JPS6333100A - Diaphragm and its production - Google Patents

Diaphragm and its production

Info

Publication number
JPS6333100A
JPS6333100A JP17651786A JP17651786A JPS6333100A JP S6333100 A JPS6333100 A JP S6333100A JP 17651786 A JP17651786 A JP 17651786A JP 17651786 A JP17651786 A JP 17651786A JP S6333100 A JPS6333100 A JP S6333100A
Authority
JP
Japan
Prior art keywords
diaphragm
mold
boron
mixture
boron carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17651786A
Other languages
Japanese (ja)
Inventor
Michihiko Kubota
久保田 通彦
Sunao Horiai
直 堀合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP17651786A priority Critical patent/JPS6333100A/en
Publication of JPS6333100A publication Critical patent/JPS6333100A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the diaphragm of high sound quality having a light weight, a high rigidity and a proper internal loss by mixing metallic boron and/or boron carbide with a thermosetting resin, thermally molding this mixture to a diaphragm form and heating it in an inert atmosphere. CONSTITUTION:A mold 1 is one for producing a dome shape diaphragm and constituted of a protruding male mold 1A and a recessed female mold 1B. This mold 1 is heated to a prescribed temperature, and the mixture 2 of the metallic boron and the boron carbide is evenly sprayed or applied on the male mold 1A by the use of a sieve or the like. According to this thermocompression processing, the mixture 2 is molten, set and integrated to obtain a dome shape molded member 3. Then, this molded member 3 is taken out from the mold 1, put into a furnace, heated under a non-oxidizing atmosphere, carbonized or graphitized. According to this heating, a resin component in the molded member 3 is carbonized by a thermal decomposition reaction, further a part thereof is graphitized, reacts with a part of the metallic boron to be the boron carbide.

Description

【発明の詳細な説明】 [産業上の利用分野〕 この発明は、音響用振動板およびその製法に関し、金属
ほう素と炭化ほう素を炭素質もしくは黒鉛質中(二分散
させることにより、軽量で剛性が大きく、適当な内部損
失をMTる音質の良好な憑動板が得られるようにしたも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an acoustic diaphragm and a method for manufacturing the same. It is possible to obtain a moving board with high rigidity, appropriate internal loss, and good sound quality.

【従来技術とその問題点コ 一般t:、音響用振動板を構成する材料には、■軽量で
あること(低密度であること)、■剛性が高いこと(ヤ
ング車が高いこと)、■適度の内部損失(tanδ〕を
持つことの要件が必要とされている。
[Prior art and its problems] General information: The materials constituting the acoustic diaphragm must be: ■ lightweight (low density), ■ high rigidity (high Young vehicle), ■ There is a requirement to have a moderate internal loss (tan δ).

このような条件を一応満足する音響用振動板材料の1つ
に、カーボンやグラファイトなどの炭素系材料が知られ
ている。この材料は、剛性率が10 (1−150GP
aと高(、密度1.3〜1.8 g/13と小で(、特
に中高音域用撮動板1:好適とされている。
Carbon-based materials such as carbon and graphite are known as one of the acoustic diaphragm materials that satisfy these conditions. This material has a rigidity modulus of 10 (1-150GP
a and high (density 1.3 to 1.8 g/13 and small) (particularly suitable for medium and high frequency range imaging plate 1).

しかしながら、よシ高音質の音響用振動板とした場合C
:は、さらに大きな剛性率と低い内部損失が必要となる
。このたぬ、高剛性で低損失のほう素や炭化ほう素の利
用が考えられるが、これらは脆く、加工性が低いことか
ら振動板とすることが困難であると云う問題があった。
However, when using an acoustic diaphragm with very high sound quality, C
: requires even higher rigidity and lower internal loss. It is conceivable to use boron or boron carbide, which have high rigidity and low loss, but these have the problem of being brittle and having low workability, making it difficult to make them into diaphragms.

c問題Aを解決するための手段〕 そこで、この発明では、熱硬化性樹脂ζ:ほう素および
/または炭化ほう素を加え、これを熱成形して振動板状
の成形体となし、ついで、これを不活性雰囲気下で加熱
し、熱硬化性樹脂を炭素化もしくは黒鉛化し、同時にこ
の炭素とほう素の一部とから炭化ほう素を生成し、炭素
質もしくは黒鉛質中に金属ほう素もしくは炭化ほう素を
分散させるようにして、上記問題点を解決するようKし
た。
c Means for Solving Problem A] Therefore, in the present invention, thermosetting resin ζ: boron and/or boron carbide is added, this is thermoformed to form a diaphragm-shaped molded body, and then, This is heated in an inert atmosphere to carbonize or graphitize the thermosetting resin, and at the same time generate boron carbide from this carbon and a part of the boron. The above problem was solved by dispersing boron carbide.

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

ここで使用される熱硬化性樹脂としては、半硬化状態で
固体であることが必要である。樹脂の種類としては、特
に限定されないが、フエ/−ル樹脂、ポリイミド樹脂な
どの高炭化収率のものが、炭化または黒鉛化後の寸法哨
度の点で好適である。具体的にフェノール樹脂を使う場
合には、ノボラック樹脂に硬化剤としてヘキサメチレン
ナトラミ210〜15wt%混合し、100〜130℃
で加熱、混練し、これを粉末とする、樹脂粉末の粒径は
、平均粒径で100μnpJ下、好ましくは50μm以
下とされ、かつ粒径のバラツキが±10μm以」のもの
が用いられる。粉末粒径が100μmを越えると、樹脂
粉末が型内で溶融する際、溶融速度に、−5的l:差が
生じ、成形体の厚みが部分的に震動し、厚み′P!鹿が
低下(7、音質(:悪影響を与える− また、ポリイミドブレボυマー、エポキシ樹脂などの液
状の熱硬化性樹脂も使用でき、その他にフラン樹脂、石
油ピッチなども用いられ、これら各種の熱硬化性樹脂を
2種以上ブレンドしてもよこの熱硬化性樹脂C:は、粉
末状の金Rほう素および/または炭化ほう素が加えられ
る。金属ほう素としては、粒径50μm以下、好ましく
は5μm以下の純度90 as 以上、好ましくは95
優以上の結晶質もしくは非!31質のものが用いられる
1粒径が50μmnを越えると烹硬化性樹脂との均一な
混合ができな(なる。鉄分などの不純物の少ないものが
好ましい。−!之、炭化ほう素としては、やは力粒径5
0μm以下、好憶しく(15μm以下のものが用いられ
る1粒径50μmを越えると熱硬化性樹脂との均一混合
が不可能であシ、できるだけ粒度の揃ったものが望まし
い。
The thermosetting resin used here needs to be solid in a semi-cured state. The type of resin is not particularly limited, but resins with high carbonization yields such as phenolic resins and polyimide resins are suitable in terms of dimensional precision after carbonization or graphitization. Specifically, when using phenolic resin, mix 210 to 15 wt% of hexamethylene natrami as a curing agent to novolac resin and heat at 100 to 130°C.
The particle size of the resin powder that is heated and kneaded to form a powder is one whose average particle size is 100 μnpJ or less, preferably 50 μm or less, and whose particle size variation is ±10 μm or less. When the powder particle size exceeds 100 μm, when the resin powder is melted in the mold, there will be a -5 point difference in the melting speed, and the thickness of the molded body will partially oscillate, causing the thickness 'P! In addition, liquid thermosetting resins such as polyimide brevomer and epoxy resins can also be used, as well as furan resins and petroleum pitch, and these various Powdered gold R boron and/or boron carbide may be added to the thermosetting resin C, which may be a blend of two or more thermosetting resins.As the metal boron, particle size of 50 μm or less, Preferably 5μm or less purity 90 as or more, preferably 95 as
Crystalline or non-excellent! If the particle size exceeds 50 μm, it will not be possible to mix uniformly with the heat-curing resin.It is preferable to use one with less impurities such as iron. Yaha force particle size 5
A particle size of 0 μm or less, preferably 15 μm or less is used. If the particle size exceeds 50 μm, homogeneous mixing with the thermosetting resin is impossible, so particles with as uniform a particle size as possible are preferable.

この金属ほう素、炭化ほう素およびこれらの混合物の熱
硬化性樹脂に対する配合割合は、重量比で5〜95チと
これる。5チ未満では得られる比弾性率E/ρ(E:ヤ
ング率、P:密度〕の平方根m  、すなわち音速が十
分大きくならず、換言すれは浄1性率の向上度合が十分
でなく、ま九95俤を越えると得られる畏動板の強度が
低下し、振動板として適さなくなる。
The proportion of metallic boron, boron carbide, and mixtures thereof in the thermosetting resin ranges from 5 to 95 inches by weight. If it is less than 5 cm, the square root m of the specific elastic modulus E/ρ (E: Young's modulus, P: density), that is, the sound velocity, will not be sufficiently large, in other words, the degree of improvement in the cleanliness factor will not be sufficient, or If it exceeds 995 yen, the strength of the vibration plate obtained decreases, making it unsuitable as a diaphragm.

また、金属ほう素と炭fヒほう素の混合物を用いる場合
の金属ほう素と炭化ほう素との混合割合は、重量比で7
0:30へ95:5の′Ri囲とされる。
In addition, when using a mixture of metallic boron and carbon and arsenic, the mixing ratio of metallic boron and boron carbide is 7 by weight.
The 'Ri range is 95:5 to 0:30.

そして、上!2熱製化注樹脂と金属ほう素および/また
は炭化ほう素は、均一(:温合され、粉末状もしくCよ
パテ状の混合物とされる。
And on! 2) The resin, metallic boron, and/or boron carbide are uniformly heated and made into a powder or putty-like mixture.

次ζ;、例えば第1図(:示すような型を用意する7こ
の型1は、ドーム状振動板を装造テるためのもので、凸
状の下型IAご凹状の上型IBとから構成されている。
For example, prepare a mold as shown in Figure 1 (:7) This mold 1 is for mounting a dome-shaped diaphragm, and consists of a convex lower mold IA and a concave upper mold IB. It consists of

この型1を所定の温度(:予め加熱しておき、下盤IA
上上止上記混合物を篩などを用いて均一に散布あるいは
塗布する。フェノール樹脂粉末を用いた場合には型温度
を14(’)へ150℃程度とする。ついで、上型IB
を下型IA上に置き、圧力1.0〜2− OMP a 
程度で熱圧処理する。
This mold 1 is heated to a predetermined temperature (: in advance), and the lower plate IA is heated.
Spread or apply the above mixture uniformly using a sieve or the like. When using phenolic resin powder, the mold temperature is set to about 14(') to 150°C. Next, upper type IB
is placed on the lower mold IA, and the pressure is 1.0 to 2- OMP a.
Heat and pressure treatment at a moderate temperature.

熱圧処理時の時間、温度は樹脂の1類・贅(:よって適
宜決められる、また、混合物散布量(塗布量)は、仕上
9攪動板の厚さ、炭化洩た黒鉛化に伴う体積減少率を勘
案して適宜決められる、この熱圧処理C二よって、混合
物2け溶融、硬化し、一体化して第2輿f二示アよう々
ドーム状の成形体3とな机ついで、5flがらこの、吸
形体3を取り出し、加熱炉に入れ、非酸化性1囲気下で
加熱し、炭化または黒鉛化させる。抵抗1!o熱炉フ2
どの高温炉に、成形体3を吊すなどの方法により無応力
状態で収容し、炉内を真を排′:J、するがあるいはN
2. Ar  ガスで置換する−そして、3oS80”
C/時間の昇温速度で6nO〜8oo″cまで昇温し、
0,5〜2時間保持し、さらC300〜b ℃まで昇温し、0.5〜1時間程度保持する。
The time and temperature during the heat-pressure treatment are determined as appropriate, depending on the type 1 resin and the amount of the mixture applied. Through this heat-pressure treatment C2, which is determined appropriately taking into account the rate, the two mixtures are melted, hardened, and integrated to form a second dome-shaped molded body 3. This sucking body 3 is taken out, placed in a heating furnace, heated under a non-oxidizing atmosphere, and carbonized or graphitized.Resistance 1!o Heat furnace furnace 2
In any high-temperature furnace, the molded body 3 is stored in a stress-free state by a method such as hanging, and the inside of the furnace is evacuated.
2. Replace with Ar gas – and 3oS80”
Raise the temperature to 6nO to 8oo"c at a heating rate of C/hour,
The temperature is maintained for 0.5 to 2 hours, and the temperature is further raised to C300 to b°C, and maintained for about 0.5 to 1 hour.

この加熱C二よって、成形体3中の樹脂分は熱分光反応
(二よって炭化し、畜らにその一部6が黒鉛化下るとと
もI+ 、> 、KT4ほう素の一部と反応し、炭化ほ
う赤となる。最終;!’II a温度が高(なると炭素
質の黒鉛化が進付し、かつ金属ほう素の大部分が炭化ほ
う素に変化する。ただし、2400℃以上C二加熱でろ
と5:、化はつ素がD 融して成形体3の形状が変化し
て好ましくない。また、最P、到達温度が1600°C
未鷹では黒鉛化が不十分であり、剛性率増771)it
よび内部損失の低減が十分に得られなくなる。
Due to this heating C2, the resin content in the molded body 3 is carbonized by a thermal spectroscopic reaction (2), and a part 6 of it is graphitized and reacts with a part of I+, KT4 boron, It becomes reddish carbide.Final;!'II a When the temperature is high (the graphitization of carbonaceous material progresses, and most of the metallic boron changes to boron carbide.However, C2 heating above 2400℃) Deroto 5: The hydrogen chloride melts and changes the shape of the molded body 3, which is undesirable.Also, the maximum temperature reached is 1600°C.
In Mitaka, graphitization is insufficient and rigidity increases771)it
and internal loss cannot be sufficiently reduced.

この雇熱処理によって焼成で1次振動板中において、X
、鉛が少なくとも10重量係以上、また炭化ほう素が少
なくとも501量俤以上含まれていることカー、好まし
、い密度剛性率、内部損失を持つ振動板を得るうえで必
要となる。
By this heat treatment, X
Preferably, the content of lead is at least 10% by weight, and the content of boron carbide is at least 501% by weight, which is necessary in order to obtain a diaphragm with high density, rigidity, and internal loss.

なお、型1を混合物2の散布後に室温から加熱すること
もでき、平面状の振vJ’Xを得る。S合はこの方法も
採用できる、さらζ−1成形体3を型1に圧締したまま
、非酸化雰囲気下で加烹することも可能である。1次、
混合物2C:高弾性グラファイト短繊推を少U添加して
機械的強度を高めてもよい。
Note that mold 1 can also be heated from room temperature after spraying mixture 2 to obtain a planar shape vJ'X. This method can also be used for the S-combination, and it is also possible to heat the ζ-1 molded body 3 in a non-oxidizing atmosphere while it is pressed into the mold 1. 1st order,
Mixture 2C: A small amount of high elastic graphite short fibers may be added to increase the mechanical strength.

〔作用〕[Effect]

このような撮動板(二あっては、高剛性、低損失の炭化
ホウ素を黒鉛質中C:所望量均一にかつ相溶状態で分散
した状態となシ、@量、高剛性、適度の内部損失を有す
る高音質の振動板とすることができる。ま九、粉末状も
しくはパテ状の状態から熱成形して振動板状としている
ので、混合物の散布量を部分的:;変化式ぜ、ること(
二より、一枚の振動板内の任意の部位でその厚みを変化
させることができ、第2図1=あるようC:エツヂ一体
化型振動板などを一挙(二かつ完全一体型で涜造するこ
とかできる、 〔実施例〕 ノボラック型フェノール樹脂100Mfilt部C:へ
キサメチレンテトラミン15″X量部を加え、ボールミ
ルで粉砕した平均粒径5.unの粉状フェノール樹脂1
009に、純度97%の金属ほう素粉末(平均粒径1μ
m)を100.9270え、乾式混合して、混合粉末と
した。この粉末を第1図に示した下型上に撒布した。下
型の温度は140℃とした。
In such an imaging plate, a desired amount of high-rigidity, low-loss boron carbide is dispersed uniformly and in a compatible state in graphite. It is possible to make a high-quality diaphragm with internal loss. Also, since the diaphragm is made into a diaphragm by thermoforming from a powder or putty state, the amount of the mixture to be sprayed can be partially adjusted. That (
2, it is possible to change the thickness at any part within a single diaphragm, and the thickness can be changed at any location within a single diaphragm. [Example] Novolac type phenolic resin 100 Mfiltration part C: Powdered phenolic resin 1 with an average particle size of 5.0 mm, which was milled with a ball mill to which 15"x parts of hexamethylenetetramine was added.
009, metallic boron powder with a purity of 97% (average particle size 1μ
100.9270 m) and dry mixed to obtain a mixed powder. This powder was spread on the lower mold shown in FIG. The temperature of the lower mold was 140°C.

撒布後、同温度の上型を置き、圧力1.0MPa  で
5分間熱圧処理し、ドーム状の成形体を得た。この成形
体を黒鉛抵抗炉中、不活性雰囲気下で、60℃/時間の
昇温速度で600’Cまで昇温し、ついで4[10℃/
時間の昇温速度で1900℃まで昇温し、1900℃で
30分間加熱後、室温にまで炉内で冷却して、振動板と
し次。
After spreading, an upper mold at the same temperature was placed and heat-pressure treatment was performed at a pressure of 1.0 MPa for 5 minutes to obtain a dome-shaped molded product. This molded body was heated to 600'C in a graphite resistance furnace under an inert atmosphere at a heating rate of 60°C/hour, and then 4 [10°C/hour].
The temperature was raised to 1900°C at a temperature increase rate of 1 hour, and after heating at 1900°C for 30 minutes, it was cooled to room temperature in the furnace to form a diaphragm.

この撮動板の密度は2−359 / cm  sヤング
率は430GPa%内部損失は0.04であった。この
振動板をX酬回折によって組成分析したところ、第3図
(:示すチャートが得られた、このチャートから、金属
ホウ素のかなりの部分が炭化ほう素に変化し、樹脂分の
グラファイト化もかな〕進んでいることがわかる。
The density of this imaging plate was 2-359/cm s, the Young's modulus was 430 GPa%, and the internal loss was 0.04. When this diaphragm was analyzed for its composition by X-resonance diffraction, the chart shown in Figure 3 was obtained. From this chart, it appears that a considerable portion of the metallic boron has changed to boron carbide, and that the resin content has also been converted to graphite. ] I can see that progress is being made.

また、@4図はこの振動板の周波数特性の測定結果を示
Tものである。
Also, Figure @4 shows the measurement results of the frequency characteristics of this diaphragm.

2g5図は、上記天地例(:おいて、最終到達@度を1
400℃から2400℃まで変化させて得られた掻急板
の音速と内部損失を示すグラフである。
Figure 2g5 is the above example of the top and bottom (:, final arrival @ degree is 1
It is a graph showing the sound velocity and internal loss of the curdle plate obtained by changing the temperature from 400°C to 2400°C.

このグラフから、1600℃以上とすることにより、十
分大きな音速および低い内部損失を得ることができるこ
とがわかる。
This graph shows that by setting the temperature to 1600° C. or higher, a sufficiently high sound velocity and low internal loss can be obtained.

第6図は、上記実施例1において、金属ほう素の混合]
を変化さ・ご、その時の音速および内部損失の変化を、
金屑は9素無配合の時の音速および内部損失に対する比
として表わしtもので、縦軸は音速あるいは内部損失の
変化比を、縦軸は金属ほう素の混合率をごつ°Cある。
FIG. 6 shows the mixture of metallic boron in the above Example 1]
The change in sound speed and internal loss at that time is
The gold dust is expressed as a ratio to the sound velocity and internal loss when the nine elements are not mixed, the vertical axis is the change ratio of the sound velocity or internal loss, and the vertical axis is the mixing ratio of metallic boron (°C).

このグラフよフ、金属ほう素の混合率が5%以上で、音
速および内部損失の改善効果が表われることが認められ
る。
This graph shows that when the mixing ratio of metallic boron is 5% or more, the effect of improving sound velocity and internal loss appears.

〔発明の効果コ 以上説明しtように、この発明の振動板およびその製法
は、熱硬化性樹脂に金属ほう素および/または炭化ほう
素を加え、これを熱成形して振動板状となし、ついで不
活性雰囲気下で71Q熱するものであるので、金属ほう
素または炭化ほう素が炭素質もしくは黒鉛質中に均一に
分散し友状態の振動板が得られる。よって、ヤング率約
500Qpa。
[Effects of the Invention] As explained above, the diaphragm of the present invention and its manufacturing method include adding metallic boron and/or boron carbide to a thermosetting resin, and thermoforming it into a diaphragm shape. Then, since the material is heated for 71Q in an inert atmosphere, metallic boron or boron carbide is uniformly dispersed in the carbonaceous or graphitic material, and a diaphragm in a friendly state can be obtained. Therefore, Young's modulus is approximately 500Qpa.

密度2.5夕/1 の炭化ほう素と、ヤング率120〜
200Qpa%密度1.5〜1.8g/c*  の炭素
質もしくは黒鉛質とのコンポジット系となり、炭素質も
しくは黒鉛質の軽1さを1はど低下させることなく炭化
は5素の高ヤング皐(二よって全体としてのヤング率が
大きく向上し、これによって音速が十分高くなって広い
再生帯域を持つよりになる7さらに、内部損失も(1,
03〜0.04程CIとなシ、適圧のダンピング特性を
有するものとなる、また、無定形の混合物e熱成形して
振動板状どしているので、任意の形状の振Q収を自由か
つ容易(−9造することができる、
Boron carbide with a density of 2.5/1 and a Young's modulus of 120~
It is a composite system with carbonaceous or graphite with a density of 1.5 to 1.8g/c*, and carbonization can be done without reducing the lightness of the carbonaceous or graphite. (2) As a result, the overall Young's modulus is greatly improved, which increases the sound velocity sufficiently to enable a wide reproduction band7.Furthermore, the internal loss also decreases (1,
If the CI is around 0.03 to 0.04, it will have appropriate pressure damping characteristics.Also, since the amorphous mixture is thermoformed into the shape of a diaphragm, it can be made into a vibration plate shape of any shape. Free and easy (-9 can be built,

【図面の簡単な説明】[Brief explanation of drawings]

箕1図は、この発明の層性(二相いる型の一例を示す断
面図、 第2図は、中間製品である成形体の−fljを示す断面
図、 第3図は、wt也例で得られた振動板のX線回折チャー
トを表わ丁グラフ、 第4図は同じ〈実施例で得られた振動板の周波数特性を
示すグラフ、 第5図は、実施例C:おける熱処理時の最終到達温度と
音速ならびI:内部損失との()1係を示すグラフ、 第6図は、実施例における金属ほう未混合率と音速なら
びに内部損失の変化比との関係を示すグラフである。 1(IA、IB)・・・・・・型、2・・・・・・混合
物、3・・・・・・成形体。 出願人 日本楽PAW造株式会社 第1図 第2図 一一一一瞥居運数(Hz) 第4図 .2e 第8図 1.4   1.6    +、8   2.0  2
2   2.4−@終)1徨湯度(’C)xlo’ 第5隔 0          50          to
Fig. 1 is a sectional view showing an example of the layered (two-phase) mold of the present invention, Fig. 2 is a sectional view showing -flj of a molded product which is an intermediate product, and Fig. 3 is a wt example. Figure 4 is a graph showing the X-ray diffraction chart of the obtained diaphragm. Figure 4 is a graph showing the frequency characteristics of the diaphragm obtained in the same example. Figure 5 is a graph showing the frequency characteristics of the diaphragm obtained in Example C. FIG. 6 is a graph showing the relationship between the ratio of unmixed metals and the rate of change in sound speed and internal loss in Examples. 1 (IA, IB)...Mold, 2...Mixture, 3...Molded body. Applicant: Nippon Raku PAWZO Co., Ltd. Figure 1, Figure 2, 111 Ichime Shuun number (Hz) Fig. 4.2e Fig. 8 1.4 1.6 +, 8 2.0 2
2 2.4-@End) 1 degree of water ('C) xlo' 5th interval 0 50 to
.

Claims (2)

【特許請求の範囲】[Claims] (1)金属ほう素および炭化ほう素が炭素質および/ま
たは黒鉛質のマトリックス中に分散されてなる振動板。
(1) A diaphragm in which metallic boron and boron carbide are dispersed in a carbonaceous and/or graphitic matrix.
(2)金属ほう素および/または炭化ほう素を熱硬化性
樹脂と混合し、この混合物を熱成形して振動板状となし
、ついでこれを不活性雰囲気中で加熱することを特徴と
する振動板の製法。
(2) Vibration characterized by mixing metallic boron and/or boron carbide with a thermosetting resin, thermoforming this mixture into a diaphragm shape, and then heating this in an inert atmosphere. The manufacturing method of the board.
JP17651786A 1986-07-26 1986-07-26 Diaphragm and its production Pending JPS6333100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17651786A JPS6333100A (en) 1986-07-26 1986-07-26 Diaphragm and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17651786A JPS6333100A (en) 1986-07-26 1986-07-26 Diaphragm and its production

Publications (1)

Publication Number Publication Date
JPS6333100A true JPS6333100A (en) 1988-02-12

Family

ID=16015007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17651786A Pending JPS6333100A (en) 1986-07-26 1986-07-26 Diaphragm and its production

Country Status (1)

Country Link
JP (1) JPS6333100A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470431A (en) * 1990-08-20 1995-11-28 Showa Aluminum Corp. Stack type evaporator
US5514248A (en) * 1990-08-20 1996-05-07 Showa Aluminum Corporation Stack type evaporator
US5800673A (en) * 1989-08-30 1998-09-01 Showa Aluminum Corporation Stack type evaporator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800673A (en) * 1989-08-30 1998-09-01 Showa Aluminum Corporation Stack type evaporator
US5470431A (en) * 1990-08-20 1995-11-28 Showa Aluminum Corp. Stack type evaporator
US5514248A (en) * 1990-08-20 1996-05-07 Showa Aluminum Corporation Stack type evaporator

Similar Documents

Publication Publication Date Title
CN101544851B (en) Metallic bond hollow sphere-shaped super-hard compound material and manufacturing method thereof
CN1216830C (en) Silicon carbide composites and methods for making same
JP3673436B2 (en) Carbon-based metal composite material and manufacturing method thereof
JPH02212370A (en) Composite material
KR20150075206A (en) Isotropic graphite article and and method of manufacturing the same
JPS6127453B2 (en)
JPS6333100A (en) Diaphragm and its production
JPS5835949B2 (en) Method for manufacturing silicon carbide body
US20020192453A1 (en) Composite material having a high thermal conductivity and method for manufacturing the composite material
EP0754659B1 (en) Porous inorganic material and metal-matrix composite material containing the same and process therefor
JPH0224784B2 (en)
JPS60122774A (en) Method of bonding silicon carbide sintered body
JP2000355018A (en) Mold for resin molding
JP2006232569A (en) SiC/Si COMPOSITE MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP3837474B2 (en) High thermal conductive composite material and manufacturing method thereof
JP2000129413A (en) Carbon fiber-containing metallic material and its production
JPS63242969A (en) Silicon carbide base ceramics
JPH09153666A (en) Board for chip mounting and manufacture thereof
CN112851395B (en) Oriented laminated porous SiC material and in-situ synthesis method thereof
JP4342143B2 (en) Method for producing Si-SiC material
JPS61186098A (en) Manufacture of diaphragm
JPH06293565A (en) Production of si-sic composite ceramic
JP2023120878A (en) Method for producing boron nitride powder, and boron nitride powder
CN117088690A (en) Preparation method of high-heat-conductivity diamond-silicon carbide composite ceramic and heat dissipation substrate
JPH1161292A (en) Copper-carbon fiber composite and its production