JPS6333580A - Discharge coating device - Google Patents

Discharge coating device

Info

Publication number
JPS6333580A
JPS6333580A JP17627486A JP17627486A JPS6333580A JP S6333580 A JPS6333580 A JP S6333580A JP 17627486 A JP17627486 A JP 17627486A JP 17627486 A JP17627486 A JP 17627486A JP S6333580 A JPS6333580 A JP S6333580A
Authority
JP
Japan
Prior art keywords
electrode
coated
vibrating
workpiece
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17627486A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP17627486A priority Critical patent/JPS6333580A/en
Publication of JPS6333580A publication Critical patent/JPS6333580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To increase the coating speed of the title device and to improve the smooth ness of a surface to be coated by supplying vibrational energy from an excitation electric power source provided with a PWM modulation circuit to an electromagnetic vibrator for attaching and detaching the electrode of a coating material in the dis charge coating device to and from an article to be coated, and vibrating the electrode. CONSTITUTION:The electrode 2 consisting of a carbide material, for example, is attached and detached to and from a metallic material 1 to be coated and vibrated by an electromagnet 5 provided with a coil 6, a magnetic body 9, and the resiliency of a vibrating read 8. Pulse discharge is generated by the terminal voltages of a capaci tor 3, and the electrode 2 is transferred and thermally sprayed on the surface of the material 1 to be coated. In this case, the PWM modulation circuit 7 is provided to the excitation power source for vibrating the electrode 2 consisting of the magnetic body 9 and the electromagnet 5 to pass an oscillating current with the controlled pulse duration of pulse discharge through the current vibrating coil 6. Consequently, the electrode 2 can be optionally detached from the material 1 to be coated and vibrat ed, the surface of the material 1 can be coated with the electrode material at high speed, and the roughness of the coated surface is reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電極を被加工体に接触開離振動させながら両者
間隙にパルス放電を行なって前記電極材を被加工体に溶
着被覆させる放電被覆加工装置に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to electrical discharge coating processing in which the electrode material is welded and coated on the workpiece by applying a pulse discharge in the gap between the electrodes while contacting and separating the electrode from the workpiece and vibrating the workpiece. Regarding equipment.

〔従来技術〕[Prior art]

従来の被覆加工装置の一例は第1図のようである。1は
被加工体、2は電極で、支持体4に取付けられ、被加工
体1に対向して接触量+msaさせる。3は電極、被加
工体の間隙に並列接続したパルス放電用の衝撃蓄電器、
5は電極2を振動する電磁石で、支持体4に固着したバ
ネ材より成る振動片8に固着した磁性体9に対向して吸
引力を作用し、この電磁石吸引力と振動片8の反撥バネ
力によって振動させる。6はIli石コイルで、これを
M電器3の端子電圧によって励磁し、電極2を振動して
被加工体1に接触開離の振動を行なわせる。振動により
両者の接近した間隙に蓄電器3によるパルス放電が行な
われ、電極2の放電点の溶融部分が接触によって被加工
体1に転移溶着してデポジットする。この電極振動と放
電を繰返し、接触点を移動走査することによって被加工
体1表面に所要の被覆層を形成する。電極2に被覆しよ
うとづる、例えば超硬材を用いれば被加工体1を表面硬
化することができ、耐摩耗性を付与することができる。
An example of a conventional coating processing apparatus is shown in FIG. Reference numeral 1 denotes a workpiece, and 2 an electrode, which is attached to a support 4 and faces the workpiece 1 with a contact amount +msa. 3 is an electrode, an impact capacitor for pulse discharge connected in parallel to the gap between the workpiece,
Reference numeral 5 denotes an electromagnet that vibrates the electrode 2, which applies an attractive force to a magnetic body 9 fixed to a vibrating piece 8 made of a spring material fixed to a support 4, and this electromagnetic attractive force and the repulsion spring of the vibrating piece 8 Vibrate by force. Reference numeral 6 denotes an Ili stone coil, which is excited by the terminal voltage of the M electric device 3, vibrates the electrode 2, and causes the workpiece 1 to vibrate in contact and release. The vibration causes a pulse discharge by the capacitor 3 to occur in the gap between the electrodes 2 and 2, and the molten portion of the electrode 2 at the discharge point comes into contact with the electrode 2 and transfers and welds to the workpiece 1 as a deposit. By repeating this electrode vibration and discharge and moving and scanning the contact point, a required coating layer is formed on the surface of the workpiece 1. If the material to be coated on the electrode 2 is, for example, a superhard material, the surface of the workpiece 1 can be hardened and wear resistance can be imparted.

〔問題点〕〔problem〕

以上のような従来装置に於て、被覆加工速度を増加する
ために、電極振動装置を改良し、放電用の蓄電器3の充
電電圧を利用して電極振動を行なうことにより振動と放
電を繰返すが、振動数を所望の値に上昇させること、接
触時の加圧力を制御すること、振動振幅を制御すること
等を任意に行なうことができず充分な加工速度の増加、
加工面粗さの低減ができなかった。
In the conventional device described above, in order to increase the coating processing speed, the electrode vibration device is improved and the electrode vibration is performed using the charging voltage of the discharge capacitor 3, thereby repeating vibration and discharge. , it is not possible to arbitrarily increase the frequency of vibration to a desired value, control the pressing force at the time of contact, control the vibration amplitude, etc., and increase the machining speed sufficiently;
The machined surface roughness could not be reduced.

〔問題点の解決手段〕[Means for solving problems]

本発明はこのような点に鑑みて提案されたもので、電極
振動の励磁電源にPWM変調回路を設け、信号によって
変調したパルスを利用して振動制御を行なうことを特徴
とする。
The present invention has been proposed in view of these points, and is characterized in that a PWM modulation circuit is provided in the excitation power source for electrode vibration, and vibration control is performed using pulses modulated by a signal.

(実施例) 以下図面の一実施例により本発明を説明する。(Example) The present invention will be explained below with reference to an embodiment of the drawings.

第2図はPWM変調回路1を設けた振動励磁電源の例で
、71が比較波発生回路、72がレベル比較回路、73
がサンプルホールド回路である。
FIG. 2 shows an example of a vibration excitation power supply equipped with a PWM modulation circuit 1, in which 71 is a comparison wave generation circuit, 72 is a level comparison circuit, and 73
is the sample and hold circuit.

被覆加工間隙から信号を変調信号として端子10に入力
する。端子11には搬送パルスを入力する。
A signal from the coating gap is inputted to the terminal 10 as a modulation signal. A transport pulse is input to the terminal 11.

変調信号はサンプルホールド73され、比較波発生回路
11から発生する比較波の入力によってレベル比較回路
72で比較され、PWM変調出力を得る。
The modulated signal is sampled and held 73, and compared by a level comparison circuit 72 using the comparison wave input generated from the comparison wave generation circuit 11 to obtain a PWM modulation output.

比較波発生回路71の発振周波数は例えばIK)lzで
発信するとすれば、変調パルスτonは0〈τOn(1
000μsの範囲で制御でき、端子10に入力する変調
信号として、被加工体1と電極2間の間隙電圧を検出し
入力するとすれば、間隙電圧が低下したとさ変調パルス
幅τOnが小さく、逆に間隙電圧が増大したときτon
が大きくなるよう変調出力を発生する。このようにして
発生したPWM変調波は増幅器12のトランジスタに加
わり電力増幅して後、電磁振動装置のコイル6を励磁す
る。電磁石5はτOnの大きいパルスで励磁されたとき
は磁性体9を強く吸引し振動して電極2を被加工体1に
強く接触し、又τOnの小さいパルスで励磁したときは
電極2の被加工体1への接触圧を弱めるよう振動制御す
る。従って安定した正常放電により間隙電圧が高い間は
電極2と被加工体1の接触圧を強くした振動を行なわせ
、間隙状態が悪くて不安定放電になり電圧が低下したと
きは電極2と被加工体1の接触圧を弱くした振動を行な
うよう制御する。この間隙に応じた振動制御により放電
被覆加工が適応制御され、安定した最良加工を続けるこ
とにより加工速度を高め、且つ表面粗さを小さくした良
好な被覆層を形成することができる。
For example, if the oscillation frequency of the comparison wave generation circuit 71 is IK)lz, the modulation pulse τon is 0<τOn(1
If the gap voltage between the workpiece 1 and the electrode 2 is detected and inputted as the modulation signal input to the terminal 10, then when the gap voltage decreases, the modulation pulse width τOn becomes small and vice versa. When the gap voltage increases to τon
A modulated output is generated so that the The PWM modulated wave generated in this way is applied to the transistor of the amplifier 12, and after amplifying the power, excites the coil 6 of the electromagnetic oscillation device. When the electromagnet 5 is excited with a pulse with a large τOn, it strongly attracts the magnetic body 9 and vibrates, bringing the electrode 2 into strong contact with the workpiece 1. When excited with a pulse with a small τOn, the electromagnet 5 strongly attracts the magnetic body 9 and vibrates, and when it is excited with a pulse with a small τOn, the electromagnet 5 contacts the workpiece of the electrode 2. Vibration control is performed to weaken the contact pressure to the body 1. Therefore, while the gap voltage is high due to stable normal discharge, vibration is performed with strong contact pressure between the electrode 2 and the workpiece 1, and when the gap condition is poor and unstable discharge occurs and the voltage decreases, the electrode 2 and the workpiece 1 are vibrated. The workpiece 1 is controlled to vibrate with a weaker contact pressure. Vibration control according to this gap adaptively controls electrical discharge coating machining, and by continuing stable optimal machining, it is possible to increase machining speed and form a good coating layer with reduced surface roughness.

尚、被覆間隙から検出する変調信号としては、放電によ
り流れる電流、放電音圧、放射熱、電極、被加工体の温
度等を各々の検出素子によって検出利用することができ
る。又、信号は複数組合せて利用することかできる。又
、変調信号として直流を利用し電圧制御によって任意の
デユーティパルスを出力することができ、最適振動を容
易に選ぶことができる。
As the modulated signal detected from the coating gap, the current flowing due to the discharge, the sound pressure of the discharge, the radiated heat, the temperature of the electrode, the workpiece, etc. can be detected and used by each detection element. Further, a plurality of signals can be used in combination. Further, by using direct current as a modulation signal, any duty pulse can be output by voltage control, and the optimum vibration can be easily selected.

第3図は電極振動装置として、電磁石5に対向して永久
磁石10を設け、電磁石コイル6にはPWM出力により
τOn及びτoffパルスの両川力を加えて両波励磁し
異極励磁のとき吸引し同極励磁のとき反撥することを利
用して振動片8の振動を行なうようにした例である。こ
の永久磁石10を利用するとき、第2図のバネの反撥力
による場合よりも高い周波数で振動させることができる
。通常バネ式で応答速度が300〜420H2程度であ
るのに対して実験によれば希土類磁石を用いたとき、約
440〜510H2程度まで振動数を高めることができ
た。
FIG. 3 shows an electrode vibrating device in which a permanent magnet 10 is provided opposite to an electromagnet 5, and the electromagnetic coil 6 is subjected to dual-wave excitation by applying the force of τOn and τoff pulses by PWM output, and is attracted during different polarity excitation. This is an example in which the vibrating element 8 is vibrated by utilizing repulsion during homopolar excitation. When using this permanent magnet 10, it is possible to vibrate at a higher frequency than when using the repulsive force of the spring shown in FIG. While a normal spring type has a response speed of about 300 to 420 H2, experiments have shown that when rare earth magnets are used, the frequency can be increased to about 440 to 510 H2.

第4図は永久磁石に変えて電磁石51を利用する実施例
で、コイル6と61に同極励磁と異極励磁を交互に行な
うことによって振動片8を振動させるもので、振動特性
は第3図と同様の効果が得られる。尚、振動周波数は比
較波発生回路71の発振周波数により制御することがで
き、被覆材質、被覆目的に応じた切換制御するとよい。
FIG. 4 shows an embodiment in which an electromagnet 51 is used instead of a permanent magnet, and the vibrating element 8 is vibrated by alternately excitation of the same polarity and excitation of different polarity in the coils 6 and 61, and the vibration characteristics are as follows. The same effect as shown in the figure can be obtained. Incidentally, the vibration frequency can be controlled by the oscillation frequency of the comparison wave generation circuit 71, and it is preferable to perform switching control depending on the coating material and the coating purpose.

又、第3図及び第4図は振動片8への電極2の取付けが
第1図とは反対に電磁石の発酵時に電極2が被加工体1
に接触振動する。
Also, in FIGS. 3 and 4, the electrode 2 is attached to the vibrating piece 8 when the electromagnet is fermented, contrary to FIG. 1.
vibrates when touched.

次に具体的に実験結果を説明する。被覆材電極にはWC
超硬材チップを用い、855C材にデポジット被覆加工
するとき、加工用のパルスh’l電条件は電極を陽極、
被加工体を陰極として、jp=80A、τon= 10
μsのパルス放電を行なった。電極の振動は振動数50
0H2で、PWM制御により間隙の電圧を検出して変調
信号とし振動エネルギのパルス幅で00を10〜100
0μsに制御した。即ち、間隙電圧が高いときはτon
を大きく、間隙電圧が低いときはτOnが小さくなるよ
う変調し、この変調パルスにより振動電磁石を半波励磁
して振動させたときを(A>とし、永久磁石を用いて電
磁石を両波励磁したときを(B)、又電極と被加工体の
熱起電力を短絡したときの電圧で検出して変調して変調
信号としてPWM変調パルスを出力して電磁石の振動制
御したちの(C)、電極の温度上昇をサーモカップルに
より検出して変調信号とし温度が高いとき出力パルス幅
が小さく温度が低いときパルス幅が大きくなるようPW
M変調し出力パルスにより電磁石の振動制御をしたとき
を(D)とし、比較例として従来の放電蓄電器の電圧で
電磁石を励磁制御したとき(E)及び従来の電極を回転
しながら被加工体に接触させて行なう方式(F)とする
とぎ、加工面粗さと加工速度の実験f+nは下表の通り
であった。
Next, the experimental results will be explained in detail. WC is used for the covering material electrode.
When applying deposit coating to 855C material using a carbide tip, the pulse h'l electric conditions for processing are as follows:
With the workpiece as a cathode, jp=80A, τon=10
Pulse discharge of μs was performed. The vibration of the electrode has a frequency of 50
At 0H2, detect the voltage in the gap using PWM control and use it as a modulation signal to convert 00 to 10 to 100 with the pulse width of vibration energy.
The time was controlled to 0 μs. That is, when the gap voltage is high, τon
When the gap voltage is large, τOn is small and when the gap voltage is low, it is modulated so that τOn becomes small, and when the oscillating electromagnet is half-wave excited and oscillated by this modulated pulse, it is defined as (A>), and the electromagnet is double-wave excited using a permanent magnet. (B), and detects and modulates the thermoelectromotive force between the electrode and the workpiece using the voltage when short-circuited, and outputs a PWM modulation pulse as a modulation signal to control the vibration of the electromagnet (C). The temperature rise of the electrode is detected by a thermocouple and used as a modulation signal.The PW is set so that when the temperature is high, the output pulse width is small and when the temperature is low, the pulse width is large.
(D) is when the vibration of the electromagnet is controlled by M modulation and output pulses, and as a comparative example (E) is when the electromagnet is excited and controlled by the voltage of a conventional discharge capacitor, and when the conventional electrode is rotated and applied to the workpiece. Assuming the contact method (F), the experimental f+n of machined surface roughness and processing speed were as shown in the table below.

而粗さμRmax   加工速度ll1g/m1n(八
 ン         13            
 16(B)      H21 (C)       8        25([) 
)       G         28(E)  
    23        8(F )      
12        15以上のように、従来のもの(
E)(F)に比較して本発明のもの(A)〜(D>は表
面粗さをX程度にし加工速度を2〜3倍程度に増加させ
ることができる。これは間隙の状態、電極、被加工体の
温度上昇等によってPWM変調を利用して振動エネルギ
の1iil]taパルス幅を制御し振動接触圧、振動振
幅等を適応制御できるから電極材の被加工体への転移溶
着量を増加することができることによる。
Roughness μRmax Machining speed 11g/m1n (8 13
16 (B) H21 (C) 8 25 ([)
) G28(E)
23 8 (F)
12 As above 15, the conventional one (
E) Compared to (F), the products (A) to (D>) of the present invention have a surface roughness of about X and can increase the machining speed by about 2 to 3 times. The amount of transfer welding of the electrode material to the workpiece can be controlled because the vibration contact pressure, vibration amplitude, etc. can be adaptively controlled by controlling the pulse width of the vibration energy using PWM modulation depending on the temperature rise of the workpiece, etc. By being able to increase.

尚、検出する信号及び電磁振動のパルス条件、1騒動周
波数等は被覆材、被加工体材等により、又目的被覆層の
而粗さとか膜厚等によって最良なものを選択することが
よく、例えばマイコン等に条件を記憶しておき、自動切
換によって選択制御を行なうようにすると便利である。
In addition, the signal to be detected, the pulse conditions of electromagnetic vibration, the percussion frequency, etc. are best selected depending on the coating material, workpiece material, etc., and the roughness and thickness of the intended coating layer. For example, it is convenient to store the conditions in a microcomputer or the like and perform selection control by automatic switching.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、電#1振動の励磁電源に
PWM変調回路を設けてパルス幅を制御したS動電流を
電磁振動コイルに流して振動制御するようにしたので、
電極、被加工体の接触開離の1t!初制御を任意に容易
に制御することができ、電極、被加工体の間隙電圧、電
流、放電音、光、熱、或いは電極、被加工体の温度上昇
等の放電加工状態によって変化する信号を検出し、これ
をPWMの変調信号とすることによって振動の加工状態
に応じた最適制御ができる効果がある。
As described above, according to the present invention, a PWM modulation circuit is provided in the excitation power source for electric #1 vibration, and the S dynamic current whose pulse width is controlled is caused to flow through the electromagnetic vibration coil to control vibration.
1t of contact and separation between electrode and workpiece! Initial control can be arbitrarily and easily controlled, and signals that change depending on electrical discharge machining conditions such as gap voltage, current, discharge sound, light, heat, or temperature rise of the electrode and workpiece can be controlled arbitrarily and easily. By detecting this and using it as a PWM modulation signal, it is possible to optimally control the vibration according to the machining state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の構成図、第2図は本発明装置の一実
施例の要部回路図、第3図及び第4図は本発明の他の実
施例の一部構造図である。 1・・・・・・・・・被加工体 2・・・・・・・・・電極 3・・・・・・・・・放電蓄電器 5・・・・・・・・・電磁石 6・・・・・・・・・コイル 7・・・・・・・・・PWM変調回路 8・・・・・・・・・振動片 9・・・・・・・・・磁性体 10・・・・・・・・・永久磁石 12・・・・・・・・・増幅器 51・・・・・・・・・電磁石 61・・・・・・・・・コイル 特  許  出  願  人 株式会社井上ジャパックス研究所 代表者 井 上   潔
FIG. 1 is a block diagram of a conventional device, FIG. 2 is a main circuit diagram of an embodiment of the device of the present invention, and FIGS. 3 and 4 are partial structural diagrams of other embodiments of the present invention. 1... Workpiece 2... Electrode 3... Discharge capacitor 5... Electromagnet 6... ...... Coil 7 ...... PWM modulation circuit 8 ...... Vibration piece 9 ...... Magnetic body 10 ... ...Permanent magnet 12 ......Amplifier 51 ...... Electromagnet 61 ...... Coil patent applicant Inoue Japax Co., Ltd. Research Institute Representative Kiyoshi Inoue

Claims (2)

【特許請求の範囲】[Claims] (1)電極を被加工体に接触開離振動させながら両者間
隙にパルス放電を行なつて前記電極材を被加工体に溶着
被覆させる被覆加工装置に於て、前記接触開離振動に電
磁振動装置を設け、該電磁振動装置に振動エネルギを供
給する励磁電源を設け、該励磁電源にPWM変調回路を
設けたことを特徴とする放電被覆加工装置。
(1) In a coating device that welds and coats the electrode material onto the workpiece by applying a pulse discharge to the gap between the electrodes while making contact and separation vibrations between the electrode and the workpiece, electromagnetic vibration is added to the contact and separation vibrations. 1. An electric discharge coating machining apparatus, comprising: an excitation power source for supplying vibration energy to the electromagnetic vibration device; and a PWM modulation circuit provided in the excitation power source.
(2)変調信号に前記両者間隙から検出した信号を利用
した特許請求の範囲第1項に記載の放電被覆加工装置。
(2) The electric discharge coating processing apparatus according to claim 1, wherein a signal detected from the gap between the two is used as a modulation signal.
JP17627486A 1986-07-25 1986-07-25 Discharge coating device Pending JPS6333580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17627486A JPS6333580A (en) 1986-07-25 1986-07-25 Discharge coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17627486A JPS6333580A (en) 1986-07-25 1986-07-25 Discharge coating device

Publications (1)

Publication Number Publication Date
JPS6333580A true JPS6333580A (en) 1988-02-13

Family

ID=16010708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17627486A Pending JPS6333580A (en) 1986-07-25 1986-07-25 Discharge coating device

Country Status (1)

Country Link
JP (1) JPS6333580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628379A1 (en) * 1993-06-11 1994-12-14 Helmut Schäfer Method for manufacturing self-sharpening knife edges and self-sharpening knife edge
WO1999058743A1 (en) * 1998-05-08 1999-11-18 Mitsubishi Denki Kabushiki Kaisha Power source unit for discharge surface treatment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628379A1 (en) * 1993-06-11 1994-12-14 Helmut Schäfer Method for manufacturing self-sharpening knife edges and self-sharpening knife edge
WO1999058743A1 (en) * 1998-05-08 1999-11-18 Mitsubishi Denki Kabushiki Kaisha Power source unit for discharge surface treatment
US6702896B1 (en) * 1998-05-08 2004-03-09 Mitsubishi Denki Kabushiki Kaisha Apparatus and method for discharge surface treatment
US6783795B2 (en) 1998-05-08 2004-08-31 Mitsubishi Denki Kabushiki Kaisha Power supply apparatus for discharge surface treatment
US7067011B2 (en) 1998-05-08 2006-06-27 Mitsubushi Denki Kabushiki Kaisha Apparatus and method for discharge surface treatment
US7323213B2 (en) 1998-05-08 2008-01-29 Mitsubishi Denki Kabushiki Kaisha Apparatus and method for discharge surface treatment

Similar Documents

Publication Publication Date Title
KR100311298B1 (en) vibration type level detector
JP3576014B2 (en) Electric discharge machining method and apparatus
US3551637A (en) Magnetic control of a welding arc
US4232241A (en) Electric circuit for driving a piezoelectric vibrator
JPS6333580A (en) Discharge coating device
GB2068285A (en) Electrical discharge machining method and apparatus
US6994207B2 (en) Driving unit for transducer
JPH03161083A (en) Driving mechanism for piezoelectric vibrator and water drop removing device using same driving mechanism
SE333413B (en)
US2031789A (en) Acoustic electric energy converter
US3741426A (en) Spark-discharge surface treatment of a conductive workpiece
FI68986B (en) FOERFARANDE FOER ALSTRANDE AV AKUSTISKA SVAENGNINGAR OCH EN AKSTISK SVAENGNINGSKAELLA FOER GENOMFOERANDE AV FOERFARANDE T
US4026142A (en) Eddy-current system for the vibration-testing of blades
JP4211073B2 (en) Drive control method and apparatus for elliptical vibration feeder
JP3752701B2 (en) Self-excited vibration type vibration control device
JPS6018271Y2 (en) Electromagnetic chuck control device
JPH08267007A (en) Self-exciting oscillation type vibrator of electromagnet vibration exciting system
Babitsky et al. Autoresonant homeostat concept for engineering application of nonlinear vibration modes
CN219193474U (en) Electromagnetic vibration exciter displacement detection structure of electromagnetic vibration feeder
JPS5919726Y2 (en) Discharge coating equipment
JP2002243864A (en) Vibration source for sound-wave detection
Tsujino et al. Vibration characteristics of a large-capacity complex vibration source using a titanium alloy complex transverse vibration rod with two stepped parts
RU2164844C1 (en) Method and apparatus for electric spark alloying
JP3823401B2 (en) Self-excited vibration type vibration device
JPS6335785A (en) Discharge coating device