JPS633322B2 - - Google Patents

Info

Publication number
JPS633322B2
JPS633322B2 JP51101645A JP10164576A JPS633322B2 JP S633322 B2 JPS633322 B2 JP S633322B2 JP 51101645 A JP51101645 A JP 51101645A JP 10164576 A JP10164576 A JP 10164576A JP S633322 B2 JPS633322 B2 JP S633322B2
Authority
JP
Japan
Prior art keywords
vibration
acceleration
signal
input signal
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51101645A
Other languages
Japanese (ja)
Other versions
JPS5327445A (en
Inventor
Kenji Mori
Hirotake Hirai
Isao Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10164576A priority Critical patent/JPS5327445A/en
Publication of JPS5327445A publication Critical patent/JPS5327445A/en
Publication of JPS633322B2 publication Critical patent/JPS633322B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 本発明は、振動台の加速度波形の歪を改善し得
る振動試験機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vibration testing machine capable of improving distortion of an acceleration waveform of a vibration table.

第1図は、所望の振動台変位に相当する入力信
号を与えて振動台の変位を制御するための従来の
変位制御系振動試験機の概略構成を示すもので、
図において1は変位入力信号eiを与える入力信号
発生器、2は入力信号eiおよび各フイードバツク
信号を加減算する演算器、3はサーボ増幅器、4
はサーボ弁およびアクチユエータからなる加振
器、5は振動試験機本体で、該本体5に含まれる
振動台には検出器6が取り付けられている。この
検出器6は、振動台の変位y、速度y¨および加速
度y¨を信号として取り出すものである。ここでは
振動台の本来の変位フイードバツクの他に、安定
性および応答性の改善のために、速度フイードバ
ツクおよび加速度フイードバツクをとつている。
7,8,9はそれぞれ変位、速度、加速度のフイ
ードバツク量を調整する調節器である。
FIG. 1 shows a schematic configuration of a conventional displacement control type vibration testing machine for controlling the displacement of a shaking table by applying an input signal corresponding to a desired displacement of the shaking table.
In the figure, 1 is an input signal generator that provides a displacement input signal e i , 2 is an arithmetic unit that adds and subtracts the input signal e i and each feedback signal, 3 is a servo amplifier, and 4 is a servo amplifier.
5 is a vibration tester body, and a detector 6 is attached to a vibration table included in the body 5. This detector 6 extracts the displacement y, velocity y¨, and acceleration y¨ of the shaking table as signals. Here, in addition to the original displacement feedback of the shaking table, velocity feedback and acceleration feedback are taken to improve stability and responsiveness.
Numerals 7, 8, and 9 are regulators for adjusting the feedback amounts of displacement, velocity, and acceleration, respectively.

いま、変位入力信号eiとして正弦波を与えた場
合、サーボ増幅器3、加振器4、振動試験機本体
5の各要素が理想的な線形要素で、かつ摩擦等の
外乱がないとすると、振動台の加速度波形は歪の
ない正弦波となる。ところが、実際はサーボ弁の
非線形性あるいは振動台可動部の摩擦等のため
に、振動台の加速度波形は、第4図aに示すよう
に本来の正弦波から歪んだ波形となつて観測され
る。そしてこの加速度波形の歪は被試験物に入力
信号とは異なる振動を与えることになり、好まし
いものではない。
Now, when a sine wave is given as the displacement input signal e i , assuming that each element of the servo amplifier 3, exciter 4, and vibration tester main body 5 is an ideal linear element and there is no disturbance such as friction, The acceleration waveform of the shaking table becomes a sine wave without distortion. However, in reality, due to the nonlinearity of the servo valve or the friction of the movable part of the vibration table, the acceleration waveform of the vibration table is observed as a distorted waveform from the original sine wave, as shown in FIG. 4a. This distortion of the acceleration waveform gives the object under test a vibration different from that of the input signal, which is not desirable.

本発明は上記の点にかんがみ、振動試験機にお
ける振動台の加速度波形の歪を改善することを目
的とするものである。
In view of the above points, the present invention aims to improve the distortion of the acceleration waveform of a vibration table in a vibration testing machine.

本発明は、変位入力信号発生器からの変位入力
信号と振動台の変位、速度および加速度のフイー
ドバツク信号との偏差により、振動台を制御する
振動試験機において、前記変位入力信号発生器か
らの変位入力信号によつて振動台の応答を模擬す
る線形演算回路と、この線形演算回路からの信号
と振動台のフイードバツク信号との偏差信号を入
力側にフイードバツクする演算器とを備えたもの
である。
The present invention provides a vibration testing machine that controls a shaking table based on a deviation between a displacement input signal from a displacement input signal generator and feedback signals of displacement, velocity, and acceleration of the shaking table. It is equipped with a linear arithmetic circuit that simulates the response of the shaking table based on an input signal, and an arithmetic unit that feeds back a deviation signal between the signal from the linear arithmetic circuit and the feedback signal of the shaking table to the input side.

以下図面を参照して本発明の一実施例を説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第2図は、本発明の振動試験機の一実施例の概
略構成を示したものである。第2図において第1
図と同符号のものは同一部分である。10は入力
信号に応じて振動台の応答を模擬する線形演算回
路、11は振動台の加速度信号y¨から線形演算回
路10によつて得られる振動台の加速度に相当す
る信号y¨mを減算し加速度偏差信号を求める演算
器、12は前記加速度偏差信号のフイードバツク
量を調整する調節器である。調節器12によつて
調整された加速度偏差フイードバツク信号はその
他のフイードバツク信号と同様に演算器2によつ
て入力信号と減算されて、サーボ増幅器3に入力
されている。
FIG. 2 shows a schematic configuration of an embodiment of the vibration testing machine of the present invention. In Figure 2, the first
Components with the same reference numerals as those in the figure are the same parts. 10 is a linear calculation circuit that simulates the response of the shaking table according to an input signal; 11 is a subtraction signal y¨m corresponding to the acceleration of the shaking table obtained by the linear calculation circuit 10 from the acceleration signal y¨ of the shaking table; A computing unit 12 determines the acceleration deviation signal, and 12 is a regulator that adjusts the amount of feedback of the acceleration deviation signal. The acceleration deviation feedback signal adjusted by the adjuster 12 is subtracted from the input signal by the arithmetic unit 2 in the same manner as other feedback signals, and is input to the servo amplifier 3.

前記振動台の応答を模擬する線形演算回路10
の構成の一例を第3図に示す。本実施例では線形
アナログ演算回路を示している。第3図におい
て、13は加算器、14は積分器、15は符号変
換器、16はポテンシヨメータである。この回路
は、入力信号eiに対する出力変位信号ynの応答を
示す二次おくれ系の伝達関数、すなわち G(S)=Kωo 2/S2+2ζωoS+ωo 2 をアナログ回路に変換したものである。ここでK
はゲイン定数、ζは減衰係数、ωoは固有角周波
数を表わし、振動試験機の特性を二次おくれ系に
線形近似した場合に相当する値にそれぞれ設定し
てある。またポテンシヨメータ16にはそれぞれ
上記の係数の他に、適正なアナログ演算を行なう
ためのスケール変換係数が設定されている。
a linear arithmetic circuit 10 that simulates the response of the shaking table;
An example of the configuration is shown in FIG. This embodiment shows a linear analog calculation circuit. In FIG. 3, 13 is an adder, 14 is an integrator, 15 is a code converter, and 16 is a potentiometer. This circuit is a transfer function of a quadratic delay system that indicates the response of the output displacement signal y n to the input signal e i , that is, G (S) = Kω o 2 / S 2 + 2ζω o S + ω o 2 , which is converted into an analog circuit. It is. Here K
is a gain constant, ζ is a damping coefficient, and ω o is a natural angular frequency, each of which is set to a value corresponding to the case where the characteristics of the vibration tester are linearly approximated to a quadratic delay system. In addition to the above-mentioned coefficients, each potentiometer 16 is set with a scale conversion coefficient for performing appropriate analog calculations.

次に上述した本発明の一実施例の動作を説明す
る。線形演算回路10は線形アナログ回路であ
り、したがつて外乱も含まないので、入力信号に
対して歪のない理想的な加速度信号を出力するこ
とができる。いまこの線形演算回路をモデル系と
よぶことにする。このモデル系に対して、演算器
2、サーボ増幅器3、加振器4で表わされる実際
の振動試験機では、各要素の非線形性および摩擦
等の外乱のため、第4図aに示すように加速度波
形に歪が生じる。この実際の振動試験機を実際系
とよぶことにする。本発明は、この実際系の加速
度信号y¨からモデル系の加速度信号y¨nを減算し、
この偏差信号に適当な倍率をかけて実際の振動試
験機に負フイードバツクすることにより、実際系
の歪んだ加速度波形をモデル系の理想的な歪のな
い加速度波形に近づけ、前記加速度波形を改善す
ることができる。
Next, the operation of the embodiment of the present invention described above will be explained. The linear arithmetic circuit 10 is a linear analog circuit and therefore does not include any disturbance, so it can output an ideal acceleration signal without distortion with respect to the input signal. We will now refer to this linear arithmetic circuit as a model system. In contrast to this model system, in the actual vibration testing machine represented by the arithmetic unit 2, servo amplifier 3, and vibrator 4, due to the nonlinearity of each element and disturbances such as friction, as shown in Figure 4a, Distortion occurs in the acceleration waveform. This actual vibration testing machine will be referred to as the actual system. The present invention subtracts the acceleration signal y¨n of the model system from the acceleration signal y¨ of the actual system,
By multiplying this deviation signal by an appropriate multiplier and providing negative feedback to the actual vibration testing machine, the distorted acceleration waveform of the actual system is brought closer to the ideal undistorted acceleration waveform of the model system, and the acceleration waveform is improved. be able to.

次に本発明による加速度波形の改善結果を第4
図について説明する。
Next, the results of improving the acceleration waveform according to the present invention are shown in the fourth section.
The diagram will be explained.

第4図aは、正弦波入力に対する従来の振動試
験機の応答を、また第4図bは本発明の振動試験
機の応答を示したもので、上から振動台の変位波
形、速度波形、加速度波形を表わしている。この
第4図aでは、サーボ弁の非線形性および振動台
の摩擦等のために加速度波形が歪んでいる。それ
に対して、本発明においては第4図bから分かる
ように、加速度波形歪がよく改善されている。
Figure 4a shows the response of the conventional vibration testing machine to a sine wave input, and Figure 4b shows the response of the vibration testing machine of the present invention.From the top, the displacement waveform, velocity waveform, It represents the acceleration waveform. In FIG. 4a, the acceleration waveform is distorted due to nonlinearity of the servo valve, friction of the vibration table, and the like. In contrast, in the present invention, as can be seen from FIG. 4b, the acceleration waveform distortion is well improved.

上述の本発明の一実施例では、モデル系として
二次おくれ系を示したが、さらに高次の線形近似
形をモデル系として採用することによつて、実際
系の応答をよりよく近似させ、本発明の効果をさ
らに上げることができる。
In the embodiment of the present invention described above, a quadratic lag system is shown as the model system, but by adopting a higher-order linear approximation form as the model system, the response of the actual system can be better approximated. The effects of the present invention can be further enhanced.

ところで、上述の本発明の一実施例では、加速
度波形の歪を改善する効果について述べたが、モ
デル系の応答性および安定性を実際系より良く設
定した場合は、実際系の応答がモデル系の応答に
近づくことにより、実際系の応答性および安定性
を改善することができる。
By the way, in the embodiment of the present invention described above, the effect of improving the distortion of the acceleration waveform was described, but if the response and stability of the model system are set to be better than the actual system, the response of the actual system will be higher than that of the model system. By approaching the response of , the response and stability of the actual system can be improved.

以上詳述したように、本発明によれば、振動試
験機を構成する非線形要素によつて生じる加速度
波形の歪を改善し、実際の地震波に相当する加速
度波形を供試体に加えることができるので、その
試験性能の精度を向上させることができる。
As detailed above, according to the present invention, it is possible to improve the distortion of the acceleration waveform caused by the nonlinear elements constituting the vibration testing machine, and to apply an acceleration waveform corresponding to an actual seismic wave to the specimen. , the accuracy of its test performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の振動試験機の構成を示したブロ
ツク図、第2図は本発明による振動試験機の一実
施例の構成を示したブロツク図、第3図は本発明
の構成要素である線形演算回路の一実施例を示す
図、第4図は従来の振動試験機と本発明の振動試
験機との振動台の応答波形を示した図である。 1……入力信号発生器、2……演算器、3……
サーボ増幅器、4……加振器、5……振動試験機
本体、7……変位フイードバツク量調節器、8…
…速度フイードバツク量調節器、9……加速度フ
イードバツク量調節器、10……線形演算回路、
11……演算器、12……加速度偏差フイードバ
ツク量調節器。
Figure 1 is a block diagram showing the configuration of a conventional vibration testing machine, Figure 2 is a block diagram showing the configuration of an embodiment of the vibration testing machine according to the present invention, and Figure 3 is the constituent elements of the present invention. FIG. 4 is a diagram showing an example of a linear calculation circuit, and is a diagram showing response waveforms of the vibration tables of a conventional vibration tester and a vibration tester of the present invention. 1...Input signal generator, 2...Arithmetic unit, 3...
Servo amplifier, 4... Vibrator, 5... Vibration tester main body, 7... Displacement feedback amount adjuster, 8...
... Speed feedback amount adjuster, 9... Acceleration feedback amount adjuster, 10... Linear calculation circuit,
11...Arithmetic unit, 12...Acceleration deviation feedback amount adjuster.

Claims (1)

【特許請求の範囲】[Claims] 1 振動試験機本体と、その加振器と、変位入力
信号発生器と、振動台の変位、速度および加速度
のフイードバツク信号と変位入力信号発生器から
の変位入力信号との偏差を求める演算器と、この
演算器からの偏差信号を増幅して加振器に出力す
るサーボ増幅器とを備えた振動試験機において、
前記変位入力信号発生器から前記演算器に加えら
れる変位入力信号にもとづいて振動台の加速度に
相当する応答信号を模擬する線形演算回路と、こ
の線形演算回路で求めた応答信号とこれに対応す
る振動台の実際の加速度信号との偏差信号を求め
る演算器と、この演算器で求めた偏差信号を調節
して前記入力側の演算器にフイードバツクする調
節器とを備えたことを特徴とする振動試験機。
1. A vibration tester body, its exciter, a displacement input signal generator, and a computing unit that calculates the deviation between the feedback signals of displacement, velocity, and acceleration of the vibration table and the displacement input signal from the displacement input signal generator. In a vibration testing machine equipped with a servo amplifier that amplifies the deviation signal from this computing unit and outputs it to the vibrator,
a linear calculation circuit that simulates a response signal corresponding to the acceleration of the shaking table based on the displacement input signal applied to the calculation unit from the displacement input signal generator; and a response signal obtained by the linear calculation circuit and a corresponding response signal. A vibration device characterized by comprising: a computing unit that obtains a deviation signal from an actual acceleration signal of a vibration table; and a regulator that adjusts the deviation signal obtained by this computing unit and feeds it back to the input side computing unit. testing machine.
JP10164576A 1976-08-27 1976-08-27 Vibration tes ter Granted JPS5327445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10164576A JPS5327445A (en) 1976-08-27 1976-08-27 Vibration tes ter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10164576A JPS5327445A (en) 1976-08-27 1976-08-27 Vibration tes ter

Publications (2)

Publication Number Publication Date
JPS5327445A JPS5327445A (en) 1978-03-14
JPS633322B2 true JPS633322B2 (en) 1988-01-22

Family

ID=14306104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10164576A Granted JPS5327445A (en) 1976-08-27 1976-08-27 Vibration tes ter

Country Status (1)

Country Link
JP (1) JPS5327445A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102020A (en) * 1979-01-31 1980-08-04 Hitachi Ltd Input protection circuit for vibrating stand control unit
JPS5685464U (en) * 1979-12-05 1981-07-09
JPS583001A (en) * 1981-06-30 1983-01-08 Fujitsu Ltd Robot control system
JPS59124318A (en) * 1982-12-30 1984-07-18 Fujitsu Ltd Scanning system
JPS6027840A (en) * 1983-07-26 1985-02-12 Nippon Denso Co Ltd Shock tester

Also Published As

Publication number Publication date
JPS5327445A (en) 1978-03-14

Similar Documents

Publication Publication Date Title
Pereira et al. Adaptive input shaping for single-link flexible manipulators using an algebraic identification
US5176518A (en) Movement simulator
US5015934A (en) Apparatus and method for minimizing limit cycle using complementary filtering techniques
US5347204A (en) Position dependent rate dampening in any active hand controller
EP0563063B1 (en) Sinusoidal signal amplitude and phase control for an adaptive feedback control system
JP3184044B2 (en) Fine movement positioning control device
US2954514A (en) Servomechanism
JPH0133772B2 (en)
US4901624A (en) Hydraulic driving device
US2853667A (en) Electrical feedback control systems
US4334216A (en) Electronic device for monitoring the operation of a servo system including a hydraulic jack
JPS633322B2 (en)
JPS6334603A (en) Servo simulator
Taylor et al. Synthesis of nonlinear controllers with rate feedback via sinusoidal-input describing function methods
JPH04275086A (en) Controller for dynamic simulator
EP2989512B1 (en) Apparatus and method for applying a load to a material
HILBERT et al. The design of a model-following control system for helicopters
JP6798599B1 (en) Vehicle speed command generator and vehicle speed command generation method
JP3426942B2 (en) Vibration test equipment
JP2731160B2 (en) Excitation level controller
JPS56164935A (en) Control method for vibrating table
JPS6152483B2 (en)
Howe Fundamentals of the analog computer: circuits, technology, and simulation
JPS6217762B2 (en)
Leith et al. On microprocessor-based arc voltage control for gas tungsten arc welding using gain scheduling