JPS6333348Y2 - - Google Patents

Info

Publication number
JPS6333348Y2
JPS6333348Y2 JP9396781U JP9396781U JPS6333348Y2 JP S6333348 Y2 JPS6333348 Y2 JP S6333348Y2 JP 9396781 U JP9396781 U JP 9396781U JP 9396781 U JP9396781 U JP 9396781U JP S6333348 Y2 JPS6333348 Y2 JP S6333348Y2
Authority
JP
Japan
Prior art keywords
plate
heated
shaped
filament
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9396781U
Other languages
Japanese (ja)
Other versions
JPS5819486U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9396781U priority Critical patent/JPS5819486U/en
Publication of JPS5819486U publication Critical patent/JPS5819486U/en
Application granted granted Critical
Publication of JPS6333348Y2 publication Critical patent/JPS6333348Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【考案の詳細な説明】 本考案は輻射線加熱装置、特にその熱線輻射源
である板状フイラメントの設置のし方に関するも
のである。
[Detailed Description of the Invention] The present invention relates to a radiation heating device, and particularly to a method for installing a plate-shaped filament that is a source of heat radiation.

第1図は、そのような装置のうち、板状フイラ
メントを熱線輻射源として使用する従来の結晶製
作用の輻射線加熱装置の加熱炉部分の基本構成を
示す横断面図であり、第2図は、同縦断面図であ
る。図において1および1′は各2つずつの焦点
F1,F2およびF1′,F2′を持つ回転楕円面鏡で、
F2,F2′を一致させF1,F2,F1′,F2′を一直線上
に配置している。
Among such devices, FIG. 1 is a cross-sectional view showing the basic configuration of the heating furnace portion of a conventional radiation heating device for crystal production that uses a plate-shaped filament as a heat ray radiation source, and FIG. is a longitudinal sectional view of the same. In the figure, 1 and 1' are two focal points each.
A spheroidal mirror with F 1 , F 2 and F 1 ′, F 2 ′,
F 2 and F 2 ′ are matched, and F 1 , F 2 , F 1 ′, and F 2 ′ are arranged on a straight line.

回転楕円面鏡1および1′は、回転楕円の回転
軸F1−F2,F2′−F1′に垂直でF2,F2′を含む平面
で切断した釣鐘型の反射面から成つている。2お
よび2′は熱線輻射源となるハロゲンランプ等々
のほぼ板状に巻いたフイラメントであり回転楕円
面鏡1および1′の焦点F1およびF1′上に位置する
ように設置している。被加熱物として、結晶素棒
3および種結晶4を各々の軸が一致するように鉛
直に設置し、結晶素棒3の端面と種結晶4の端面
との接合部を上記の回転楕円面鏡1および1′の
焦点F2,F2′に位置させることにより、上記接合
部を溶解して溶解域5を形成させ、種結晶4と結
晶素棒3を相対的に下方に徐々に移動させながら
種結晶4の上に新しい結晶を成長させる。
The spheroidal mirrors 1 and 1' are comprised of bell-shaped reflecting surfaces cut along a plane perpendicular to the rotational axes F 1 -F 2 , F 2 ′-F 1 ′ of the spheroid and including F 2 , F 2 ′. It's on. Reference numerals 2 and 2' are filaments of a halogen lamp or the like which serve as heat radiation sources and are wound into substantially plate shapes, and are placed so as to be located above the focal points F 1 and F 1 ' of the spheroidal mirrors 1 and 1'. As objects to be heated, a crystal rod 3 and a seed crystal 4 are installed vertically so that their respective axes coincide, and the joint between the end surface of the crystal rod 3 and the end surface of the seed crystal 4 is connected to the above-mentioned spheroidal mirror. 1 and 1' at the focal points F 2 and F 2 ', the above-mentioned junction is melted to form a melting zone 5, and the seed crystal 4 and the crystal rod 3 are gradually moved downward relative to each other. While growing a new crystal on top of the seed crystal 4.

ここで板状のフイラメント2,2′は、通常は
第3図に拡大して示したように素線6を板状に近
い直方体状に巻いた形状をしている。これを光の
放出の立場で考えると、板状フイラメントは最も
発光量の多いA面、2番目に発光量の多いB面、
最も発光量の少ないC面の3種類の面から構成さ
れている。
Here, the plate-shaped filaments 2, 2' usually have a shape in which strands 6 are wound into a rectangular parallelepiped shape similar to a plate shape, as shown in an enlarged view in FIG. Considering this from the perspective of light emission, the plate-shaped filament has the A side with the highest amount of light emission, the B side with the second highest amount of light emission, and the second side with the highest amount of light emission.
It is composed of three types of surfaces, the C-plane which emits the least amount of light.

一方、第1図及び第2図のような2つの回転楕
円面鏡を組合わせた構造では、2つの回転楕円面
鏡が交叉する円形の平面すなわち接合面が存在す
るが、フイラメントから出て接合面に直接向かう
光は、溶融域へは有効に集光されずほとんどが損
失される。一方、フイラメントから出て回転楕円
面鏡の回転軸F1−F2,F2′−F1′に垂直な方向に向
かう光は、効率よく溶融域へ集光される。
On the other hand, in a structure in which two spheroidal mirrors are combined as shown in Figures 1 and 2, there is a circular plane where the two spheroidal mirrors intersect, that is, a joint surface, but it comes out from the filament and joins. Light directed directly at the surface is not effectively focused onto the melting zone and is mostly lost. On the other hand, light emitted from the filament and directed in a direction perpendicular to the rotation axes F 1 -F 2 , F 2 '-F 1 ' of the spheroidal mirror is efficiently focused on the melting region.

ところで第1図、第2図に見るごとく、板状フ
イラメントを使用した従来の装置では、2番目に
発光量の大きなB面が損失の大きな接合面に向つ
ており、最も発光量の小さなC面が溶融域への照
射効率の良い方向に向いているため、全体の照射
効率が悪くなつていた。
By the way, as shown in Figures 1 and 2, in the conventional device using a plate-shaped filament, the B plane, which has the second largest amount of light emission, faces the bonding surface with the largest loss, and the C plane, which has the smallest amount of light emission, Since the irradiation efficiency of the molten region was high, the overall irradiation efficiency was poor.

このように従来の装置ではランプが輻射する熱
線の利用効率が悪く、高融点の材料を溶融可能に
し所望の結晶を育成する観点からはその持てる能
力を充分に発揮し得ないでいた。
As described above, conventional devices have poor efficiency in utilizing the heat rays radiated by the lamps, and have not been able to fully utilize their capabilities from the viewpoint of melting high melting point materials and growing desired crystals.

本考案は、このような従来の欠点を解決し、同
一の消費電力でより高融点の材料の溶融を可能に
するように板状フイラメントを設置した輻射線加
熱装置を提供するものであり、その特徴は板状フ
イラメントのC面を被加熱物に対面させて設置す
ることにある。以下図面に従つて説明する。
The present invention solves these conventional drawbacks and provides a radiation heating device equipped with a plate-shaped filament so that materials with higher melting points can be melted with the same power consumption. The feature is that the C side of the plate-shaped filament is placed facing the object to be heated. This will be explained below with reference to the drawings.

第4図は、本考案の一実施例についてその横断
面図を、さらに、第5図は同縦断面図を示したも
のである。
FIG. 4 shows a cross-sectional view of an embodiment of the present invention, and FIG. 5 shows a vertical cross-sectional view thereof.

第4図、第5図において11と11′は、それ
ぞれ2つの焦点F1″,F1とF2″,F2を持つ回
転楕円面鏡である。12はフイラメント、13は
結晶素棒、14は種結晶、15は溶融域を示す。
In FIGS. 4 and 5, 11 and 11' are spheroidal mirrors each having two focal points F 1 ″, F 1 and F 2 ″, F 2 . 12 is a filament, 13 is a crystal rod, 14 is a seed crystal, and 15 is a melting zone.

第1図、第2図に示した従来の形のものとは、
フイラメントの取付方向が90゜異なつた構造とな
つている。
The conventional shape shown in Figures 1 and 2 is
The filament installation direction is 90° different.

すなわち、第1図、第2図に示した従来の装置
では、第3図に示した板状フイラメントのB面が
接合面に向つていたのに対し、第4図及び第5図
の本考案の実施例では最も発光量の少ないC面が
損失の大きな接合面に向つており、発光量の多い
A面、B面が、照射効率の良い方向に向けてあ
る。この結果、溶融域へ照射する光の効率は従来
のものより約5%も増加することになり、より高
触点の材料を溶融することが可能となつた。本考
案の輻射線加熱装置は、従来の装置では容易に溶
融できなかつた2000℃を超える材料においても単
結晶の成長ができるようになつた。さらに溶融域
へ照射する光の円周方向の光量分布もその変化量
((最大光量密度−最小光量密度)÷平均光量密度)
にして従来のものより10〜50%改善され、より均
一な加熱が可能となり、良質の結晶を成長するこ
とができるようになつた。
That is, in the conventional device shown in FIGS. 1 and 2, the B side of the plate-shaped filament shown in FIG. 3 faced the bonding surface, whereas in the conventional device shown in FIGS. In the proposed embodiment, the C-plane, which emits the least amount of light, faces the bonding surface with the greatest loss, and the A-plane and B-plane, which emit the most amount of light, face the direction with the highest irradiation efficiency. As a result, the efficiency of light irradiated to the melting region is increased by about 5% compared to the conventional method, making it possible to melt materials with higher contact points. The radiation heating device of the present invention can now grow single crystals of materials at temperatures exceeding 2000°C, which cannot be easily melted using conventional devices. Furthermore, the amount of change in the light intensity distribution in the circumferential direction of the light irradiated to the melting area ((maximum light intensity density - minimum light intensity density) ÷ average light intensity density)
This is a 10 to 50% improvement over conventional methods, allowing for more uniform heating and the growth of high-quality crystals.

このように本考案の実施によれば溶融域へ照射
する光の効率を約5%も増加させることができ、
同一電力でより高融点の材料の溶融が可能とな
り、さらには、より均一な加熱が可能となるな
ど、技術の限界を拡大する卓抜した効果を発揮し
た。
In this way, by implementing the present invention, it is possible to increase the efficiency of light irradiated to the melting region by about 5%,
It demonstrated outstanding effects that expanded the limits of technology, making it possible to melt materials with higher melting points with the same amount of electricity, and also to achieve more uniform heating.

本考案の必須条件は板状フイラメントのC面を
被加熱物に対面させるように設置することである
が、更にA面を第4図、第5図のように結晶素棒
のF1″,F1で構成される面に平行に配置するこ
とは、最も発光量の多いA面から出た光の多くは
溶融域の円柱状の表面にほぼ垂直な方向に入射す
るようになるので、最も効率の高い配置方法であ
る。
The essential condition of the present invention is to install the plate-shaped filament so that the C side faces the object to be heated, and in addition, the A side is placed at the F 1 ″ of the crystal rod as shown in Figures 4 and 5. By arranging the plane parallel to the plane consisting of F 1 , most of the light emitted from the A plane, which has the largest amount of light emission, will be incident in a direction almost perpendicular to the cylindrical surface of the melting zone. This is a highly efficient arrangement method.

以上、本考案の典型的な実施例として、回転楕
円面鏡を2つ対向配置した型式のもので説明して
きたが、これは説明の便宜であり本考案の適用範
囲をこれに限定するものではないし、その用途も
単結晶育成成長に限らず単に加熱するといつたも
のでもよいことは当然である。
The above description has been based on a model in which two spheroidal mirrors are arranged facing each other as a typical embodiment of the present invention, but this is for the convenience of explanation and is not intended to limit the scope of application of the present invention. Of course, its use is not limited to single crystal growth, but may also be used for simple heating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図に、従来の結晶製作用の輻射線
加熱装置の横断面図および縦断面図を示す図で、
1および1′は焦点F1,F2およびF1′,F2′をもつ
回転楕円面鏡、2は、板状フイラメント、3は結
晶素棒、4は種結晶、5は溶融域である。第3図
は板状フイラメントの拡大図であり、素線6を板
状に近い直方体状に巻いた状態を示す図である。 第4図、第5図は本考案の一実施例を示す図
で、11および11′は焦点F1″,F2″およびF1
,F2をもつ回転楕円面鏡、12は板状フイ
ラメント、13は結晶素棒、14は種結晶、15
は溶融域である。
FIG. 1 and FIG. 2 are diagrams showing a cross-sectional view and a vertical cross-sectional view of a conventional radiation heating device for crystal production.
1 and 1' are spheroidal mirrors with focal points F 1 , F 2 and F 1 ', F 2 ', 2 is a plate-shaped filament, 3 is a crystal rod, 4 is a seed crystal, and 5 is a melting zone. . FIG. 3 is an enlarged view of the plate-shaped filament, showing a state in which the strands 6 are wound into a rectangular parallelepiped shape close to a plate shape. 4 and 5 are diagrams showing an embodiment of the present invention, in which 11 and 11' are focal points F 1 '', F 2 '' and F 1
, F 2 , 12 is a plate filament, 13 is a crystal rod, 14 is a seed crystal, 15
is the melting region.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 回転楕円面鏡の一方の実効焦点上に板状フイラ
メントを設け、他方の焦点を一致させて棒状被加
熱物を置き加熱する輻射線加熱装置において、上
記板状フイラメントと上記棒状被加熱物とを一平
面内に配置し、しかも上記板状フイラメントの最
も光放出面積の小さい面を上記回転楕円面鏡の回
転軸と垂直にしかも棒状被加熱物と対面するよう
に設置し、さらに上記板状フイラメントの最も光
放出面積の大きい面を棒状被加熱物で構成される
前記平面に平行に配置することを特徴とした輻射
線加熱装置。
A radiation heating device in which a plate-shaped filament is provided on one effective focal point of a spheroidal mirror, and a rod-shaped object to be heated is placed and heated with the other focus aligned, wherein the plate-shaped filament and the rod-shaped object to be heated are placed and heated. The plate-shaped filament is arranged in one plane, and the surface of the plate-shaped filament with the smallest light emitting area is perpendicular to the rotation axis of the spheroidal mirror and faces the rod-shaped object to be heated. A radiation heating device characterized in that a surface having the largest light emitting area is arranged parallel to the plane constituted by the rod-shaped object to be heated.
JP9396781U 1981-06-25 1981-06-25 Radiation heating device Granted JPS5819486U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9396781U JPS5819486U (en) 1981-06-25 1981-06-25 Radiation heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9396781U JPS5819486U (en) 1981-06-25 1981-06-25 Radiation heating device

Publications (2)

Publication Number Publication Date
JPS5819486U JPS5819486U (en) 1983-02-05
JPS6333348Y2 true JPS6333348Y2 (en) 1988-09-06

Family

ID=29888922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9396781U Granted JPS5819486U (en) 1981-06-25 1981-06-25 Radiation heating device

Country Status (1)

Country Link
JP (1) JPS5819486U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE518582C2 (en) * 2000-02-18 2002-10-29 Kanthal Ab Heating furnace in which heat is transmitted by radiation

Also Published As

Publication number Publication date
JPS5819486U (en) 1983-02-05

Similar Documents

Publication Publication Date Title
JP2596709B2 (en) Illumination light source device using semiconductor laser element
CN205640631U (en) Car passing lamp lighting components and car passing lamp
EP0675377B1 (en) A light collector
JPH03138610A (en) Focus type light source and method thereof
JPS6333348Y2 (en)
US6744187B1 (en) Lamp assembly with internal reflector
CN206377506U (en) A kind of Non-polarized lamp lampshade with heat sinking function
JP3218945U (en) Full glass cover type wide-angle light emitting LED bulb
CN102840544A (en) Light distribution lens and LED (Light Emitting Diode) streetlamp
JPH0787042B2 (en) Vehicular lamp reflector
JPS59102332A (en) Plant culturing device
CN104948947B (en) The low heating high-powered LED lamp of high efficiency
KR101000648B1 (en) Unit for plant cultivation
JP2005159149A (en) High luminance led emission part
CN1007562B (en) Electric incandescent lamp
US2063153A (en) Decorative lighting device
CN211821861U (en) Light beam lamp with adjustable focal length
CN213272229U (en) Projecting lamp of adjustable pattern effect of intelligence
KR100992893B1 (en) Asymmetric indirect lighting collimators
JP4122881B2 (en) Lighting device
CN207303040U (en) A kind of new and effective infrared ray bulb
CN208804491U (en) Glare light electric torch
CN205979622U (en) Medical treatment compound lens for shadowless lamp
JPS62225851A (en) Extremely high temperature convergent part device in solar furnace
JP4122882B2 (en) Lighting device