JPS633275B2 - - Google Patents

Info

Publication number
JPS633275B2
JPS633275B2 JP57156540A JP15654082A JPS633275B2 JP S633275 B2 JPS633275 B2 JP S633275B2 JP 57156540 A JP57156540 A JP 57156540A JP 15654082 A JP15654082 A JP 15654082A JP S633275 B2 JPS633275 B2 JP S633275B2
Authority
JP
Japan
Prior art keywords
coil
poloidal
torus
coil support
electromagnetic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57156540A
Other languages
Japanese (ja)
Other versions
JPS5946584A (en
Inventor
Takashi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57156540A priority Critical patent/JPS5946584A/en
Publication of JPS5946584A publication Critical patent/JPS5946584A/en
Publication of JPS633275B2 publication Critical patent/JPS633275B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】 本発明はトーラス型核融合装置のポロイダルコ
イル支持装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a poloidal coil support device for a torus type nuclear fusion device.

トーラス型核融合装置の概要を第1図、及び第
2図にて説明する。該図に示す如く、トーラス型
核融合装置は、厚肉部2aとベローズ部2bを交
互に配置して構成され内部を真空にしプラズマ1
を保持する真空容器2と、プラズマ1の芯となる
トロイダル磁場を発生させるために真空容器2を
取り囲み、かつ、トーラス周方向に所定間隔をも
つて複数個配置されるトロイダルコイル5と、プ
ラズマ電流を発生、制御するため真空容器2に沿
つて同芯状に配置されるポロイダルコイル6とか
ら概略構成される。尚、7は変流器コイル、8は
真空排気装置、9はトロイダルコイル5を支持す
るベースである。
An overview of the torus-type fusion device will be explained with reference to FIGS. 1 and 2. As shown in the figure, the torus-type nuclear fusion device is constructed by alternately arranging thick-walled parts 2a and bellows parts 2b, and evacuates the inside to generate plasma 1.
a vacuum vessel 2 that holds a plasma 1; a plurality of toroidal coils 5 that surround the vacuum vessel 2 and are arranged at predetermined intervals in the circumferential direction of the torus in order to generate a toroidal magnetic field that is the core of the plasma 1; It is generally composed of a poloidal coil 6 arranged concentrically along the vacuum vessel 2 to generate and control. Note that 7 is a current transformer coil, 8 is a vacuum exhaust device, and 9 is a base that supports the toroidal coil 5.

このように構成されるトーラス型核融合装置に
おけるポロイダルコイル6には、第3図に示す様
にポロイダルコイル6同志の作用により、主半径
方向電磁力13、および垂直方向電磁力12が発
生する。前者は導体自身で電磁力を受け、後者は
ポロイダルコイル6を支持するコイル支持体10
にて電磁力を支持する。従つて、導体には主半径
方向電磁力13によるフープ応力と、垂直方向電
磁力12とコイル支持スパンで決定される曲応力
が発生する。コイル支持体10は、トーラス全周
に均等に配置されるが、外周側コイルでは支持ス
パンが長くなり、上記曲応力が大となる。従つ
て、外周側コイル支持部は、第3図に示す様にト
ロイダル方向にコイル支持棚11を出し、コイル
支持スパンを短くして前記曲応力を小さくする様
にしている。
In the poloidal coil 6 in the torus-type nuclear fusion device configured as described above, a main radial electromagnetic force 13 and a vertical electromagnetic force 12 are generated by the action of the poloidal coils 6 together, as shown in FIG. The former receives electromagnetic force by the conductor itself, and the latter receives the electromagnetic force by the conductor itself, and the latter receives the coil support 10 that supports the poloidal coil 6.
supports electromagnetic force. Therefore, a hoop stress due to the main radial electromagnetic force 13 and a bending stress determined by the vertical electromagnetic force 12 and the coil support span are generated in the conductor. The coil supports 10 are arranged evenly around the entire circumference of the torus, but the outer circumferential coil has a longer support span and the bending stress increases. Therefore, as shown in FIG. 3, the outer coil support section has a coil support shelf 11 extending in the toroidal direction to shorten the coil support span and thereby reduce the bending stress.

ところが、外周側コイルには、前記ポロイダル
磁場により発生する電磁力の他に、トロイダル磁
場のリツプルにより電磁力が発生する。この電磁
力は、トロイダルコイル5が有限個のコイルから
なるために発生するものであるが、第4図に示す
ように、トロイダル磁力線14はトーラス内周側
では同一主半径でありトロイダル磁場が同一とな
るが、トーラス外周側ではトロイダルコイル5か
ら磁場がもれ、トロイダル方向でトロイダル磁場
の強さが変化してしまうことから発生するもので
ある。このトロイダル磁場リツプルにより、ポロ
イダルコイル6には、第5図に示す様なトロイダ
ル磁場リツプル電磁力15が発生する。このトロ
イダル磁場リツプル電磁力15は、コイル支持体
10から突出しているコイル支持棚11に作用
し、コイル支持体10には面外に曲げる作用が働
く。この曲げモーメントにより、コイル支持体1
0が面外に変形すると、ポロイダルコイル6に大
きな歪が発生し、絶縁が破壊される恐れがある。
However, in addition to the electromagnetic force generated by the poloidal magnetic field, an electromagnetic force is generated in the outer circumferential coil due to the ripples of the toroidal magnetic field. This electromagnetic force is generated because the toroidal coil 5 is made up of a finite number of coils, but as shown in FIG. However, this occurs because the magnetic field leaks from the toroidal coil 5 on the outer circumferential side of the torus, and the strength of the toroidal magnetic field changes in the toroidal direction. Due to this toroidal magnetic field ripple, a toroidal magnetic field ripple electromagnetic force 15 as shown in FIG. 5 is generated in the poloidal coil 6. This toroidal magnetic field ripple electromagnetic force 15 acts on the coil support shelf 11 protruding from the coil support 10, and acts on the coil support 10 to bend it out of plane. This bending moment causes the coil support 1 to
If 0 is deformed out of plane, a large strain will occur in the poloidal coil 6, and there is a possibility that the insulation will be broken.

本発明は上述の点に鑑み成されたもので、その
目的とするところは、コイル支持体の面外の変形
を防止して絶縁破壊をなくし、コイルの健全性を
保証するトーラス型核融合装置のポロイダルコイ
ル支持装置を提供するにある。
The present invention has been made in view of the above points, and its purpose is to prevent out-of-plane deformation of the coil support, eliminate dielectric breakdown, and ensure the integrity of the coil in a torus-type nuclear fusion device. To provide a poloidal coil support device.

本発明は主半径方向電磁力は導体自身で受け、
垂直方向電磁力はコイル支持体で受けるように成
しているポロイダルコイルのトーラス外周側に突
出しているコイル支持棚間を、該コイル支持棚の
突出方向に設けられ、中央部が絶縁されているシ
ヤーパネルを介して連結することにより、所期の
目的を達成するようになしたものである。
In the present invention, the main radial electromagnetic force is received by the conductor itself,
Vertical electromagnetic force is received by a coil support member. A shear panel is installed between coil support shelves protruding from the outer periphery of the torus of the poloidal coil in the direction in which the coil support shelves protrude, and whose central portion is insulated. The intended purpose is achieved by connecting the two via the .

以下、図面の実施例に基づいて本発明を説明す
る。尚、符号は従来と同一のものは同符号を使用
する。
The present invention will be described below based on embodiments shown in the drawings. Incidentally, the same reference numerals are used for the same parts as in the past.

第6図に本発明の一実施例を示す。トーラス型
核融合装置の構成は従来のものと全く同様のた
め、ここでの説明は省略し、以下は本発明に関連
する部分の説明とする。
FIG. 6 shows an embodiment of the present invention. Since the configuration of the torus-type nuclear fusion device is completely the same as that of the conventional one, the explanation here will be omitted, and the following will be a description of the parts related to the present invention.

該図に示す本実施例では、ポロイダルコイル6
のトーラス周方向に突出しているコイル支持棚1
1間を、このコイル支持棚11の突出方向、即ち
トーラス周方向に溶接、又はボルト等(図示せ
ず)で固定され、中央部が絶縁物17で絶縁され
ているシヤーパネル(このシヤーパネルとは、2
つの構造物間の相対変位を無くするため、構造物
間に板を出し、この板を相対変位を無くする方向
に高くし、曲げによる変形を無くし、せん断によ
る変形と主としたもの)16を介して連結してい
る。
In this embodiment shown in the figure, the poloidal coil 6
Coil support shelf 1 protruding in the circumferential direction of the torus
1 in the protruding direction of the coil support shelf 11, that is, in the circumferential direction of the torus, by welding, bolts, etc. (not shown), and the central portion is insulated with an insulator 17 (this shear panel is 2
In order to eliminate the relative displacement between the two structures, a plate is placed between the structures, and this plate is made higher in the direction that eliminates the relative displacement, eliminating deformation due to bending and deformation mainly due to shear) 16. Connected through.

このような本実施例のシヤーパネル16によ
り、コイル支持棚11間の相対変位を無くしコイ
ル支持体10を面外変形させるモーメントを打ち
消し面外変形が抑えられる。従つて、ポロイダル
コイル6には歪が発生せず、絶縁破壊の心配がな
いのでコイルの健全性を保証できる。また、シヤ
ーパネル16の中央を絶縁する事により、トーラ
ス周方向に渦電流が流れる事を防止できる。しか
も、コイル支持棚11部分を結合する事は、空間
を有効に利用する事となり、たとえば核融合装置
に付属する中性粒子加熱入射ポート、計測ポート
等と空間を分け合う必要のある核融合装置には非
常に効率的である。
The shear panel 16 of this embodiment eliminates relative displacement between the coil support shelves 11, cancels the moment that causes out-of-plane deformation of the coil support 10, and suppresses out-of-plane deformation. Therefore, no distortion occurs in the poloidal coil 6, and there is no fear of dielectric breakdown, so the integrity of the coil can be guaranteed. Furthermore, by insulating the center of the shear panel 16, it is possible to prevent eddy currents from flowing in the circumferential direction of the torus. Moreover, combining the coil support shelves 11 makes effective use of space, and for example, in a nuclear fusion device that needs to share space with a neutral particle heating injection port, a measurement port, etc. attached to the nuclear fusion device. is very efficient.

第7図、及び第8図にシヤーパネル16の中央
に設けられる絶縁物17の配置の他の例を示す。
第7図に示すのは、相隣接するシヤーパネル16
に凹凸部を設け、両者の接合部に絶縁物17を挿
入したもの、第8図に示すのは、絶縁物17を挿
入した後、両シヤーパネル16の凹凸部を絶縁ピ
ン18で固定したものである。これによつても、
上記と同様な効果を得ることができる。
FIGS. 7 and 8 show other examples of the arrangement of the insulator 17 provided at the center of the shear panel 16.
FIG. 7 shows adjacent shear panels 16.
In this case, an insulator 17 is inserted into the joint between the shear panels 16 and 16, and an insulator 17 is inserted between the shear panels 16 and the shear panel 16. In the case shown in FIG. be. Even with this,
The same effect as above can be obtained.

以上説明した本発明のトーラス型核融合装置の
ポロイダルコイル支持装置によれば、主半径方向
電磁力は導体自身で受け、垂直方向電磁力はコイ
ル支持体で受けるように成しているポロイダルコ
イルのトーラス外周側に突出しているコイル支持
棚間を、該コイル支持棚の突出方向に設けられ、
中央部が絶縁されているシヤーパネルを介して連
結するようにしたものであるから、コイル支持体
の面外変形を抑えることができるため、コイルの
絶縁破壊が防止され信頼性が向上する。
According to the poloidal coil support device for a torus-type fusion device of the present invention described above, the main radial electromagnetic force is received by the conductor itself, and the vertical electromagnetic force is received by the coil support. Provided between the coil support shelves protruding to the side in the protruding direction of the coil support shelves,
Since they are connected via a shear panel whose central portion is insulated, out-of-plane deformation of the coil support can be suppressed, thereby preventing dielectric breakdown of the coil and improving reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はトーラス型核融合装置の概略を一部断
面して示す平面図、第2図は第1図のA−A断面
図、第3図はトーラス型核融合装置における従来
のポロイダルコイルの支持状態の一部を示す斜視
図、第4図はトロイダル磁場リツプルを説明する
ためのコイル配置状態の一部を示す平面図、第5
図は従来のポロイダルコイルの支持状態における
電磁力の発生状況を示す図、第6図は本発明の一
実施例でポロイダルコイルの支持状態を示す平面
図、第7図、及び第8図はそれぞれ絶縁物の配置
状態の他の例を示す図である。 1……プラズマ、2……真空容器、5……トロ
イダルコイル、6……ポロイダルコイル、10…
…コイル支持体、11……コイル支持棚、16…
…シヤーパネル、17……絶縁物。
Figure 1 is a partially sectional plan view schematically showing a torus-type fusion device, Figure 2 is a sectional view taken along line A-A in Figure 1, and Figure 3 is a conventional poloidal coil support in a torus-type fusion device. FIG. 4 is a perspective view showing a part of the state, FIG. 4 is a plan view showing a part of the coil arrangement state for explaining toroidal magnetic field ripple, and FIG.
The figure shows how electromagnetic force is generated when a conventional poloidal coil is supported, FIG. 6 is a plan view showing how a poloidal coil is supported according to an embodiment of the present invention, and FIGS. It is a figure which shows the other example of the arrangement state of. 1... Plasma, 2... Vacuum vessel, 5... Toroidal coil, 6... Poloidal coil, 10...
...Coil support, 11...Coil support shelf, 16...
...Shear panel, 17...Insulator.

Claims (1)

【特許請求の範囲】[Claims] 1 内部にプラズマが閉じ込められるほぼドーナ
ツ状の真空容器と、該真空容器を取り囲み、か
つ、トーラス周方向に所定間隔をもつて複数個配
置されるトロイダルコイルと、前記真空容器とほ
ぼ同芯状に配置され、トーラス周方向に所定間隔
をもつて配置されるコイル支持体に支持される複
数個のポロイダルコイルとを備え、該ポロイダル
コイルは前記コイル支持体での支持部近傍が、ト
ーラス周方向に突出しているコイル支持棚で支持
され、該ポロイダルコイルに作用する主半径方向
電磁力をポロイダルコイルの導体自身で受け、垂
直方向電磁力を前記コイル支持体で受けて成るト
ーラス型核融合装置のポロイダルコイル支持装置
において、前記ポロイダルコイルのトーラス周方
向に突出している前記コイル支持棚間を、該コイ
ル支持棚の突出方向に設けられ、中央部が絶縁さ
れているシヤーパネルを介して連結したことを特
徴とするトーラス型核融合装置のポロイダルコイ
ル支持装置。
1. A nearly donut-shaped vacuum container in which plasma is confined, a plurality of toroidal coils surrounding the vacuum container and arranged at predetermined intervals in the circumferential direction of the torus, and approximately concentrically with the vacuum container. and a plurality of poloidal coils supported by coil supports disposed at predetermined intervals in the circumferential direction of the torus, the poloidal coils having a vicinity of the support portion of the coil support protruding in the circumferential direction of the torus. In a poloidal coil support device for a torus type nuclear fusion device, the poloidal coil support device is supported by a coil support shelf in which the poloidal coil is supported, the main radial electromagnetic force acting on the poloidal coil is received by the conductor of the poloidal coil itself, and the vertical electromagnetic force is received by the coil support, The torus-type nuclear fusion is characterized in that the coil support shelves protruding in the circumferential direction of the torus of the poloidal coil are connected via a shear panel provided in the protrusion direction of the coil support shelves and whose central portion is insulated. Poloidal coil support device of the device.
JP57156540A 1982-09-10 1982-09-10 Poloidal coil supporting device of torus type nuclear fusion device Granted JPS5946584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57156540A JPS5946584A (en) 1982-09-10 1982-09-10 Poloidal coil supporting device of torus type nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57156540A JPS5946584A (en) 1982-09-10 1982-09-10 Poloidal coil supporting device of torus type nuclear fusion device

Publications (2)

Publication Number Publication Date
JPS5946584A JPS5946584A (en) 1984-03-15
JPS633275B2 true JPS633275B2 (en) 1988-01-22

Family

ID=15630023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57156540A Granted JPS5946584A (en) 1982-09-10 1982-09-10 Poloidal coil supporting device of torus type nuclear fusion device

Country Status (1)

Country Link
JP (1) JPS5946584A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499000U (en) * 1977-12-26 1979-07-12

Also Published As

Publication number Publication date
JPS5946584A (en) 1984-03-15

Similar Documents

Publication Publication Date Title
US4055826A (en) Resiliently supported windings in an electrical reactor
JPH0114685B2 (en)
JPS633275B2 (en)
US3639872A (en) Means for controlling the leakage flux in transformers
US4689192A (en) Nuclear fusion reactor
US2735075A (en) thomason
US3466584A (en) Winding for a stationary induction electrical apparatus
JP2010062279A (en) Shell type amorphous transformer
US3649860A (en) Dynamoelectric machines
JP6830409B2 (en) Static induction electric device
JPS5946578A (en) Vacuum vessel of nuclear fusion device
JPH0974031A (en) Reactor
JPH0742959U (en) Multi-step board winding
JP7436246B2 (en) Reactor with temperature detection part
JPH0129781Y2 (en)
JP2626187B2 (en) Internal partitioning equipment for stationary electrical equipment
JPS642230B2 (en)
JPS5915365B2 (en) air core reactor
JPH11162751A (en) Foil winding stationary induction apparatus
JPS6023757Y2 (en) Toroidal magnetic field coil of torus-shaped fusion device
JPS59230191A (en) Nuclear fusion device and manufacture thereof
JP2001006948A (en) Winding of stationary inductor
JPS6038686A (en) Nuclear fusion device
CN112397293A (en) Air-core reactor system and basic leakage magnetic field annular shielding device
JPS6212317Y2 (en)