JPS6333481Y2 - - Google Patents

Info

Publication number
JPS6333481Y2
JPS6333481Y2 JP1982018035U JP1803582U JPS6333481Y2 JP S6333481 Y2 JPS6333481 Y2 JP S6333481Y2 JP 1982018035 U JP1982018035 U JP 1982018035U JP 1803582 U JP1803582 U JP 1803582U JP S6333481 Y2 JPS6333481 Y2 JP S6333481Y2
Authority
JP
Japan
Prior art keywords
zinc
separator
electrode
battery
separators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982018035U
Other languages
Japanese (ja)
Other versions
JPS58120564U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982018035U priority Critical patent/JPS58120564U/en
Publication of JPS58120564U publication Critical patent/JPS58120564U/en
Application granted granted Critical
Publication of JPS6333481Y2 publication Critical patent/JPS6333481Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 本考案はニツケル−亜鉛電池、銀−亜鉛電池の
如く負極活物質に亜鉛を用いるアルカリ亜鉛二次
電池に関する。
[Detailed description of the invention] (a) Industrial application field The present invention relates to an alkaline zinc secondary battery using zinc as the negative electrode active material, such as a nickel-zinc battery or a silver-zinc battery.

(ロ) 従来の技術 この種電池においては、亜鉛の樹枝状あるいは
海綿状電着により正負極間が内部短絡する第1の
問題と、亜鉛極の変形及び亜鉛の脱落によるサイ
クル寿命が短い第2の問題がある。これらの問題
の発生原因は、電解液量が過多であること及び亜
鉛極の端部が露出していることであると考えられ
ている。
(b) Prior art In this type of battery, the first problem is that internal short circuit between the positive and negative electrodes occurs due to dendritic or spongy electrodeposition of zinc, and the second problem is that the cycle life is short due to deformation of the zinc electrode and dropout of zinc. There is a problem. The causes of these problems are thought to be that the amount of electrolyte is too large and that the ends of the zinc electrodes are exposed.

そこで第1図及び第2図に示す構成の電池が提
案されている。第1図は従来電池の一部破断せる
斜視図、第2図は同拡大部分断面図である。これ
らの図面において、各ニツケル極1は夫々袋状の
第1セパレータ2で包囲されており、隣接する一
対の亜鉛極3,3は筒状の第2セパレータ4の両
端開口から挿入され、一対の亜鉛極3,3が対抗
する如く第2セパレータ4がU字状に折曲され
る。各亜鉛極3の両側に、ニツケル極1が配置さ
れる。かくして亜鉛極3とニツケル極1が、第1
及び第2セパレータ2,4を介して積層され、電
槽5に収納される。
Therefore, a battery having the configuration shown in FIGS. 1 and 2 has been proposed. FIG. 1 is a partially cutaway perspective view of a conventional battery, and FIG. 2 is an enlarged partial sectional view of the same. In these drawings, each nickel electrode 1 is surrounded by a bag-shaped first separator 2, and a pair of adjacent zinc electrodes 3, 3 are inserted through openings at both ends of a cylindrical second separator 4, and a pair of adjacent zinc electrodes 3, 3 are inserted through openings at both ends of a cylindrical second separator 4. The second separator 4 is bent into a U-shape so that the zinc electrodes 3, 3 are opposed to each other. Nickel electrodes 1 are arranged on both sides of each zinc electrode 3. Thus, the zinc electrode 3 and the nickel electrode 1 are
and are laminated with second separators 2 and 4 interposed therebetween, and housed in a battery case 5.

かかる構成により、亜鉛極3の端部3′が第2
セパレータ4により包囲され、又電解液量が制限
されることにより、前述の第1及び第2の問題を
緩和するようにしている。
With this configuration, the end portion 3' of the zinc electrode 3
By being surrounded by the separator 4 and limiting the amount of electrolyte, the first and second problems mentioned above are alleviated.

ところがこの従来電池においても、電解液量が
制限されているとは云え、第2セパレータ4のU
字状内底部4′に電解液が溜ることになり、この
内底部4′における液量が豊富となり、亜鉛極3
の下部の脱落を生じやすい。また第1及び第2セ
パレータ2,4のニツケル極1及び亜鉛極3から
の突出部2′,4″の突出長が第2図に示す如く略
同じであり、両極1,3の上下端間の表面距離が
短いため、亜鉛の樹枝状生長が生じやすい。第6
図は、両極1,3及びセパレータの突出部2′,
4″を拡大し、樹枝状の亜鉛の生長経路を示す説
明図である。この図において、両極1,3の上下
端間の表面距離L1は、セパレータの表面部の長
さであるl1+l2+l3で示され、アルカリ亜鉛二次
電池では、亜鉛極3からニツケル極1へ、ハツチ
ングで示した部分を介して、矢印の如く樹枝状亜
鉛が生長していき、この現象に基づき内部短絡が
発生する。その結果、電池寿命となつてしまう。
However, even in this conventional battery, although the amount of electrolyte is limited, the U of the second separator 4
The electrolytic solution accumulates in the inner bottom part 4' of the shape, and the amount of liquid in this inner bottom part 4' becomes abundant, and the zinc electrode 3
The lower part is likely to fall off. Furthermore, the protruding lengths of the protruding parts 2' and 4'' from the nickel electrode 1 and the zinc electrode 3 of the first and second separators 2 and 4 are approximately the same as shown in FIG. Because the surface distance of zinc is short, dendritic growth of zinc is likely to occur.
The figure shows both poles 1 and 3 and the separator protrusion 2',
4" is an enlarged explanatory diagram showing the growth path of dendritic zinc. In this diagram, the surface distance L 1 between the upper and lower ends of both poles 1 and 3 is the length of the surface portion of the separator l 1 +l 2 +l 3 In an alkaline zinc secondary battery, dendritic zinc grows from zinc electrode 3 to nickel electrode 1 as shown by the arrow, and based on this phenomenon, the internal A short circuit occurs.As a result, the battery life is shortened.

(ハ) 考案が解決しようとする課題 本考案はかかる点に鑑み考案されたものにし
て、正極及び亜鉛極を包囲するセパレータを、こ
れらの極の上下端側を開放した筒状に形成して従
来電池のようにセパレータの下方の袋状部に電解
液が溜まるのを防止すると共に電解液量を著しく
規制し、必要最少限量即ち遊離の電解液が存在し
ない程度に制限された量となし、亜鉛の脱落を防
ぎ、又前記各セパレータの上下端を正極あるいは
亜鉛極の上下端より突出させると共にこれらのセ
パレータ間に高さ寸法の小なる他のセパレータを
介在せることにより、亜鉛極と正極の上下端間の
表面距離を大きくせんとするものである。
(c) Problems to be solved by the invention The present invention has been devised in view of the above points, and the separator surrounding the positive electrode and the zinc electrode is formed into a cylindrical shape with the upper and lower ends of these electrodes open. In addition to preventing the electrolyte from accumulating in the bag-shaped portion below the separator as in conventional batteries, the amount of electrolyte is significantly regulated, and the amount is limited to the minimum necessary amount, that is, to the extent that no free electrolyte exists. By preventing the zinc from falling off, and by making the upper and lower ends of each of the separators protrude from the positive electrode or the upper and lower ends of the zinc electrode, and by interposing another separator with a smaller height dimension between these separators, the separation between the zinc electrode and the positive electrode is prevented. The purpose is to increase the surface distance between the upper and lower ends.

(ニ) 課題を解決するための手段 本考案のアルカリ亜鉛二次電池は、正極を包囲
する筒状の第1セパレータと、負極を包囲する筒
状の第2セパレータと、該第1及び第2セパレー
タ間に介在する第3セパレータと、これらセパレ
ータに保持され且遊離の電解液が存在しない程度
に制限された量の電解液とを備え、前記第1及び
第2セパレータは正極、亜鉛極及び第3セパレー
タの夫々の上下端より突出していることを特徴と
するものである。
(d) Means for Solving the Problems The alkaline zinc secondary battery of the present invention comprises a first cylindrical separator surrounding the positive electrode, a second cylindrical separator surrounding the negative electrode, and the first and second separators. The first and second separators include a third separator interposed between the separators, and a limited amount of electrolyte held by these separators to the extent that no free electrolyte exists; It is characterized by protruding from the upper and lower ends of each of the three separators.

(ホ) 作用 本考案の構成によれば、両極間の上下端間の表
面距離が増加するので、樹枝状亜鉛の生長に起因
する内部短絡を抑制しうる。
(E) Effect According to the configuration of the present invention, the surface distance between the upper and lower ends of the two electrodes increases, so that internal short circuits caused by growth of dendritic zinc can be suppressed.

(ヘ) 実施例 以下、本考案による電池の一実施例を図面に基
づいて説明する。第3図は一部破断せる斜視図で
あり、第4図は一部破断せる拡大断面図である。
これらの図面において、10は正極集電体11を
有する正極にして、該正極の上下端側を開放した
筒状の第1セパレータ20で包囲される。該第1
セパレータは多孔性ナイロン不織布からなり、正
極10の上下端12,13から突出する突出部2
1,22を有する大きさである。30は負極集電
体31に亜鉛活物質を保持させてなる亜鉛極にし
て、該亜鉛極の上下端側を開放した筒状の第2セ
パレータ40で包囲される。該第2セパレータは
ポリプロピレン、ポリエチレン等の微孔性フイル
ムからなり、亜鉛極30の上下端32,33から
突出する突出部41,42を有する大きさであ
る。50は第1及び第2セパレータ20,40間
に介在する第3セパレータにおいて、第1セパレ
ータ20より電解液保持性の高い多孔性ナイロン
不織布からなり、これら第1及至第3セパレータ
20,40,50にて多重層セパレータ60を構
成する。
(F) Example Hereinafter, an example of the battery according to the present invention will be described based on the drawings. FIG. 3 is a partially cutaway perspective view, and FIG. 4 is a partially cutaway enlarged sectional view.
In these drawings, 10 is a positive electrode having a positive electrode current collector 11, and the positive electrode is surrounded by a cylindrical first separator 20 with open upper and lower ends. The first
The separator is made of porous nylon nonwoven fabric, and has protruding portions 2 protruding from the upper and lower ends 12 and 13 of the positive electrode 10.
It has a size of 1,22. 30 is a zinc electrode formed by holding a zinc active material in a negative electrode current collector 31, and is surrounded by a cylindrical second separator 40 with open upper and lower ends. The second separator is made of a microporous film made of polypropylene, polyethylene, or the like, and has protrusions 41 and 42 that protrude from the upper and lower ends 32 and 33 of the zinc electrode 30. Reference numeral 50 denotes a third separator interposed between the first and second separators 20, 40, which is made of a porous nylon nonwoven fabric that has higher electrolyte retention than the first separator 20; A multilayer separator 60 is constructed.

正極10及び亜鉛極30は多重層セパレータ6
0を介して順次積層されて電槽70に挿入され、
電解液が多重層セパレータ60に注入される。こ
の場合に電解液量は、必要最少限量即ち遊離の電
解液が存在しない程度に制限された量に規制され
る。71は電槽蓋、72,73は正負極外部端子
である。
The positive electrode 10 and the zinc electrode 30 are made of a multilayer separator 6
0 and inserted into the battery case 70,
An electrolyte is injected into the multilayer separator 60. In this case, the amount of electrolyte is regulated to the minimum necessary amount, that is, an amount limited to such an extent that no free electrolyte exists. 71 is a container lid, and 72 and 73 are positive and negative external terminals.

而して、第1及び第2セパレータ20,40は
その上下端21,22及び41,42が隣接する
第3セパレータ50の上下端51,52より突出
している。また、第3セパレータ50の上下寸法
は、亜鉛極30のそれより大きいことが好まし
い。
Thus, the upper and lower ends 21, 22 and 41, 42 of the first and second separators 20, 40 protrude from the upper and lower ends 51, 52 of the adjacent third separator 50. Further, the vertical dimension of the third separator 50 is preferably larger than that of the zinc electrode 30.

尚、第1及び第2セパレータ20,40の横寸
法は、正極10又は亜鉛極30のそれと略同寸で
よい。即ち、従来考えられていたように、正極1
0及び亜鉛極30の側面に、セパレータ内の空間
を設けてガス通路とすることは、電解液量を必要
最少限に規制することにより、不要となるからで
ある。
Note that the lateral dimensions of the first and second separators 20 and 40 may be approximately the same as that of the positive electrode 10 or the zinc electrode 30. That is, as previously thought, the positive electrode 1
This is because it becomes unnecessary to provide a space in the separator on the side surface of the electrode 0 and the zinc electrode 30 to serve as a gas passage by regulating the amount of electrolytic solution to the necessary minimum.

第5図は、第3図に示す本考案電池Aと第1図
に示す従来電池Bとのサイクル特性比較図であ
る。この時のサイクル条件は、4AHのニツケル
−亜鉛電池を0.25Cの電流で4時間充電し、0.25C
の電流で放電して放電終止電圧を1.3Vにした。
第5図から明らかなように、本考案電池ではサイ
クル特性が改善されている。
FIG. 5 is a comparison diagram of cycle characteristics between the battery A of the present invention shown in FIG. 3 and the conventional battery B shown in FIG. 1. The cycle conditions at this time were to charge a 4AH nickel-zinc battery with a current of 0.25C for 4 hours,
The battery was discharged at a current of 1.3V to reach a final discharge voltage of 1.3V.
As is clear from FIG. 5, the battery of the present invention has improved cycle characteristics.

これは、本考案電池Aが亜鉛局を包囲するセパ
レータが従来電池の如く袋状ではないので、該袋
状セパレータの内底部に電解液が溜まることによ
る弊害を除くことができると共に、正極及び亜鉛
極の隣接する上下端間の表面距離が、多重層セパ
レータの上下端を面一にする場合に比し長くなる
ことに起因している。
This is because, in battery A of the present invention, the separator that surrounds the zinc station is not bag-shaped like in conventional batteries, so it is possible to eliminate the negative effects caused by the electrolyte accumulating at the inner bottom of the bag-shaped separator, and the positive electrode and zinc This is due to the fact that the surface distance between the adjacent upper and lower ends of the poles is longer than when the upper and lower ends of the multilayer separator are flush.

ここで第7図は本考案電池の両極10,30及
びセパレータの突出部21,41を拡大し、樹枝
状亜鉛の生長経路を示す説明図である。この第7
図は、第4図の1部分を拡大したものである。こ
の図において両極10,30の上下端間の表面距
離L2は、セパレータの表面部の長さであつて、l4
+l5+l6+l7+l8+l9+l10で示される。したがつ
て、たとえ樹枝状亜鉛が生長しても、第6図に示
した従来電池の如く多層セパレータの上下端を面
一にする場合に比し、l6とl8の分だけ表面距離が
大きいので、対極に樹枝状亜鉛が到達しにくくな
る。その結果、隣接する上下端間の亜鉛の樹枝状
生長による内部短絡を生じ難くすることができ
る。
FIG. 7 is an enlarged view of the protrusions 21, 41 of the electrodes 10, 30 and separator of the battery of the present invention, showing the growth path of dendritic zinc. This seventh
The figure is an enlarged view of a portion of FIG. 4. In this figure, the surface distance L 2 between the upper and lower ends of both poles 10 and 30 is the length of the surface portion of the separator, and l 4
+l 5 +l 6 +l 7 +l 8 +l 9 +l 10 . Therefore, even if dendritic zinc grows, the surface distance will be reduced by l 6 and l 8 compared to when the upper and lower ends of the multilayer separator are flush with each other as in the conventional battery shown in Figure 6. Since it is large, it becomes difficult for the dendritic zinc to reach the counter electrode. As a result, internal short circuits due to dendritic growth of zinc between adjacent upper and lower ends can be made less likely to occur.

(ト) 考案の効果 本考案によれば、両極間の表面距離を大きくす
ることにより、樹枝状亜鉛の生長に起因する内部
短絡を抑制しうるものであり、サイクル特性に優
れたアルカリ亜鉛二次電池が得られ、その実用的
価値はきわめて大きい。
(g) Effects of the invention According to the invention, by increasing the surface distance between the two electrodes, it is possible to suppress internal short circuits caused by the growth of dendritic zinc. A battery is obtained, and its practical value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来電池の一部破断せる斜視図、第2
図は同拡大部分断面図、第3図は本考案による電
池の一実施例を示す一部破断せる斜視図、第4図
は同拡大部分断面図、第5図は本考案電池Aと従
来電池Bのサイクル特性比較図、第6図は従来電
池における樹枝状亜鉛の生長経路を示す説明図、
第7図は本考案電池における樹枝状亜鉛の生長経
路を示す説明図である。 10……正極、30……亜鉛極、20……第1
セパレータ、40……第2セパレータ、50……
第3セパレータ、60……多重層セパレータ。
Figure 1 is a partially cutaway perspective view of a conventional battery;
The figure is an enlarged partial sectional view of the same, FIG. 3 is a partially cutaway perspective view showing an embodiment of the battery according to the present invention, FIG. 4 is an enlarged partial sectional view of the same, and FIG. 5 is a battery A of the present invention and a conventional battery. Figure 6 is an explanatory diagram showing the growth path of dendritic zinc in conventional batteries.
FIG. 7 is an explanatory diagram showing the growth path of dendritic zinc in the battery of the present invention. 10... Positive electrode, 30... Zinc electrode, 20... First
Separator, 40...Second separator, 50...
Third separator, 60...Multilayer separator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 正極を包囲する筒状の第1セパレータと、負極
を包囲する筒状の第2セパレータと、該第1及び
第2セパレータ間に介在する第3セパレータと、
これらセパレータに保持され且遊離の電解液が存
在しない程度に制限された量の電解液とを備え、
前記第1及び第2セパレータは正極、亜鉛極及び
第3セパレータの夫々の上下端より突出している
ことを特徴とするアルカリ亜鉛二次電池。
a cylindrical first separator surrounding the positive electrode, a cylindrical second separator surrounding the negative electrode, and a third separator interposed between the first and second separators;
A limited amount of electrolyte is retained in these separators and there is no free electrolyte,
An alkaline zinc secondary battery, wherein the first and second separators protrude from upper and lower ends of the positive electrode, the zinc electrode, and the third separator, respectively.
JP1982018035U 1982-02-09 1982-02-09 alkaline zinc secondary battery Granted JPS58120564U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982018035U JPS58120564U (en) 1982-02-09 1982-02-09 alkaline zinc secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982018035U JPS58120564U (en) 1982-02-09 1982-02-09 alkaline zinc secondary battery

Publications (2)

Publication Number Publication Date
JPS58120564U JPS58120564U (en) 1983-08-17
JPS6333481Y2 true JPS6333481Y2 (en) 1988-09-06

Family

ID=30030306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982018035U Granted JPS58120564U (en) 1982-02-09 1982-02-09 alkaline zinc secondary battery

Country Status (1)

Country Link
JP (1) JPS58120564U (en)

Also Published As

Publication number Publication date
JPS58120564U (en) 1983-08-17

Similar Documents

Publication Publication Date Title
US4780379A (en) Multicell recombinant lead-acid battery with vibration resistant intercell connector
JP3239556B2 (en) Lead storage battery
KR20180034660A (en) Lead accumulator
JPH08171930A (en) Battery
JPS6333481Y2 (en)
US4436795A (en) Alkaline electric storage cells
JP3057691U (en) Storage battery
JPH0238372Y2 (en)
JPS6033572Y2 (en) Sealed alkaline storage battery
JP2604754Y2 (en) Lead storage battery
JPS58165245A (en) Lead storage battery
JPS60207261A (en) Sealed lead storage battery
JP2561124Y2 (en) Lead storage battery
JP2732371B2 (en) Method for manufacturing spiral electrode for lithium secondary battery
JPS5956353A (en) Organic electrolyte battery
JP4929524B2 (en) Control valve type lead acid battery
JPH08329922A (en) Sealed lead-acid battery
WO2020148834A1 (en) Lead storage battery
JPS6037662A (en) Zinc electrode
JPH0672154U (en) Lead acid battery
JPH0552028B2 (en)
RU1480692C (en) Storage cell
JP2969873B2 (en) Lead storage battery
JP2002367668A (en) Control valve type lead acid storage battery
JPH071732Y2 (en) Alkaline zinc secondary battery