【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電子材料、OA機器などの静電気除
去用、産業機器などの導電性を必要とする製品用
のシール、断熱、吸音、緩衝用、さらには工業
用・医用機械設備、家電製品および自動車・オー
トバイ等を発生源とする電磁波を阻止する電磁シ
ールド用の導電性発泡体に関するものである。
〔従来技術〕
従来、導電性発泡体としては、ポリエチレン、
ポリウレタンおよびネオプレンゴム発泡体等に導
電性物質を配合したものが知られている。これら
発泡体を製造面からみると、上記発泡体に導電性
物質を錬り込んだ混和物を発泡させて導電性発泡
体を得る方法と、ウレタンフオーム等の既存の連
続気泡系発泡体に、導電性物質をラテツクス、エ
マルジヨンあるいは溶剤系溶液に分散させた含浸
液を含浸乾燥して得る方法がある。
しかし前者の場合、混和物への導電性物質の添
加量が材料特性及び発泡特性から限定されるこ
と、また錬込みにより導電物質が断ち切られ易い
ことなどから、一般用途上では、体積抵抗率が
105〜106Ω・cmまでしか低下しないこと、及び導
電度のバラツキが多いこと等の問題点がある。
また後者の場合、溶剤系の含浸液では既存の連
続気泡発泡体が膨潤し極端な場合は破壊したり、
物性の低下を生じる問題点があり、またラテツク
ス等のエマルジヨン系の含浸液では、導電性物質
を分散させようとするとゲル化したり、無理に分
散させても安定的には5%が限度であり、体積抵
抗率も1012Ω・cm程度である。又、乳化剤で導電
性物質等を乳化させた顔料を混合して含浸液とし
ても、含浸乾燥後得られる発泡体に乳化剤が残留
して吸水したり、導電性物質が脱落する恐れがあ
る他、分散がよくないため体積抵抗率も106Ω・
cmまでしか低下しないという問題点がある。
上記のように、従来の導電性発泡体は、電気抵
抗、フオームの物性および安定性、含浸物の脱落
等、導電性発泡体としての機能を充分に満足させ
得るものでない。
〔発明が解決しようとする問題点〕
本発明は、上記のような問題点を解決した導電
性発泡体、すなわち、電気(体積)抵抗率が低く
(10-3〜102Ω・cm)、かつ導電度のバラツキがな
く、フオーム安定性があり、溶剤等の発泡体腐食
成分を要しない等の優れた特性を有する導電性発
泡体を提供せんとするものである。
〔問題点を解決するための手段〕
本発明は、水難溶性ポリマーまたはオリゴマー
の微粒子を含むヒドロゾル状の水分散体中に導電
性物質を分散させてなる水分散液(以下、導電性
物質水分散液という)を連続系気泡体に含浸、乾
燥させてなる導電性発泡体にある。
本発明にて使用される水難溶性ポリマーまたは
オリゴマーの微粒子を含む水分散体における、水
難溶性ポリマーまたはオリゴマーの微粒子の粒子
径は、通常0.05〜0.1μ程度であり、当該水分散体
はエマルジヨンと溶剤の両方の特性を示すもの、
即ちヒドロゾルである。かかるヒドロゾル状の水
分散体は、上記分散体が極めて微粒の粒子径であ
るから、乳化剤を使用せずとも安定に存在するも
のである。従つて、かかるヒドロゾル状の水分散
体を使用する導電性物質水分散液は、ゲル化や分
散不良を生じることがなく、目的に応じて導電性
物質の分散量を自在に変化せしめることができ、
また発泡体への含浸乾燥後に、導電材料の脱落、
バラツキがないだけでなく、残存乳化剤による吸
水性といつた恐れがないという利点も有するもの
である。
しかもポリマーまたはオリゴマー粒子自体が極
めて微細なので、ポリマー(オリゴマー)間に対
する分散性が非常によく、かかるヒドロゾル状の
水分散体を使用して導電性物質水分散液を製造し
た場合、導電物質の導通が良い。更に、かかる導
電性物質水分散液を含浸乾燥して得られた本発明
導電性発泡体は良導電性(102Ω・cm)となる。
また、上記導電性物質水分散液は有機溶剤を含ま
ないことからポリウレタンやポリ塩化ビニル等の
有機溶剤によつて劣化する発泡体などに対しても
機械的強度の低下をきたすことなく含浸できる。
従つて、本発明で使用される導電性物質水分散
液は、種々の連続気泡発泡体に対して極めて安定
性があり、導電性の良い導電性発泡体を容易に得
られる利点がある。
本発明で使用される水難溶性ポリマー及びオリ
ゴマーとしては、カルボキシル基、水酸基、酸ア
ミド基などの親水性基を有するモノマー、及びこ
れと共重合可能なモノマーとの混合モノマーの重
合物があげられる。
本発明におけるヒドロゾル状水分散体は、例え
ば上記モノマーを塊状重合ないし溶液重合させた
後、アンモニア水、水酸化カリウムなどの塩基性
物質の水溶液にて中和することによつて、容易に
製造される。上記塩基性物質は、ポリマー微粒子
の分散安定化のための活性剤として作用する。
ヒドロゾル状水分散体は前記の塊状重合ないし
溶液重合において、モノマーを適宜選択すること
によつて任意のものを得ることができ、特に好適
なものは上記モノマーがアクリル系ものである。
即ち、ポリマー自体が粘着性質を混合分散させる
際、この粘着特性が良好なバインダーとなり、発
泡体に含浸して加熱乾燥後、導電性物質の分離や
脱落を防ぐという好結果をもたらす。また、優れ
た耐候性を有するアクリルポリマーで発泡体気壁
表面を被うことにより耐候性をも大いに向上させ
ることになる。
このようなアクリル系ヒドロゾル状水分散体を
得るには、一般に主モノマーとしてアクリル酸ア
ルキルエステル(例、アクリル酸2―エチルシヘ
キシル)ないし、メタアクリル酸アルキルエステ
ル(例、メタアクリル酸ブチル)等を、また親水
基を有するモノマーとしてアクリル酸、メタアク
リル酸、マレイン酸、イタコン酸、2―ヒドロキ
シエチルアクリレート、アクリル酸アミド等を使
用し、さらに必要ならこれらと共重合可能なスチ
レン、アクリロニトリル、マレイン酸エステル等
の他のモノマーを併用し、前記方法で重合し、中
和処理すればよい。
本発明で使用される導電性物質としては、例え
ば導電性を有し、粉末状(好ましくはその微粒子
径が1μ〜10μで、かつ水不溶性であれば特に制限
はなく、たとえばカーボンブラツク、金属粉
(例、アルミニウム、ニツケル、銀、及び銅)な
どが例示される。
ヒドロゾル状水分散体に導電性物質を混合分散
させる方法は、例えばヒドロゾルに直接、導電性
物質を混合し、高速撹拌機やボールミル、ペイン
トロールなどにて分散後、適量に希釈することに
よつて行われる。
導電性物質水分散液における、ポリマーおよび
オリゴマーの水への分散量は、たとえば5〜50%
程度、好ましくは10〜20%程度であり、導電性物
質の配合量は、たとえば2〜70%程度、好ましく
は10〜30%程度である。
また、この発明に用いる連続系気泡発泡体とし
ては、分散液中で圧縮することにより、分散液を
吸収可能の特性を有するものであれば特に制限は
なく、例えばポリウレタン、ポリエチレン、ポリ
塩化ビニル、アクリル、エチレン―酢酸ビニル共
重合体(EVA)、エチレンプロピレンターポリマ
ー(EPT)ゴム、およびクロロプレンゴムなど
よりなる発泡体の如く連続系気泡発泡体、半独立
気泡発泡体等、従来公知のものを広く適用でき
る。特に、従来有機溶剤系の含浸液では膨潤して
その機械的強度を低下しやすい、例えばポリウレ
タンやポリ塩化ビニル発泡体などに対しても本発
明に関するヒドロゾル系の含浸液を利用すること
により、むしろ有利に適用することができる。
この発明の導電性発泡体は、通常ヒドロゾル状
水分散体に導電性材料を混合分散させた含浸液
を、上記の連続系気泡発泡体に含浸し、乾燥する
ことによつて製造される。乾燥は通常加熱によつ
て行われる。含浸工程と乾燥工程は、連続工程と
しても非連続工程としてもよい。連続工程とする
場合、例えばロール状巻回された発泡体を含浸槽
にロールを介して導き、含浸調節ロールによつて
適量含浸させたのち、加熱乾燥室に導通して水分
を揮散させればよい。
含浸量は、連続系気泡発泡体の種類や比重、含
浸液のヒドロゾル状水分散体の種類や粘度あるい
は混合分散させた導電性物質の種類や分散量等目
的とする導電性発泡体の特性によつてかなり相違
するが、一般には連続系気泡発泡体に対する固形
分重量比で0.2〜3倍、導電性材料の重量百分率
で1〜50%で、特に好適には各々0.5〜1倍、10
〜20%とするのがよい。
〔作用・効果〕
本発明の導電性発泡体は、発泡体に含浸させる
含浸液としてヒドロゾルを用いているため、発泡
体の材質に制限を受けることがなく、また混合分
散させる導電性材料の種類や量にも制限を受け
ず、ポリマー粒子が極めて小さいため非常に分散
性が良く、また特に粘着性を有するアクリル系の
場合、この粘着性が最適のバインダーとなるた
め、含浸乾燥後、得られた発泡体は、少量の導電
性材料で低い電気抵抗性が得られ、かつ全体にバ
ラツキが少なく、導電性材料の脱落や分離のない
などの効果を有する。
以下、実施例、比較例および試験例によつて本
発明をより具体的に説明するが、本発明はこれら
によつて何等制限されるものではない。
実施例 1
アクリル酸2―エチルヘキシル76部、アクリル
酸4部、アクリロニトリル20部からなる混合モノ
マーを、重合開始剤として過酸化ベンゾイル0.5
部を用いて塊状重合した後、アンモニア水4部と
水500部とを加えて、よく撹拌混合してアクリル
系ヒドロゾルを得た。このアクリル系ヒドロゾル
にアセチレンブラツクを60部加えてボールミルに
て混合分散させて含浸液とし、比重0.03のポリウ
レタン発泡体に固形分重量比で1〜2倍となるよ
うに含浸させ、その後、加熱乾燥室で120℃の熱
風を2m3/分(発泡体の走行速度0.2m/分)吹
きつけ、乾燥させ、この発明の導電性発泡体を得
た。
実施例 2
実施例1と同様の状態でアセチレンブラツクの
換りに、銀粉(平均粒子径約50μ)を用いて導電
性発泡体を得た。
実施例 3
アクリル酸アミド20部、アクリル酸エチル30部
およびメタクリル酸2―エチルヘキシル50部から
なる混合モノマーを溶媒としてジオキサン250部
及び重合開始剤として、過酸化ベンゾイル0.5部
を用いて溶液重合させた後、真空蒸留によりジオ
キサンを回収除去し、アンモニア水10部、水500
部とを加えて、よく撹拌混合してアクリル系ヒド
ロゾルを得た。このヒドロゾルにカーボンブラツ
ク80部を加えてボールミルにて混合分散して含浸
液とし、比重0.15のポリ塩化ビニル発泡体に重量
比で0.5〜1倍となるように含浸させ、以下実施
例1と同様の操作条件で加熱乾燥して導電性発泡
体を得た。
比較例 1
クロロプレンラテツクス(電気化学LM―60)
60%重量溶液に、水溶性顔料(カーボンブラツク
30重量%、乳化剤10重量%)200部を加え、混合
撹拌して含浸液とし、比重0.03のポリウレタン発
泡体に、実施例1と同様に含浸乾燥して、導電性
発泡体をえた。
なお、カーボンブラツク70部を直接混合分散さ
せようとしたが、ゲル化して分散液を得ることが
できず、カーボンブラツク量を徐々に減じた結
果、カーボンブラツク5部が限度であつた。
比較例 2
クロロプレンゴム 100 部
オイル 95
ステアリン酸 5
酸化亜鉛 5
カーボンブラツク 120
重炭酸ナトリウム 15
硫黄 1.5
テトラメチルチウラムモノスル 3.0
フイツト(加硫促進剤)
上記配合の混和物を押出し、150℃で加硫発泡
して導電性発泡体を得た。
上記の実施例および比較例の各導電性発泡体の
種々の特性を評価したところ、次の表に示される
とおりであつた。
【表】[Detailed Description of the Invention] [Industrial Field of Application] The present invention is useful for removing static electricity from electronic materials, OA equipment, etc., sealing, heat insulation, sound absorption, and buffering for products that require conductivity such as industrial equipment. Furthermore, the present invention relates to a conductive foam for electromagnetic shielding that blocks electromagnetic waves originating from industrial and medical equipment, home appliances, automobiles, motorcycles, and the like. [Prior art] Conventionally, conductive foams include polyethylene,
It is known that polyurethane and neoprene rubber foams are blended with conductive substances. From the manufacturing perspective of these foams, there are two methods: foaming a mixture of the above-mentioned foam with a conductive substance to obtain a conductive foam, and a method using existing open-cell foams such as urethane foam. There is a method of obtaining the material by impregnating and drying an impregnating liquid in which a conductive substance is dispersed in latex, emulsion, or a solvent-based solution. However, in the former case, the amount of conductive substance added to the mixture is limited due to material properties and foaming properties, and the conductive substance is easily cut off by kneading, so the volume resistivity is low for general purposes.
There are problems such as that the conductivity decreases only to 10 5 to 10 6 Ω·cm and that the conductivity varies widely. In the latter case, solvent-based impregnating fluids may swell the existing open-cell foam and, in extreme cases, destroy it.
There is a problem of deterioration of physical properties, and in emulsion-based impregnating liquids such as latex, when trying to disperse conductive substances, they tend to gel, and even if they are forced to disperse, they can only be stably dispersed at a maximum of 5%. , the volume resistivity is also about 10 12 Ω·cm. Furthermore, if a pigment made by emulsifying a conductive substance etc. with an emulsifier is used as an impregnation solution, the emulsifier may remain in the foam obtained after impregnation and drying, which may absorb water or cause the conductive substance to fall off. Due to poor dispersion, the volume resistivity is also 10 6 Ω・
The problem is that it only decreases to cm. As mentioned above, conventional conductive foams do not fully satisfy the functions of conductive foams, such as electrical resistance, foam physical properties and stability, and shedding of impregnated materials. [Problems to be Solved by the Invention] The present invention provides a conductive foam that solves the above-mentioned problems, that is, has a low electric (volume) resistivity (10 −3 to 10 2 Ω·cm), Moreover, it is an object of the present invention to provide a conductive foam having excellent properties such as no variation in conductivity, stable form, and no need for foam corrosive components such as solvents. [Means for Solving the Problems] The present invention provides an aqueous dispersion (hereinafter referred to as a conductive substance aqueous dispersion) in which a conductive substance is dispersed in a hydrosol-like aqueous dispersion containing fine particles of a poorly water-soluble polymer or oligomer. It is a conductive foam made by impregnating open cells with liquid (referred to as liquid) and drying it. In the aqueous dispersion containing fine particles of a poorly water-soluble polymer or oligomer used in the present invention, the particle size of the fine particles of a poorly water-soluble polymer or oligomer is usually about 0.05 to 0.1μ, and the water dispersion is mixed with an emulsion and a solvent. that exhibits both characteristics,
That is, it is a hydrosol. Since the above-mentioned dispersion has an extremely fine particle size, such a hydrosol-like water dispersion exists stably without using an emulsifier. Therefore, a conductive substance aqueous dispersion using such a hydrosol-like water dispersion does not cause gelation or poor dispersion, and the amount of conductive substance dispersed can be freely changed depending on the purpose. ,
In addition, after the foam is impregnated and dried, the conductive material may fall off or
This has the advantage that there is not only no variation, but also that there is no risk of water absorption caused by residual emulsifier. Moreover, since the polymer or oligomer particles themselves are extremely fine, they have very good dispersibility between polymers (oligomers), and when an aqueous dispersion of a conductive substance is produced using such a hydrosol-like water dispersion, the conductivity of the conductive substance can be improved. is good. Furthermore, the conductive foam of the present invention obtained by impregnating and drying such an aqueous dispersion of a conductive substance has good conductivity (10 2 Ω·cm).
Furthermore, since the aqueous conductive material dispersion does not contain an organic solvent, it can be impregnated into foams and the like that are degraded by organic solvents such as polyurethane and polyvinyl chloride without causing a decrease in mechanical strength. Therefore, the aqueous dispersion of a conductive substance used in the present invention has the advantage that it is extremely stable for various open-cell foams, and that conductive foams with good conductivity can be easily obtained. Examples of poorly water-soluble polymers and oligomers used in the present invention include monomers having hydrophilic groups such as carboxyl groups, hydroxyl groups, and acid amide groups, and polymers of mixed monomers with monomers copolymerizable with these monomers. The hydrosol aqueous dispersion of the present invention can be easily produced by, for example, bulk polymerizing or solution polymerizing the above monomers, and then neutralizing with an aqueous solution of a basic substance such as aqueous ammonia or potassium hydroxide. Ru. The basic substance acts as an activator for stabilizing the dispersion of the polymer particles. Any hydrosol-like aqueous dispersion can be obtained by appropriately selecting monomers in the above-mentioned bulk polymerization or solution polymerization, and particularly preferred ones are those in which the monomers are acrylic-based.
That is, when the polymer itself mixes and disperses adhesive properties, this adhesive property becomes a good binder, and after impregnating the foam and heating and drying, it brings about good results in preventing separation and falling off of the conductive substance. Furthermore, by covering the surface of the foam air wall with an acrylic polymer having excellent weather resistance, weather resistance can be greatly improved. In order to obtain such an acrylic hydrosol water dispersion, generally an acrylic acid alkyl ester (e.g., 2-ethylcyhexyl acrylate) or a methacrylic acid alkyl ester (e.g., butyl methacrylate) is used as the main monomer. In addition, acrylic acid, methacrylic acid, maleic acid, itaconic acid, 2-hydroxyethyl acrylate, acrylamide, etc. are used as monomers having hydrophilic groups, and if necessary, styrene, acrylonitrile, maleic which can be copolymerized with these are used. Other monomers such as acid esters may be used in combination, polymerized by the method described above, and neutralized. The conductive substance used in the present invention is not particularly limited as long as it has conductivity, is in powder form (preferably has a fine particle size of 1 μm to 10 μm, and is insoluble in water, such as carbon black, metal powder, etc.). (Examples include aluminum, nickel, silver, and copper.) A method of mixing and dispersing a conductive substance in a hydrosol-like aqueous dispersion is, for example, by directly mixing the conductive substance into the hydrosol and using a high-speed stirrer or This is done by diluting an appropriate amount after dispersing with a ball mill, paint roll, etc. In the conductive substance aqueous dispersion, the amount of polymer and oligomer dispersed in water is, for example, 5 to 50%.
The content of the conductive substance is, for example, about 2 to 70%, preferably about 10 to 30%. Furthermore, the open-cell foam used in the present invention is not particularly limited as long as it has the property of being able to absorb the dispersion liquid by compressing it in the dispersion liquid, such as polyurethane, polyethylene, polyvinyl chloride, Conventionally known foams such as open cell foams and semi-closed cell foams such as foams made of acrylic, ethylene-vinyl acetate copolymer (EVA), ethylene propylene terpolymer (EPT) rubber, and chloroprene rubber are used. Widely applicable. In particular, by using the hydrosol-based impregnating liquid according to the present invention, it is possible to use the hydrosol-based impregnating liquid of the present invention even for materials such as polyurethane and polyvinyl chloride foam, which tend to swell and reduce their mechanical strength with conventional organic solvent-based impregnating liquids. It can be applied advantageously. The conductive foam of the present invention is usually produced by impregnating the above-mentioned open cell foam with an impregnation liquid in which a conductive material is mixed and dispersed in a hydrosol water dispersion, and then drying the impregnated foam. Drying is usually done by heating. The impregnation step and the drying step may be continuous or discontinuous steps. In the case of a continuous process, for example, the foam wound into a roll is introduced into an impregnation tank via a roll, impregnated with an appropriate amount by an impregnation adjustment roll, and then passed through a heating drying chamber to volatilize water. good. The amount of impregnation depends on the characteristics of the desired conductive foam, such as the type and specific gravity of the open-cell foam, the type and viscosity of the hydrosol water dispersion of the impregnating liquid, and the type and amount of conductive material mixed and dispersed. Therefore, although they vary considerably, in general, the solid content weight ratio is 0.2 to 3 times that of the open cell foam, and the weight percentage of the conductive material is 1 to 50%, particularly preferably 0.5 to 1 times, 10 times, respectively.
It is best to set it to ~20%. [Function/Effect] Since the conductive foam of the present invention uses a hydrosol as the impregnating liquid to impregnate the foam, there are no restrictions on the material of the foam, and the types of conductive materials to be mixed and dispersed are not limited. The polymer particles are extremely small and have excellent dispersibility, and especially in the case of adhesive acrylics, this adhesiveness makes them the optimal binder. The foamed material has the advantage that low electrical resistance can be obtained with a small amount of conductive material, there is little variation throughout, and there is no shedding or separation of the conductive material. Hereinafter, the present invention will be explained in more detail with reference to Examples, Comparative Examples, and Test Examples, but the present invention is not limited by these in any way. Example 1 A monomer mixture consisting of 76 parts of 2-ethylhexyl acrylate, 4 parts of acrylic acid, and 20 parts of acrylonitrile was used as a polymerization initiator, and 0.5 parts of benzoyl peroxide was used as a polymerization initiator.
After carrying out bulk polymerization using 1.5 parts, 4 parts of aqueous ammonia and 500 parts of water were added and mixed with thorough stirring to obtain an acrylic hydrosol. Add 60 parts of acetylene black to this acrylic hydrosol, mix and disperse in a ball mill to obtain an impregnating liquid, and impregnate a polyurethane foam with a specific gravity of 0.03 so that the solid content is 1 to 2 times the weight ratio, and then heat dry. The conductive foam of the present invention was obtained by blowing hot air at 120° C. at 2 m 3 /min (foam traveling speed: 0.2 m/min) in a room to dry it. Example 2 A conductive foam was obtained in the same manner as in Example 1 using silver powder (average particle diameter of about 50 μm) instead of acetylene black. Example 3 A monomer mixture consisting of 20 parts of acrylic acid amide, 30 parts of ethyl acrylate, and 50 parts of 2-ethylhexyl methacrylate was solution polymerized using 250 parts of dioxane as a solvent and 0.5 part of benzoyl peroxide as a polymerization initiator. After that, dioxane was collected and removed by vacuum distillation, and 10 parts of ammonia water and 500 parts of water were added.
The mixture was stirred and mixed well to obtain an acrylic hydrosol. 80 parts of carbon black was added to this hydrosol and mixed and dispersed in a ball mill to obtain an impregnating liquid, which was then impregnated into a polyvinyl chloride foam with a specific gravity of 0.15 so that the weight ratio was 0.5 to 1 times. A conductive foam was obtained by heating and drying under the following operating conditions. Comparative example 1 Chloroprene latex (electrochemical LM-60)
Add a water-soluble pigment (carbon black) to a 60% weight solution.
30% by weight, emulsifier 10% by weight) was added, mixed and stirred to prepare an impregnating solution, which was impregnated into a polyurethane foam having a specific gravity of 0.03 and dried in the same manner as in Example 1 to obtain a conductive foam. Although an attempt was made to directly mix and disperse 70 parts of carbon black, it gelled and a dispersion liquid could not be obtained.As a result of gradually reducing the amount of carbon black, the limit was 5 parts of carbon black. Comparative Example 2 Chloroprene rubber 100 parts Oil 95 Stearic acid 5 Zinc oxide 5 Carbon black 120 Sodium bicarbonate 15 Sulfur 1.5 Tetramethylthiuram monosulfate 3.0 Fitts (vulcanization accelerator) The above mixture was extruded and vulcanized at 150°C. A conductive foam was obtained by foaming. Various properties of the conductive foams of the above Examples and Comparative Examples were evaluated, and the results were as shown in the following table. 【table】