JPS6333287B2 - - Google Patents

Info

Publication number
JPS6333287B2
JPS6333287B2 JP54150962A JP15096279A JPS6333287B2 JP S6333287 B2 JPS6333287 B2 JP S6333287B2 JP 54150962 A JP54150962 A JP 54150962A JP 15096279 A JP15096279 A JP 15096279A JP S6333287 B2 JPS6333287 B2 JP S6333287B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
metal thin
present
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54150962A
Other languages
Japanese (ja)
Other versions
JPS5673412A (en
Inventor
Saburo Ishibashi
Kazuo Ooya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP15096279A priority Critical patent/JPS5673412A/en
Publication of JPS5673412A publication Critical patent/JPS5673412A/en
Publication of JPS6333287B2 publication Critical patent/JPS6333287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気記録媒体に関し、更に詳しくは、
金属薄膜形の磁気記録媒体、例えば磁気テープ、
磁気ドラム、磁気デイスク、磁気シート等の、特
に機械的強度と電磁変換特性におけるS/N比と
の改良に関する。 現在実用化されている磁気記録媒体の大勢は、
塗布形のものが主である。この塗布形の磁気記録
媒体は、針状r−Fe2O3、Coドープ型r−
Fe2O3、あるいはFe3O4粉体、そして最近では
Fe、Fe−Co等の合金粉を、有機物質の結合剤中
に混合分散して、有機物フイルム等の基材上に塗
布、乾燥してなるものである。 しかし、近年、磁気記録媒体の高記録密度化の
要請に沿い、金属薄膜形の磁気記録媒体の開発研
究が盛んに行われている。この金属薄膜形の磁気
記録媒体は、真空蒸着、スパツタ、マグネトロン
高速スパツタ、イオンプレーテイング等の蒸着
や、電気メツキ、無電解メツキ等の鍍金により、
非磁性の基材上に、強磁性金属薄膜磁性層を形成
してなるものである。このような金属薄膜形の磁
気記録媒体は、その記録密度が向上するだけでな
く、残留磁気特性も大きく、しかも磁性層の厚み
が薄いため電磁変換特性における厚み損失も低減
する等の種々のすぐれた特性を兼ね具えており、
将来の磁気記録媒体の主流となると考えられてい
るものである。 しかしながら、現段階では残念ながら、この分
野での実用化研究の蓄積が末だ不十分であること
に起因して、このような金属薄膜形磁気記録媒体
は、その機械的強度が十分でなく、このため、磁
気ヘツドと接触走行せしめて使用するに際し、摩
耗強度が十分大きくなく、耐摩耗性が不十分であ
り、その結果、寿命が短かく、又その長期使用に
従い、再生出力が大幅に減少し、実用に耐えるに
は至つていない。又、電磁変換特性におけるS/
N比も悪く、この点でも実用上不十分である。 本発明は、このような実状に鑑みなされたもの
であつて、その機械的強度と、S/N比とが格段
とすぐれた金属薄膜形の磁気記録媒体を提供する
ことを主たる目的とする。 本発明者は、このような目的につき鋭意研究を
行つた結果、金属薄膜磁性層に、Biを添加含有
せしめたとき、このような目的が実現することを
見出し、本発明をなすに至つたものである。 すなわち本発明は、金属薄膜磁性層を有する磁
気記録媒体において、Coを含有する金属薄膜磁
性層に、Biを含有せしめたことにある。 本発明において、Biを含有せしめる金属薄膜
磁性層としては、磁気特性の点から、Coを含む
ものとされ、特に、Co、Co−Fe、Co−Ni、Co
−Ni−Feを主体に構成される場合により好まし
い結果を得る。なお、このような鉄族金属からな
る磁性層には、概ね重量%以下の範囲で、V、
Si、Cu、Zn、P、Sb等が含まれていてもよい。
又、このような金属薄膜磁性層は、基材上に、公
知の場合と同様1μm以下程度の薄膜として形成
せしめればよい。本発明において、このような組
成からなる金属薄膜磁性層中には、Biが添加含
有せしめられる。Biの添加量は、用いる磁気記
録媒体の用途および機能に応じ適宜変更可能であ
るが、一般に、0.1〜2.5重量%が最適範囲であ
る。通常の場合、0.1重量%未満では耐摩耗性の
向上に実効がなく、2.5重量%より大では、抗磁
力の低下や最大飽和磁化の低下を招くからであ
る。 本発明の磁気記録媒体は、以上のようにCoお
よびBiを含有する金属薄膜磁性層を基材上に有
するものである。この場合、基材としては、非磁
性のものを用いればよく、磁気テープ、磁気ドラ
ム、磁気デイスク、磁気シート等の用いる用途に
従い、公知の種々の材料および形状からなるもの
を用いればよい。従つて、ポリエステル、ポリイ
ミド等の有機高分子材料や、アルミニウム、亜鉛
等の非磁性金属材料等のフイルム、ドラム、シー
ト等はいずれも使用可能である。 このような本発明の磁気記録媒体は、通常以下
のようにして製造される。先ず、Coを含有する
所定の金属薄膜磁性層用の強磁性合金に、Biを
含有せしめ、磁性層用合金母材料を作成する。次
いで、所定の基材を用意し、この磁性層用合金母
材料を用い、公知のRFスパツタ、DCスパツタ、
マグネトロン高速スパツタ、イオンプレーテイン
グ、平行蒸着、斜め蒸着法等により、磁性層薄膜
を基材上に形成すればよい。 本発明によれば、金属薄膜磁性層がCoおよび
Biを含有するので、磁気記録媒体として最とも
重要であると考えられる機械的強度、すなわち耐
摩耗強度が、従来のものと比べ、格段と向上し、
その耐摩耗性が1.5〜2倍程度向上するものであ
り、又電磁変換特性におけるS/N比も格段と向
上するものである。 以下、本発明を実施例により更に詳細に説明す
る。 実施例 Co80wt%とNi20wt%とからなる組成の合金に
Biを2wt%添加した試料母合金を調製し、蒸発用
母材とした。次いで、この蒸発用母材を用い、真
空蒸着法により、5μm厚のポリエチレンテレフ
タレートフイルム上に被膜形成を行つた。この場
合、ポリエチレンテレフタレートフイルムは連続
的に走行せしめ、蒸発源からの蒸気流のフイルム
入射角を75゜とし、いわゆる斜め蒸着を行つた。
一方、真空蒸着の条件としては、間接抵抗加熱方
式を用い、40mmφのアルミ製ルツボ内にタングス
テン巻線を施し、更にこの巻線の内側にアルミ製
容器を配し、巻線に5KWの交流電流を通じ、2.0
×10-6Torr台の真空度で蒸発を行つた。 このようにして、膜厚1900Åの金属薄膜を上記
フイルム上に形成して、本発明の磁気テープAを
作成した。この磁気テープAの磁性層金属薄膜の
組成を化学分析により定量したところ、重量比
で、Co78−Ni20−Ei2の組成を有することが確認
された。 これに対し、比較のため、試料母合金にBiを
添加含有せしめずに、上記と全く同様に斜め真空
蒸着を行い、重量比で、Co80−Ni20で構成され
る、2000Å厚の金属磁性層を上記ポリエチレンテ
レフタレートフイルム上に有する磁気テープBを
作成した。 このように作成した本発明および比較用の磁気
テープA、Bにつき、それぞれの静磁気特性、す
なわち抗磁力Hc、最大磁束密度Bm、および残
留磁束密度Brと最大磁束密度Bmとの比Br/Bm
を測定した。結果を下記表1に示す。
The present invention relates to magnetic recording media, and more specifically,
Metal thin film type magnetic recording media, such as magnetic tape,
The present invention relates to improving the mechanical strength and S/N ratio of electromagnetic conversion characteristics of magnetic drums, magnetic disks, magnetic sheets, etc. Most of the magnetic recording media currently in use are
The main types are paint-on type. This coating-type magnetic recording medium consists of acicular r-Fe 2 O 3 and Co-doped r-
Fe 2 O 3 or Fe 3 O 4 powder, and recently
It is made by mixing and dispersing alloy powders such as Fe and Fe-Co in an organic binder, applying the mixture onto a base material such as an organic film, and drying the mixture. However, in recent years, in line with the demand for higher recording densities in magnetic recording media, research and development on metal thin film magnetic recording media has been actively conducted. This metal thin film type magnetic recording medium is produced by vacuum deposition, sputtering, magnetron high speed sputtering, ion plating, etc., or plating such as electroplating, electroless plating, etc.
It is made by forming a ferromagnetic metal thin film magnetic layer on a nonmagnetic base material. Such metal thin film magnetic recording media not only have improved recording density, but also have a large residual magnetic property, and because the magnetic layer is thin, they also have various advantages such as reduced thickness loss in electromagnetic conversion properties. It has the characteristics of
This is considered to be the mainstream of future magnetic recording media. However, at this stage, unfortunately, due to the insufficient accumulation of practical research in this field, such metal thin film magnetic recording media do not have sufficient mechanical strength. For this reason, when used in contact with a magnetic head, the abrasion strength is not large enough and the abrasion resistance is insufficient.As a result, the life is short, and the reproduction output decreases significantly with long-term use. However, it has not reached the point where it can withstand practical use. Also, S/ in electromagnetic conversion characteristics
The N ratio is also poor, which is also insufficient for practical use. The present invention has been made in view of the above-mentioned circumstances, and its main object is to provide a metal thin film type magnetic recording medium that has significantly superior mechanical strength and signal-to-noise ratio. As a result of intensive research into the above object, the present inventor discovered that the above object can be achieved when Bi is added to the metal thin film magnetic layer, and the present invention has been completed. It is. That is, the present invention resides in that, in a magnetic recording medium having a metal thin film magnetic layer, the metal thin film magnetic layer containing Co contains Bi. In the present invention, the metal thin film magnetic layer containing Bi contains Co from the viewpoint of magnetic properties, and in particular Co, Co-Fe, Co-Ni, Co
- More preferable results are obtained when the composition is mainly composed of Ni-Fe. Incidentally, the magnetic layer made of such an iron group metal contains V, V, within a range of about % by weight or less.
It may contain Si, Cu, Zn, P, Sb, etc.
Further, such a metal thin film magnetic layer may be formed as a thin film of about 1 .mu.m or less on a base material, as in the known case. In the present invention, Bi is added to the metal thin film magnetic layer having such a composition. The amount of Bi added can be changed as appropriate depending on the use and function of the magnetic recording medium used, but the optimum range is generally 0.1 to 2.5% by weight. Usually, if it is less than 0.1% by weight, it is not effective in improving wear resistance, and if it is more than 2.5% by weight, it causes a decrease in coercive force and a decrease in maximum saturation magnetization. As described above, the magnetic recording medium of the present invention has a metal thin film magnetic layer containing Co and Bi on a base material. In this case, the base material may be non-magnetic, and may be made of various known materials and shapes depending on the intended use, such as magnetic tape, magnetic drum, magnetic disk, magnetic sheet, etc. Therefore, films, drums, sheets, etc. made of organic polymer materials such as polyester and polyimide, and non-magnetic metal materials such as aluminum and zinc can all be used. Such a magnetic recording medium of the present invention is usually manufactured as follows. First, Bi is added to a predetermined Co-containing ferromagnetic alloy for the thin metal film magnetic layer to create an alloy base material for the magnetic layer. Next, a predetermined base material is prepared, and using this alloy base material for the magnetic layer, known RF sputtering, DC sputtering,
The magnetic layer thin film may be formed on the base material by magnetron high speed sputtering, ion plating, parallel vapor deposition, oblique vapor deposition, or the like. According to the present invention, the metal thin film magnetic layer contains Co and
Because it contains Bi, the mechanical strength, which is considered the most important factor for magnetic recording media, that is, the abrasion resistance, is significantly improved compared to conventional ones.
The wear resistance is improved by about 1.5 to 2 times, and the S/N ratio in electromagnetic conversion characteristics is also significantly improved. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example An alloy with a composition of 80wt% Co and 20wt% Ni
A sample master alloy containing 2wt% Bi was prepared and used as a base material for evaporation. Next, using this evaporation base material, a film was formed on a 5 μm thick polyethylene terephthalate film by vacuum evaporation. In this case, the polyethylene terephthalate film was run continuously, and the angle of incidence of the vapor flow from the evaporation source on the film was set at 75° to perform so-called oblique evaporation.
On the other hand, the conditions for vacuum evaporation were as follows: an indirect resistance heating method was used, a tungsten wire was wound inside a 40 mmφ aluminum crucible, an aluminum container was placed inside the winding, and an alternating current of 5 KW was applied to the winding. through 2.0
Evaporation was performed at a vacuum level of ×10 -6 Torr. In this way, a metal thin film with a thickness of 1900 Å was formed on the above film to produce magnetic tape A of the present invention. When the composition of the magnetic layer metal thin film of this magnetic tape A was determined by chemical analysis, it was confirmed that it had a composition of Co78 - Ni20 - Ei2 in terms of weight ratio. On the other hand, for comparison, diagonal vacuum deposition was performed in exactly the same manner as above without adding Bi to the sample mother alloy, and a 2000 Å thick metal magnetic material composed of Co 80 - Ni 20 in terms of weight ratio was obtained. A magnetic tape B was prepared having a layer on the polyethylene terephthalate film described above. For the magnetic tapes A and B of the present invention and comparison produced in this way, the respective magnetostatic properties, namely, the coercive force Hc, the maximum magnetic flux density Bm, and the ratio Br/Bm of the residual magnetic flux density Br and the maximum magnetic flux density Bm
was measured. The results are shown in Table 1 below.

【表】 次に、これら2種の磁気テープA、Bを用い、
耐摩耗試験を行つた。すなわち、記録再生ヘツド
としてフエライトヘツドを用い、磁気テープに20
gの荷重をかけ、4.7cm/secの走行速度でフエラ
イトヘツドと接触走行させ、記録周波数1KHz、
試験温度60℃にて、繰返し走行回数に対する再生
出力の変化率を測定した。結果を第1図に示す。
第1図中、曲線aが本発明の磁気テープA、曲線
bがBiを含まない磁性層を有する比較用の磁気
テープBにおける結果である。 更に、これとは別に、上記蒸発用母材における
Co80−Ni20合金に対するBi添加量を種々変化さ
せ、上記と同様にして、各種磁気テープを作成し
た。このように金属薄膜磁性層中のBi添加量が
異なる磁気テープにつき、電磁変換特性における
S/N比を測定した。測定はJIS規格(磁気録音
テープ試験法)に基づき、規定バイアス電流入出
レベルで、1KHzの信号を録音し、これを再生し
て1KHzの信号をとりだし、無信号レベルとの差
を求めS/N比を得た。このようにして得た各磁
気テープのS/N比につき、それとBi無添加の
磁気テープのS/N比との差を求め、横軸に蒸発
用母材に対するBi添加料(wt%)を、又縦軸に
このS/N比の差をとり、第2図に示される結果
を得た。 これらの結果から、Biを磁性層中に含有する
本発明の磁気テープAは、比較用磁気テープBと
比較して、その静磁気特性はほぼ同等であるが、
摩耗強度が格段と向上し、その耐摩耗性が2倍程
度改善され、しかも巾広いBi添加量範囲におい
てS/N比が向上していることがわかる。
[Table] Next, using these two types of magnetic tapes A and B,
A wear resistance test was conducted. In other words, a ferrite head is used as the recording/reproducing head, and the magnetic tape is
A load of 1.5 g was applied, the head was run in contact with a ferrite head at a running speed of 4.7 cm/sec, and the recording frequency was 1 KHz.
At a test temperature of 60°C, the rate of change in reproduction output with respect to the number of repeated runs was measured. The results are shown in Figure 1.
In FIG. 1, curve a shows the results for magnetic tape A of the present invention, and curve b shows the results for comparative magnetic tape B having a magnetic layer that does not contain Bi. Furthermore, apart from this, in the above evaporation base material
Various magnetic tapes were created in the same manner as above, with various amounts of Bi added to the Co 80 -Ni 20 alloy. The S/N ratio in the electromagnetic conversion characteristics was measured for magnetic tapes having different amounts of Bi added in the metal thin film magnetic layer. The measurement is based on the JIS standard (Magnetic Recording Tape Test Method), recording a 1KHz signal at the specified bias current input/output level, playing it back to extract the 1KHz signal, and finding the difference from the no signal level and calculating the S/N. I got the ratio. For the S/N ratio of each magnetic tape obtained in this way, the difference between it and the S/N ratio of the magnetic tape without Bi added is determined, and the horizontal axis shows the Bi additive (wt%) relative to the evaporation base material. , and the difference in S/N ratio was plotted on the vertical axis, and the results shown in FIG. 2 were obtained. From these results, the magnetic tape A of the present invention containing Bi in the magnetic layer has almost the same magnetostatic properties as the comparative magnetic tape B, but
It can be seen that the wear strength is significantly improved, the wear resistance is improved by about twice as much, and the S/N ratio is improved over a wide range of Bi addition amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例における、本発明の
磁気記録媒体(曲線a)と比較用の磁気記録媒体
(曲線b)との、走行回数に対する再生出力変化
率の変化を示す線図である。又、第2図は本発明
の実施例における、蒸発用母材に対するBi添加
量を変えて作成した磁気記録媒体のS/N比を測
定し、Bi無添加の場合との差を求め、これをBi
添加量に対しプロツトした線図である。
FIG. 1 is a diagram showing changes in reproduction output change rate with respect to the number of runs of a magnetic recording medium of the present invention (curve a) and a magnetic recording medium for comparison (curve b) in an example of the present invention. be. Furthermore, Figure 2 shows the S/N ratio of magnetic recording media prepared by changing the amount of Bi added to the evaporation base material in an example of the present invention, and the difference from that of the case without Bi added was calculated. Bi
It is a diagram plotted against the amount added.

Claims (1)

【特許請求の範囲】[Claims] 1 金属薄膜磁性層を有する磁気記録媒体におい
て、上記金属薄膜磁性層がCoおよびBiを含有す
ることを特徴とする磁気記録媒体。
1. A magnetic recording medium having a metal thin film magnetic layer, wherein the metal thin film magnetic layer contains Co and Bi.
JP15096279A 1979-11-20 1979-11-20 Magnetic recording medium Granted JPS5673412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15096279A JPS5673412A (en) 1979-11-20 1979-11-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15096279A JPS5673412A (en) 1979-11-20 1979-11-20 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5673412A JPS5673412A (en) 1981-06-18
JPS6333287B2 true JPS6333287B2 (en) 1988-07-05

Family

ID=15508232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15096279A Granted JPS5673412A (en) 1979-11-20 1979-11-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5673412A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212118A (en) * 1982-06-04 1983-12-09 Hitachi Condenser Co Ltd Manufacture of magnetic recording medium
JPS58212116A (en) * 1982-06-04 1983-12-09 Hitachi Condenser Co Ltd Manufacture of magnetic recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942632A (en) * 1972-08-28 1974-04-22
JPS50145207A (en) * 1974-05-13 1975-11-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942632A (en) * 1972-08-28 1974-04-22
JPS50145207A (en) * 1974-05-13 1975-11-21

Also Published As

Publication number Publication date
JPS5673412A (en) 1981-06-18

Similar Documents

Publication Publication Date Title
US4442159A (en) Magnetic recording medium
JPH0546014B2 (en)
US5453886A (en) Digital recording method using a specified magnetic recording medium
GB2148944A (en) Magnetic recording medium
JPH0262890B2 (en)
GB2175013A (en) Perpendicular magnetic recording medium
JP2851898B2 (en) Lubricants and magnetic recording media
JPS6333287B2 (en)
JPH0152818B2 (en)
JPS6333286B2 (en)
JPH0546013B2 (en)
US5082750A (en) Magnetic recording medium of thin metal film type
JP2552546B2 (en) Metal thin film magnetic recording medium
EP0213346B1 (en) Magnetic recording medium
JPH0576703B2 (en)
JPH0766511B2 (en) Magnetic recording medium
JP2527616B2 (en) Metal thin film magnetic recording medium
JPH0315245B2 (en)
JPH03162710A (en) Magnetic recording medium
JP2913684B2 (en) Magnetic recording media
JPH056327B2 (en)
JP3009943B2 (en) Magnetic recording media for digital recording
JP2527617B2 (en) Metal thin film magnetic recording medium
JPH025003B2 (en)
KR960000822B1 (en) A magnetic recording medium