JPS6332804B2 - - Google Patents

Info

Publication number
JPS6332804B2
JPS6332804B2 JP60290100A JP29010085A JPS6332804B2 JP S6332804 B2 JPS6332804 B2 JP S6332804B2 JP 60290100 A JP60290100 A JP 60290100A JP 29010085 A JP29010085 A JP 29010085A JP S6332804 B2 JPS6332804 B2 JP S6332804B2
Authority
JP
Japan
Prior art keywords
temperature
polymer
present
formula
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60290100A
Other languages
Japanese (ja)
Other versions
JPS62148504A (en
Inventor
Shoji Ito
Kensaku Mizoguchi
Masao Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60290100A priority Critical patent/JPS62148504A/en
Publication of JPS62148504A publication Critical patent/JPS62148504A/en
Priority to US07/144,649 priority patent/US4822848A/en
Publication of JPS6332804B2 publication Critical patent/JPS6332804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L37/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は新規な親水性―疎水性熱可逆型重合体
及びその製造方法に関するものである。さらに詳
しくいえば、本発明は、遮光体、温度センサー、
吸着剤、さらには玩具、インテリア、捺染剤、デ
イスプレイ、分離膜、メカノケミカル素子材料な
どに利用しうる親水性―疎水性熱可逆型重合体、
及びこのものを効率よく製造する方法に関するも
のである。 従来の技術 水溶性高分子化合物の中には、水溶液状態にお
いてある温度(転移温度又は曇点)以上では析出
白濁化し、その温度以下では溶解透明化するとい
う特殊な可逆的溶解挙動を示すものがあり、この
ものは親水性―疎水性熱可逆型重合体と呼ばれ、
近年温室や化学実験室、ラジオアイソトープのト
レーサー実験室などの遮光体、温度センサー、あ
るいは水溶性有機物質用吸着剤などとして利用さ
れつつある。 このような熱可逆型重合体としては、従来、ポ
リ酢酸ビニル部分けん化物、ポリビニルメチルエ
ーテル、メチルセルロース、ポリエチレンオキシ
ド、ポリビニルメチルオキサゾリデイノン及びポ
リアクリルアミド誘導体などが知られている。 これらの熱可逆型重合体の中でポリアクリルア
ミド誘導体は、水中で安定であり、かつ比較的安
価に製造しうるので、前記用途に好適であるが、
熱可逆性を有するものとしては、これまでポリ
(N―プロピルアクリルアミド)、ポリ(N,N―
ジエチルアクリルアミド)、ポリ(N―アクリル
ピロリジン)、ポリ(N―アクリルピペリジン)
などが知られているにすぎない。 このため、ポリアクリルアミド誘導体を、例え
ば温度センサーや遮光体などに利用しようとして
も、転移温度は物質に固有で、任意に設定するこ
とができず、これまでの限られた数の誘導体では
利用範囲が制限されるのを免れない。 発明が解決しようとする問題点 本発明の目的は、このような事情のもとで、親
水性―疎水性熱可逆型ポリアクリルアミド誘導体
の利用範囲を拡大すべく、さらに異なつた転移温
度を有する新規なポリアクリルアミド系の親水性
―疎水性熱可逆型重合体、及びこのものを効率よ
く製造する方法を提供することにある。 問題点を解決するための手段 本発明者らは鋭意研究を重ねた結果、一般式 (式中R1は水素原子又はメチル基である) で表わされるビニル化合物をラジカル重合して得
られる重合体により、前記目的を達成しうること
を見出し、この知見に基づいて本発明を完成する
に至つた。 すなわち、本発明は、一般式 (式中のR1は前記と同じ意味をもつ) で表わされる繰り返し単位から成り、30℃におけ
る極限粘度〔η〕0.01〜6.0に相当する分子量を
有する親水性―疎水性熱可逆型重合体、及びこれ
を前記一般式()で表わされるビニル化合物を
ラジカル重合させることによつて製造する方法を
提供するものである。 本発明で用いる前記一般式()で表わされる
ビニル化合物は、例えば次式で示されるように、
アクリル酸クロリド又はメタクリル酸クロリドと
テトラヒドロフルフリルアミンとトリエチルアミ
ンとをベンゼン中において、好ましくは0〜10℃
の温度で反応させる方法によつて製造することが
できる。 (式中のR1は前記と同じ意味をもつ) 本発明で用いるビニル化合物は、具体的には、
N―テトラヒドロフルフリルアクリルアミド(沸
点115℃/1mmHg)、N―テトラヒドロフルフリ
ルアミド(同140℃/4mmHg)である。 本発明においては、これらのビニル化合物をラ
ジカル重合させて、その重合体を製造する。重合
方法としては溶液重合法及び塊状重合法がある
が、通常溶液重合法が好ましく用いられる。この
溶液重合法においては、溶媒中に該ビニル化合物
を溶かし1〜80重量%濃度の溶液として、放射線
を照射するか、ラジカル重合開始剤の存在下に加
熱、あるいは光増感剤の存在下に光照射するな
ど、通常知られている任意のラジカル重合法を用
いることができる。このような溶液重合法に用い
られる溶媒については特に制限はないが、例えば
水、アルコール類、N,N―ジメチルホルムアミ
ド、N,N―ジメチルアセトアミド、ジメチルス
ルホキシド、アセトン、ジオキサン、テトラヒド
ロフラン、ベンゼン、クロロホルム、四塩化炭素
などを挙げることができ、これらはそれぞれ単独
で用いてもよいし、2種以上組み合わせて用いて
もよい。 このようにして得られた本発明の重合体は、低
温域で水に溶け、高温域で水に不溶となる高温疎
水化型の熱可逆性を有している。該重合体の転移
温度は重合条件によつて異なるが、1重量%水溶
液においては、ポリ(N―テトラヒドロフルフリ
ルアクリルアミド)で27〜30℃、ポリ(N―テト
ラヒドロフルフリルメタクリルアミド)で32〜37
℃の範囲にある。 本発明の重合体は―CONH―基、
INDUSTRIAL APPLICATION FIELD The present invention relates to a novel hydrophilic-hydrophobic thermoreversible polymer and a method for producing the same. More specifically, the present invention provides a light shield, a temperature sensor,
Hydrophilic-hydrophobic thermoreversible polymers that can be used in adsorbents, toys, interiors, printing agents, displays, separation membranes, mechanochemical device materials, etc.
The present invention also relates to a method for efficiently manufacturing the same. Prior Art Some water-soluble polymer compounds exhibit a special reversible dissolution behavior in which they precipitate and become cloudy above a certain temperature (transition temperature or cloud point) in an aqueous solution state, and dissolve and become transparent below that temperature. Yes, this is called a hydrophilic-hydrophobic thermoreversible polymer.
In recent years, it has been used as a light shield in greenhouses, chemical laboratories, radioisotope tracer laboratories, temperature sensors, and adsorbents for water-soluble organic substances. As such thermoreversible polymers, partially saponified polyvinyl acetate, polyvinyl methyl ether, methylcellulose, polyethylene oxide, polyvinylmethyloxazolidinone, polyacrylamide derivatives, and the like are conventionally known. Among these thermoreversible polymers, polyacrylamide derivatives are suitable for the above uses because they are stable in water and can be produced at relatively low cost.
So far, poly(N-propylacrylamide) and poly(N,N-
(diethylacrylamide), poly(N-acrylpyrrolidine), poly(N-acrylpiperidine)
etc. are only known. For this reason, even if we try to use polyacrylamide derivatives, for example, in temperature sensors or light shielding materials, the transition temperature is unique to the substance and cannot be set arbitrarily. cannot escape being restricted. Problems to be Solved by the Invention Under these circumstances, the purpose of the present invention is to further expand the scope of use of hydrophilic-hydrophobic thermoreversible polyacrylamide derivatives by developing novel polyacrylamide derivatives having different transition temperatures. An object of the present invention is to provide a polyacrylamide-based hydrophilic-hydrophobic thermoreversible polymer and a method for efficiently producing the same. Means for Solving the Problems As a result of extensive research, the inventors found that the general formula (In the formula, R 1 is a hydrogen atom or a methyl group) It was discovered that the above object can be achieved by a polymer obtained by radical polymerization of a vinyl compound represented by the following, and based on this knowledge, the present invention was completed. It came to this. That is, the present invention provides the general formula (R 1 in the formula has the same meaning as above) A hydrophilic-hydrophobic thermoreversible polymer having a molecular weight corresponding to an intrinsic viscosity [η] of 0.01 to 6.0 at 30°C, The present invention also provides a method for producing the same by radical polymerization of a vinyl compound represented by the above general formula (). The vinyl compound represented by the general formula () used in the present invention is, for example, as shown in the following formula:
Acrylic acid chloride or methacrylic acid chloride, tetrahydrofurfurylamine, and triethylamine in benzene, preferably at 0 to 10°C.
It can be produced by a method of reacting at a temperature of . (R 1 in the formula has the same meaning as above) Specifically, the vinyl compound used in the present invention is:
These are N-tetrahydrofurfuryl acrylamide (boiling point 115°C/1 mmHg) and N-tetrahydrofurfurylamide (boiling point 140°C/4 mmHg). In the present invention, these vinyl compounds are subjected to radical polymerization to produce a polymer thereof. Polymerization methods include a solution polymerization method and a bulk polymerization method, and the solution polymerization method is usually preferably used. In this solution polymerization method, the vinyl compound is dissolved in a solvent to form a solution with a concentration of 1 to 80% by weight, and then irradiated with radiation, heated in the presence of a radical polymerization initiator, or heated in the presence of a photosensitizer. Any commonly known radical polymerization method, such as light irradiation, can be used. There are no particular restrictions on the solvent used in such solution polymerization, but examples include water, alcohols, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, acetone, dioxane, tetrahydrofuran, benzene, and chloroform. , carbon tetrachloride, etc., and each of these may be used alone or in combination of two or more. The thus obtained polymer of the present invention has high-temperature hydrophobization type thermoreversibility, being soluble in water at low temperatures and insoluble in water at high temperatures. The transition temperature of the polymer varies depending on the polymerization conditions, but in a 1% by weight aqueous solution, it is 27 to 30 °C for poly(N-tetrahydrofurfuryl acrylamide) and 32 to 30 °C for poly(N-tetrahydrofurfuryl methacrylamide). 37
in the range of ℃. The polymer of the present invention has a -CONH- group,

【式】基、―CH2―CR1―基を有 するので、赤外線吸収スペクトルなどによつて同
定することができる。またその重合度について
は、メタノール溶液における30℃の温度での極限
粘度〔η〕が0.01〜6.0の範囲のものが実用的で
ある。さらに各種溶媒に対する溶解性について
は、冷水、メタノール、エタノール、クロロホル
ム、アセトン、テトラヒドロフラン、N,N―ジ
メチルホルムアミドなどには可溶であるが、熱
水、n―ヘキサン、n―ヘプタンなどには不溶で
ある。 発明の効果 本発明のポリアクリルアミド系親水性―疎水性
熱可逆型重合体は、可逆的に低温で水に溶け、高
温で水に不溶になるという高温疎水化型の熱可逆
性を有するものであつて、従来知られている熱可
逆型ポリアクリルアミド誘導体とは異なる転移温
度を有しており、温室や化学実験室、ラジオアイ
ソトープのトレーサー実験室などの遮光体、温度
センサー、水溶性有機物質の吸着剤、さらには玩
具、インテリア、捺染剤、デイスプレイ、分離
膜、メカノケミカル素子材料などに利用すること
ができる。 例えば、本発明の重合体を水溶液のままで、あ
るいは含水ゲルやマイクロカプセルの形態で透明
板上に積層したものは、太陽直射光によつて必要
以上に室内温度が昇温することを自動的に防止す
るための遮光体として好適である。 実施例 次に実施例により本発明をさらに詳細に説明す
る。 参考例 1の三角フラスコにトリエチルアミン51.33
g、テトラヒドロフルフリルアミン51.13g及び
ベンゼン450mlを入れ氷で冷やして内溶液を10℃
未満の温度に保ち、かきまぜながらこの中にアク
リル酸クロリド41.5mlとベンゼン50mlの混合溶液
を滴下漏斗から約3時間かけてゆつくり滴下し
た。滴下完了後、反応液を1昼夜放置冷却したの
ちろ過し、ロータリエバポレータを用いてろ液か
らベンゼンを除去して濃縮した。次いで減圧蒸留
して沸点115℃/1mmHgの無色透明の留分を回収
し、液状物質55.0gを得た。 このものはマススペクトル及びIRスペクトル
からN―テトラヒドロフルフリルアクリルアミド
であることが確認された。 同様にして、N―テトラヒドロフルフリルメタ
クリルアミドを合成した。 実施例 参考例で得た各種モノマーのラジカル重合体を
製造した。 重合開始剤としてアゾビスイソブチロニトリル
を用い、重合開始剤濃度50mg/1mlのベンゼン溶
液20mlに所定重量のN―テトラヒドロフルフリル
アクリルアミドないし、N―テトラヒドロフルフ
リルメタクリルアミドを加え、これをアンプルに
入れ、液体窒素を用いて減圧脱気したのち封じ、
温度50℃で前者では2時間、後者では24時間反応
させた。反応後、この溶液をベンゼン―n―ヘキ
サン混合溶媒中に投入してポリマーを沈殿させ、
回収した。 得られたポリマーについては、メタノール溶液
とし、ウベローデ粘度計を用いて30℃で粘度測定
し、極限粘度〔η〕を求めた。また、転移温度
を、水溶液の温度変化に伴う光透過率の変化及び
DSC測定から求めた。すなわち、1重量%濃度
のポリマー水溶液を調製して、温度コントローラ
付分光光度計にセツトし、昇温速度1℃/minで
昇温させながら、波長500nmでの光透過率を測定
し、転移温度はこの光透過率が初期透過率の1/2
となる温度(Tl)から求めた。またポリマー7
〜8mgをを水50〜60mg中に加え、昇温速度1℃/
minでDSC測定を行い、吸熱ピークの頂点の温度
(Tb)からも転移温度を求めた。 これらの結果を次表に示す。また第1図に
DSC曲線を、第2図に透過率―温度曲線を示す。 これらの図において、1はポリ(N―テトラヒ
ドロフルフリルアクリルアミド)、2はポリ(N
―テトラヒドロフルフリルメタクリルアミド)の
データであり、また、第2図において、実線は昇
温時、点線は降温時のデータである。
[Formula] group, --CH 2 --CR 1 -- group, so it can be identified by infrared absorption spectrum, etc. Regarding the degree of polymerization, it is practical that the intrinsic viscosity [η] in a methanol solution at a temperature of 30° C. is in the range of 0.01 to 6.0. Furthermore, regarding solubility in various solvents, it is soluble in cold water, methanol, ethanol, chloroform, acetone, tetrahydrofuran, N,N-dimethylformamide, etc., but insoluble in hot water, n-hexane, n-heptane, etc. It is. Effects of the Invention The polyacrylamide-based hydrophilic-hydrophobic thermoreversible polymer of the present invention has high-temperature hydrophobization type thermoreversibility in that it reversibly dissolves in water at low temperatures and becomes insoluble in water at high temperatures. It has a transition temperature different from that of conventionally known thermoreversible polyacrylamide derivatives, and can be used as light shields in greenhouses, chemical laboratories, radioisotope tracer laboratories, temperature sensors, and water-soluble organic substances. It can be used in adsorbents, toys, interiors, textile printing agents, displays, separation membranes, mechanochemical device materials, etc. For example, if the polymer of the present invention is laminated on a transparent plate in the form of an aqueous solution or in the form of a hydrogel or microcapsule, it will automatically prevent the room temperature from rising more than necessary due to direct sunlight. It is suitable as a light shielding body to prevent this. Examples Next, the present invention will be explained in more detail with reference to Examples. Reference example Triethylamine 51.33 in Erlenmeyer flask 1
Add 51.13 g of tetrahydrofurfurylamine and 450 ml of benzene, cool with ice, and bring the inner solution to 10°C.
A mixed solution of 41.5 ml of acrylic acid chloride and 50 ml of benzene was slowly dropped into the solution from a dropping funnel over a period of about 3 hours while stirring. After completion of the dropwise addition, the reaction solution was left to cool for one day and then filtered, and benzene was removed from the filtrate using a rotary evaporator and concentrated. Then, a colorless and transparent fraction with a boiling point of 115° C./1 mmHg was recovered by distillation under reduced pressure to obtain 55.0 g of a liquid substance. This product was confirmed to be N-tetrahydrofurfurylacrylamide from the mass spectrum and IR spectrum. Similarly, N-tetrahydrofurfuryl methacrylamide was synthesized. Example Radical polymers of various monomers obtained in Reference Examples were produced. Using azobisisobutyronitrile as a polymerization initiator, add a predetermined weight of N-tetrahydrofurfuryl acrylamide or N-tetrahydrofurfuryl methacrylamide to 20 ml of a benzene solution with a polymerization initiator concentration of 50 mg/1 ml, and add this to an ampoule. After degassing under reduced pressure using liquid nitrogen, seal it.
The reaction was carried out at a temperature of 50°C for 2 hours in the former case and 24 hours in the latter case. After the reaction, this solution was poured into a benzene-n-hexane mixed solvent to precipitate the polymer,
Recovered. The obtained polymer was made into a methanol solution, and the viscosity was measured at 30°C using an Ubbelohde viscometer to determine the intrinsic viscosity [η]. In addition, the transition temperature is calculated by the change in light transmittance due to the temperature change of the aqueous solution.
Obtained from DSC measurement. That is, a polymer aqueous solution with a concentration of 1% by weight was prepared, set in a spectrophotometer equipped with a temperature controller, and while increasing the temperature at a rate of 1°C/min, the light transmittance at a wavelength of 500nm was measured, and the transition temperature was determined. This light transmittance is 1/2 of the initial transmittance.
It was determined from the temperature (Tl). Also polymer 7
Add ~8mg to 50~60mg of water and increase the temperature at a rate of 1℃/
DSC measurement was performed at min, and the transition temperature was also determined from the temperature at the top of the endothermic peak (Tb). These results are shown in the table below. Also in Figure 1
The DSC curve is shown in Figure 2, and the transmittance-temperature curve is shown in Figure 2. In these figures, 1 is poly(N-tetrahydrofurfurylacrylamide) and 2 is poly(N-tetrahydrofurfurylacrylamide).
-tetrahydrofurfuryl methacrylamide), and in FIG. 2, the solid line is the data when the temperature is raised, and the dotted line is the data when the temperature is lowered.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明重合体水溶液のDSC曲線を
示すグラフ、第2図は、本発明重合体の1重量%
水溶液における透過率―温度曲線を示すグラフで
ある。
FIG. 1 is a graph showing the DSC curve of an aqueous solution of the polymer of the present invention, and FIG. 2 is a graph showing the DSC curve of an aqueous solution of the polymer of the present invention.
It is a graph showing a transmittance-temperature curve in an aqueous solution.

Claims (1)

【特許請求の範囲】 1 一般式 (式中のR1は水素原子又はメチル基である) で表わされる繰り返し単位から成り、30℃におけ
る極限粘度〔η〕0.01〜6.0に相当する分子量を
有する親水性―疎水性熱可逆型重合体。 2 一般式 (式中のR1は前記と同じ意味をもつ) で表わされるビニル化合物をラジカル重合させる
ことを特徴とする、一般式 (式中のR1は前記と同じ意味をもつ) で表わされる繰り返し単位から成り、30℃におけ
る極限粘度〔η〕0.01〜6.0に相当する分子量を
有する親水性―疎水性熱可逆型重合体の製造方
法。
[Claims] 1. General formula (R 1 in the formula is a hydrogen atom or a methyl group) A hydrophilic-hydrophobic thermoreversible polymer having a molecular weight corresponding to an intrinsic viscosity [η] of 0.01 to 6.0 at 30°C. . 2 General formula (R 1 in the formula has the same meaning as above) A general formula characterized by radically polymerizing a vinyl compound represented by (R 1 in the formula has the same meaning as above) A hydrophilic-hydrophobic thermoreversible polymer having a molecular weight corresponding to an intrinsic viscosity [η] of 0.01 to 6.0 at 30°C. Production method.
JP60290100A 1985-12-23 1985-12-23 Hydrophilic-hydrophobic thermally reversible polymer and production thereof Granted JPS62148504A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60290100A JPS62148504A (en) 1985-12-23 1985-12-23 Hydrophilic-hydrophobic thermally reversible polymer and production thereof
US07/144,649 US4822848A (en) 1985-12-23 1988-01-11 Hydrophilic-hydrophobic thermally reversible type polymer and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60290100A JPS62148504A (en) 1985-12-23 1985-12-23 Hydrophilic-hydrophobic thermally reversible polymer and production thereof

Publications (2)

Publication Number Publication Date
JPS62148504A JPS62148504A (en) 1987-07-02
JPS6332804B2 true JPS6332804B2 (en) 1988-07-01

Family

ID=17751791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60290100A Granted JPS62148504A (en) 1985-12-23 1985-12-23 Hydrophilic-hydrophobic thermally reversible polymer and production thereof

Country Status (2)

Country Link
US (1) US4822848A (en)
JP (1) JPS62148504A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692506A3 (en) 1994-07-14 1996-04-10 Miyoshi Yushi Kk Thermo-sensitive polyether polyurethane, production method thereof and thermo-sensitive composition
US6258275B1 (en) * 1999-10-01 2001-07-10 Ecole Polytechnique Federale De Lausanne Affinity macroligands
US9468595B2 (en) 2012-11-02 2016-10-18 Empire Technology Development Llc Acrylamide derivatives
US9238774B2 (en) 2012-11-02 2016-01-19 Empire Technology Development Llc Soil fixation, dust suppression and water retention
US9174871B2 (en) 2012-11-02 2015-11-03 Empire Technology Development Llc Cement slurries having pyranose polymers
WO2014088555A1 (en) 2012-12-04 2014-06-12 Empire Technology Development Llc High performance acrylamide adhesives
US20140178344A1 (en) * 2012-12-04 2014-06-26 Empire Technology Development Llc Acrylamide hydrogels for tissue engineering

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608424A (en) * 1982-07-19 1986-08-26 Eastman Kodak Company Latex compositions comprising loadable polymeric particles
US4497929A (en) * 1982-07-19 1985-02-05 Eastman Kodak Company Latex compositions comprising loadable polymeric particles

Also Published As

Publication number Publication date
JPS62148504A (en) 1987-07-02
US4822848A (en) 1989-04-18

Similar Documents

Publication Publication Date Title
JPS6332804B2 (en)
JPS6355527B2 (en)
JPS6330331B2 (en)
JPS6332805B2 (en)
JPS6330330B2 (en)
JPH0613580B2 (en) Hydrophilic-hydrophobic thermoreversible polymer compound and method for producing the same
JPH066660B2 (en) Hydrophilic-hydrophobic thermoreversible material
JPS6332803B2 (en)
JPH0583085B2 (en)
JPH0613579B2 (en) Hydrophilic-hydrophobic thermoreversible polymer compound and method for producing the same
JPS63270674A (en) Novel vinyl compound
JPS63295613A (en) Thermally reversible hydrophilic/hydrophobic polymeric compound and manufacture thereof
JPS6176514A (en) Photochromic polymeric compound and its preparation
JPH0618970B2 (en) Hydrophilic-hydrophobic thermoreversible material
JPH02129209A (en) Thermoreversibly hydrophilic-hydrophobic polymer compound and preparation thereof
JPS63243112A (en) Water and alcohol solvent dependent heat reversible high polymer compound and production thereof
JPH0521102B2 (en)
JPH01249815A (en) Hydrophilic-hydrophobic thermoreversible polymer and production thereof
JPH066610B2 (en) Hydrophilic-hydrophobic thermoreversible polymer material and method for producing the same
JPS61225157A (en) Novel vinyl compound
JPS63179877A (en) Novel vinyl compound
JPS63117017A (en) Production of heat-sensitive polymer compound
JPH0434985B2 (en)
JPS6332802B2 (en)
JPS62242655A (en) Novel vinyl compound

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term