772701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16337681A Granted JPS5864403A (en) 1981-10-15 1981-10-15 Once-through boiler

Country Status (1)

Country Link
JP (1) JPS5864403A (en)

Also Published As

Publication number Publication date
JPS5864403A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
JP4540719B2 (en) Waste heat boiler
JP2865851B2 (en) Once-through steam generator
US20020083903A1 (en) Method and plant for heating a liquid medium
JP4489773B2 (en) Once-through boiler and its operation method
JPS6333601B2 (en)
US4278069A (en) Water heater
US4151813A (en) Jet pump in natural circulation fossil fuel fired steam generator
JP3085873B2 (en) Supercritical pressure once-through boiler
US5361827A (en) Economizer system for vapor generation apparatus
JPH09126409A (en) Method and device for temperature control of feed-water heater
JPS637244B2 (en)
JPH0658503A (en) Case structure of multi-pipe type once-through boiler
JP2921839B2 (en) Supercritical pressure operation boiler
JPH0616243Y2 (en) Natural circulation boiler steam drum
JPS5827206Y2 (en) Steam boiler with thermal efficiency improvement device
JP2625422B2 (en) Boiler control device
JPS6118355Y2 (en)
JPH0223762B2 (en)
JP5170470B2 (en) Water heater
JP6745971B2 (en) Vertical heat recovery steam generator
JP2000337604A (en) Desuperheating device
JPH02223701A (en) Exhaust heat recovery boiler
JP2610915B2 (en) Boiler equipment
JP3377718B2 (en) Emulsion fuel evaporator system
JPS62252848A (en) Heat exchanger