JPS6332743B2 - - Google Patents

Info

Publication number
JPS6332743B2
JPS6332743B2 JP57085600A JP8560082A JPS6332743B2 JP S6332743 B2 JPS6332743 B2 JP S6332743B2 JP 57085600 A JP57085600 A JP 57085600A JP 8560082 A JP8560082 A JP 8560082A JP S6332743 B2 JPS6332743 B2 JP S6332743B2
Authority
JP
Japan
Prior art keywords
raw material
water
emulsion
powder
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57085600A
Other languages
Japanese (ja)
Other versions
JPS58204863A (en
Inventor
Migiwa Ando
Akira Sawaki
Yukiaki Ito
Takashi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP57085600A priority Critical patent/JPS58204863A/en
Publication of JPS58204863A publication Critical patent/JPS58204863A/en
Publication of JPS6332743B2 publication Critical patent/JPS6332743B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱伝導率を顕著に改善し、しかも高絶
縁性を保持するセラミツクスの製造方法に関する
ものである。 例えば、高アルミナ磁器の薄板からなるプリン
ト配線基板は、近年電子回路の実装密度の上昇に
伴なつて発熱密度も大きくなつて来たため熱放散
の高い材料が強く要望されているが、比較的廉価
で高い熱伝導率を示す理由によつて般用される高
アルミナ磁器の場合も量産面から上限とされる
99.5%の高純度品においても0.07cal/cm・sec・
℃程度に止まり、上記の要望を満たすことができ
なかつた。 本発明は上記プリント配線基板を初め、各種セ
ラミツクスの絶縁抵抗をさして低下させることな
く、熱伝導率を顕著に改善した高熱伝導性セラミ
ツクスの製造法を確立したもので、以下実施例と
共にその詳細を説明する。 実施例 1 (イ) アルミナゾル(#200アルミナ含有率10%日
産化学) 130g CaCO3(市販品)平均粒径0.2μm 0.2g MgCO3(市販品)平均粒径0.1μm 0.1g 無水けい酸(市販品)平均粒径0.3μm 0.1g からなるセラミツクス原料の微粉末(第1の原
料粉末)に 非イオン性界面活性剤(ノニオンE―230、
HLB価17.3、日本油脂) 4.5g 水 2160c.c. を配合、マグネチツクスターラによつて混合し
て第1の分散液W1を作る。 (ロ) Fe2O3(市販品、平均粒径0.3μ) 42g MoO3(市販品、平均粒径0.5μ) 72g からなる無機質材料の微粉末(第2の原料粉
末)に ポリエチレンオキサイド(水溶性粒子結合
剤) 1g 水 450c.c. を配合、同じくマグネチツクスターラによつて
混合して第2の分散液W2を作り、 (ハ) 四塩化エチレン(非水溶性の溶媒) 1460g 非イオン性界面活性剤(OP―80R、HLB価
4.3、日本油脂) 9g の両者を前と同様マグネチツクスターラによつ
て混合して非水溶媒Oを作り、 (ニ) 上記OとW2を撹拌し乍ら混合し、非イオン
性界面活性剤によつて第2の原料粉末を分散さ
せたものを非水溶媒中で乳化し、無水のW2
がO中に分散してなるW2―Oエマルジヨンを
作る。 (ホ) W2―Oエマルジヨンと上記W1を撹拌し乍ら
混合し、これらW2―Oエマルジヨンと第1の
分散液W1に配合されたHLB価の異なる非イオ
ン性界面活性剤によつてW2―O―W1複合エマ
ルジヨンを作る。 このW2―O―W1複合エマルジヨンは、第1
の分散液W1中に、非水溶媒Oによつて被覆さ
れた塊状の第2の分散液W2が分散している。 (ヘ) W2―O―W1複合エマルジヨンを、ガス温度
170℃、デイスク径120mm、7200RPM、毎秒4
c.c.の条件によつて噴霧乾燥した。 造粒された顆粒は、Fe2O3とMoO3の塊をゲ
ル状のアルミナ微粉末によつて被覆され、その
平均粒径は100μであつた。 (ト) 顆粒を1500Kg/cm2の圧力で金型プレス成形し
た。 (チ) プレス成形品を露点35℃の水素雰囲気中にお
いて1500℃1時間保持して焼成し9mmφ×1mm
tの焼結品を得た。 焼結品は粉末冶金状に焼結されたFeとMoの微
粉末からなる40〜60μの無数の多面体が膜厚497μ
前後の焼結されたアルミナの絶縁層によつて強固
に結合した緻密な断面形状を呈した。 このようにして得た焼結品の諸特性を測定した
結果を第1表に示す。
The present invention relates to a method for manufacturing ceramics that significantly improves thermal conductivity and maintains high insulation properties. For example, printed wiring boards made of thin plates of high alumina porcelain have become more heat dissipating due to the increased packaging density of electronic circuits in recent years, so there is a strong demand for materials with high heat dissipation. In the case of high alumina porcelain, which is commonly used due to its high thermal conductivity, the upper limit is set from the perspective of mass production.
0.07 cal/cm・sec・ even for 99.5% high purity products
The temperature remained at about ℃, and the above requirements could not be met. The present invention has established a method for manufacturing highly thermally conductive ceramics that significantly improves thermal conductivity without significantly reducing the insulation resistance of various ceramics, including the above-mentioned printed wiring boards. explain. Example 1 (a) Alumina sol (#200 alumina content 10% Nissan Chemical) 130g CaCO 3 (commercially available) average particle size 0.2μm 0.2g MgCO 3 (commercially available) average particle size 0.1μm 0.1g Silicic anhydride (commercially available) Product) A nonionic surfactant (Nonion E-230,
HLB value 17.3, NOF) 4.5 g water 2160 c.c. was blended and mixed using a magnetic stirrer to prepare the first dispersion W 1 . ( b ) Polyethylene oxide (water - soluble (3) ethylene tetrachloride (water-insoluble solvent ) 1460g non-ionic surfactant (OP-80R, HLB value
4.3, Nippon Oil & Fats & Oil Co., Ltd.) 9g of both were mixed using a magnetic stirrer as before to make the non-aqueous solvent O. (d) The above O and W 2 were mixed while stirring to form a non-ionic surfactant. A dispersion of the second raw material powder is emulsified in a non-aqueous solvent to produce a W 2 -O emulsion in which anhydrous W 2 lumps are dispersed in O. (E) The W 2 -O emulsion and the above W 1 are mixed while stirring, and the nonionic surfactants with different HLB values blended into the W 2 -O emulsion and the first dispersion W 1 are used. Make a W 2 -O-W 1 composite emulsion. This W 2 -O-W 1 composite emulsion is the first
A second dispersion W 2 coated with a non-aqueous solvent O is dispersed in the dispersion W 1 . (f) W 2 -O-W 1 composite emulsion at gas temperature
170℃, disk diameter 120mm, 7200RPM, 4 per second
Spray drying was performed under cc conditions. In the granulated granules, Fe 2 O 3 and MoO 3 lumps were coated with gel-like alumina fine powder, and the average particle size was 100 μm. (g) The granules were press-molded with a die at a pressure of 1500 Kg/cm 2 . (h) The press-formed product is held at 1500℃ for 1 hour in a hydrogen atmosphere with a dew point of 35℃ and fired to form a 9mmφ×1mm
A sintered product of t was obtained. The sintered product has a film thickness of 497μ, consisting of countless polyhedrons of 40 to 60μ made of fine powders of Fe and Mo sintered in a powder metallurgical manner.
It had a dense cross-sectional shape that was firmly connected by the front and rear sintered alumina insulating layers. Table 1 shows the results of measuring various properties of the sintered product thus obtained.

【表】 上表から、本発明の上記実施例によつて得られ
た焼結品は、従来の高純度(99.5%)アルミナ磁
器に比して、懸念された絶縁抵抗の低下を無視し
うる程度に止め、目的とする熱伝導率を格段と上
昇させ、特に高い熱放散性が要求される前に述べ
たプリント配線基板を対象とした場合、従来最も
優れたものとされる鉄板にガラスを焼付けたホー
ロー基板の熱伝導率0.1cal/cm・sec・℃に対し
て70%も高く、電子回路の実装密度を格段と高め
ることができる。 なお、上記実施例1においては第1の原料粉末
としてアルミナゾルに鉱化剤としてCaCO3
MgCO3,SiO2の微量を配合したが、これらの一
部または全部をステアリン酸カルシウム、ステア
リン酸マグネシウム、けい酸エチル等非水溶性有
機化合物に代えると共に非水溶媒Oに配合するこ
とによつて該非水溶媒の機能を高め、かつ焼成過
程においてCaO―MgO―SiO2系ガラスを生成し
て焼結されたFe,Moの微粉末と、これを被覆す
るアルミナの絶縁層の密着性を更に高めることが
でき、また第1の分散液W1にメチルセルロース
等水溶性の粒子結合剤の微量(水に対して0.5%
以下)を添加することによつて噴霧乾燥によつて
造粒された顆粒の表面を被覆するゲル状のアルミ
ナ微粉末からなる薄層を硬化して取扱いを容易と
し、上記非水溶媒Oに対して同じく非水溶性の粒
子結合剤としてエチルセルロース等の微量を添加
することも有効である。 実施例 2 フオルステライト磁器(2MgO・SiO2)原料微
粉末 平均粒径0.5μm 10g 非イオン性界面活性剤(ノイゲンEA―170、
HLB価17、第一工業製薬) 4g 水 2000c.c. の混合物からなる第1の散液W1と、 Fe2O3(市販品、平均粒径0.3μ) 113g ポリビニルアルコール(デンカB―05)(水溶
性粒子結合剤) 1g 水 400c.c. の混合物からなる第2の分散液W2と、 二塩化エチレン(非水溶性の溶媒) 990g 非イオン性界面活性剤(ノイゲンEA―33、
HLB価4、第一工業製薬) 8g の混合物からなる非水溶媒Oの3者によつて前例
と同様、W2―O―W1エマルジヨンを作り、噴霧
乾燥、プレス成形を行つた後、露点30℃の水素雰
囲気中において1400℃、1時間保持の条件で焼成
して得た9mmφ×1mmtの焼結品は、金属鉄の微
粉末の焼結体からなる50〜60μの無数の多面体
が、5μ前後のフオルステライト磁器の絶縁層に
よつて強固に結合した断面形状を呈した。 この焼結品は第2表の通り、フオルステライト
磁器の特性にさして悪影響をもたらすことなく熱
伝導率を大巾に改善する著効を示した。
[Table] From the above table, it can be seen that the sintered product obtained by the above embodiment of the present invention has a negligible decrease in insulation resistance compared to conventional high purity (99.5%) alumina porcelain. In order to significantly increase the target thermal conductivity, and especially for the printed wiring board mentioned earlier that requires high heat dissipation, glass is applied to the iron plate, which is considered to be the best material in the past. The thermal conductivity of baked enamel boards is 0.1 cal/cm・sec・℃, which is 70% higher, and it is possible to significantly increase the packaging density of electronic circuits. In the above Example 1, CaCO 3 and mineralizers were added to alumina sol as the first raw material powder.
Although trace amounts of MgCO 3 and SiO 2 were added, some or all of these were replaced with water-insoluble organic compounds such as calcium stearate, magnesium stearate, and ethyl silicate, and the non-aqueous solvent was added to the non-aqueous solvent O. To further improve the adhesion between the sintered Fe and Mo fine powder and the alumina insulating layer covering it by enhancing the function of the water solvent and generating CaO-MgO-SiO 2 glass in the firing process. In addition, a trace amount of a water-soluble particle binder such as methylcellulose (0.5% based on water) is added to the first dispersion W1.
By adding the following), the thin layer of gel-like alumina fine powder that coats the surface of the granules granulated by spray drying is hardened, making it easier to handle, and making it easier to handle. Similarly, it is also effective to add a trace amount of ethyl cellulose as a water-insoluble particle binder. Example 2 Forsterite porcelain (2MgO・SiO 2 ) raw material fine powder Average particle size 0.5μm 10g Nonionic surfactant (Noigen EA-170,
First dispersion W 1 consisting of a mixture of 4 g water (2000 c.c.) (HLB value 17, Daiichi Kogyo Seiyaku) and 113 g polyvinyl alcohol (Denka B-05) Fe 2 O 3 (commercial product, average particle size 0.3μ) ) (water-soluble particle binder) 1g water 400c.c. second dispersion W 2 consisting of a mixture of 990g ethylene dichloride (water-insoluble solvent) non-ionic surfactant (Neugen EA-33,
As in the previous example, a W 2 -O-W 1 emulsion was made using a mixture of 8 g of HLB value 4 (Daiichi Kogyo Seiyaku) and the non-aqueous solvent O, and after spray drying and press molding, the dew point The 9mmφ x 1mmt sintered product obtained by firing at 1400℃ for 1 hour in a hydrogen atmosphere at 30℃ consists of countless 50-60μ polyhedra made of a sintered body of fine powder of metallic iron. It exhibited a cross-sectional shape that was firmly connected by an insulating layer of forsterite porcelain with a diameter of about 5μ. As shown in Table 2, this sintered product showed remarkable effects in greatly improving the thermal conductivity without causing any adverse effects on the properties of forsterite porcelain.

【表】 上記実施例1および2は共にプリント配線基板
を対象としたが、本発明は薄板に限定されること
なく、絶縁抵抗を初めセラミツクスの諸特性と共
に特に高い熱放散性を要求されるICパツケージ
等厚肉のセラミツクスを初め、板状体に限ざず円
筒、棒状体の製造に適用することができる。 また、高絶縁性の第1の原料微粉末として特に
高い熱伝導性を有するベリリアを採用することに
よつて更に熱放散性を高めることが可能であり、
高熱伝導性の第2の原料微粉末としては実施例に
おいて示したFe2O3,MoO3等焼成によつて金属
化する酸化物に限らず他の化合物、あるいは金属
を直接使用してもよく、また非酸化性雰囲気中に
おいて安定なSiC,BN等の炭化物,窒化物類も
使用できるが、これら第1と第2の原料微粉末は
熱膨張係数および焼結温度が近似する材料の組合
せが好ましい。 しかして、上記第1の原料微粉末によつて形成
される絶縁層は2μ程度の極めて薄い膜厚におい
ても充分固有の特性を示し、厚くした場合も膜厚
に応じた熱放散性を示すのでこの面からは特に限
定されないが3〜8μm程度が好ましく、所望の膜
厚に応じて第1の原料微粉末及び第2の原料微粉
末の配合割合が定められる。 次に満足すべきW2―O―W1エマルジヨンを製
造するため好ましい条件は、先ずW2とOとの合
量はW1に対して等量及至1/4(容量比、以下同
様)、W2とOとの関係もW2がOに対して等量及
至1/4であり、また第1及び第2の原料粉末
は、それぞれ第1の分散液W1及び第2の分散液
W2中にスラリー状として分散させるよう水に対
する配合割合が決定されるが、両者共全量中10〜
40重量%程度である。更に第1の分散液W1中の
界面活性剤は水に対して0.1〜0.5重量%の範囲で
あり、非水溶媒O中の界面活性剤は非水溶性の溶
剤に対して0.2〜2重量%である。 なお、W1及びOに配合する非イオン性界面活
性剤は、前に述べたようにそれらのHLB価によ
つて前者は水中に油を加えて乳化し、後者は油中
に水を加えて乳化するためのもので前者W1に配
合する非イオン性界面活性剤のHLB価は15以上、
後者Oに配合する非イオン性界面活性剤のHLB
価は5以下がそれぞれ好ましい。
[Table] Although Examples 1 and 2 above were both intended for printed wiring boards, the present invention is not limited to thin plates, and is applicable to ICs that require particularly high heat dissipation properties as well as insulation resistance and other properties of ceramics. It can be applied to the production of not only plate-shaped bodies but also cylinders and rod-shaped bodies, including thick-walled ceramics such as packages. In addition, by using beryllia, which has particularly high thermal conductivity, as the highly insulating first raw material fine powder, it is possible to further improve heat dissipation.
The second raw material fine powder with high thermal conductivity is not limited to the oxides that are metallized by firing, such as Fe 2 O 3 and MoO 3 shown in the examples, but other compounds or metals may also be used directly. In addition, carbides and nitrides such as SiC and BN that are stable in a non-oxidizing atmosphere can also be used, but these first and second raw material fine powders should be a combination of materials with similar thermal expansion coefficients and sintering temperatures. preferable. Therefore, the insulating layer formed from the above-mentioned first raw material fine powder exhibits sufficient specific characteristics even at an extremely thin film thickness of about 2 μm, and even when the film is thick, it exhibits heat dissipation properties corresponding to the film thickness. From this point of view, although not particularly limited, it is preferably about 3 to 8 μm, and the blending ratio of the first raw material fine powder and the second raw material fine powder is determined depending on the desired film thickness. Next, the preferred conditions for producing a satisfying W 2 -O-W 1 emulsion are: First, the total amount of W 2 and O is equal to or 1/4 of W 1 (volume ratio, the same applies hereinafter); The relationship between W 2 and O is such that W 2 is equal to or 1/4 of O, and the first and second raw material powders are the first dispersion W 1 and the second dispersion, respectively.
The mixing ratio of water is determined so that it can be dispersed in W 2 as a slurry, but in both cases 10 to 10% of the total amount
It is about 40% by weight. Furthermore, the surfactant in the first dispersion W 1 is in the range of 0.1 to 0.5% by weight based on water, and the surfactant in the non-aqueous solvent O is in the range of 0.2 to 2% by weight based on the non-aqueous solvent. %. As mentioned above, the nonionic surfactants added to W 1 and O are emulsified by adding oil to water, and the latter is emulsified by adding water to oil, depending on their HLB value. The HLB value of the nonionic surfactant added to the former W 1 for emulsification is 15 or higher.
HLB, a nonionic surfactant added to the latter O
The value is preferably 5 or less.

Claims (1)

【特許請求の範囲】 1 (イ) 高絶縁性を有するセラミツクス原料の微
粉末を第1の原料粉末とし、これに非イオン性
界面活性剤と水とを加えて混合して第1の分散
液W1を作る工程。 (ロ) 上記第1の原料粉末よりも高い熱伝導率を有
する、金属,焼成によつて金属化する金属の化
合物,炭化物,窒化物等無機質材料から選ばれ
た1種以上の微粉末を第2の原料粉末とし、こ
れに水溶性の粒子結合剤と水とを加えて混合し
て第2の分散液W2を作る工程。 (ハ) 非水溶性の溶剤と、(イ)の非イオン性界面活性
剤よりもHLB価の低い非イオン性界面活性剤
を混合して非水溶媒Oを作る工程。 (ニ) 上記W2をOと混合、乳化してW2―Oエマル
ジヨンを作る工程。 (ホ) 上記W2―OエマルジヨンとW1を混合、W2
―O―W1を作る工程。 (ヘ) 複合エマルジヨンW2―O―W1を噴霧乾燥す
る工程。 (ト) 所望の形状にプレス成形する工程。 (チ) 非酸化性雰囲気中において焼結する工程。 からなる高熱伝導性セラミツクスの製造方法。
[Claims] 1 (a) A fine powder of a ceramic raw material having high insulation properties is used as a first raw material powder, and a nonionic surfactant and water are added and mixed to form a first dispersion. The process of making W 1 . (b) One or more types of fine powder selected from inorganic materials such as metals, compounds of metals that can be metallized by firing, carbides, and nitrides, which have a higher thermal conductivity than the first raw material powder, are added to the powder. A step of preparing a second dispersion liquid W2 by adding and mixing a water-soluble particle binder and water to the raw material powder of No.2. (c) A step of preparing a non-aqueous solvent O by mixing a non-aqueous solvent and a non-ionic surfactant with a lower HLB value than the non-ionic surfactant in (a). (d) A step of mixing and emulsifying the above W 2 with O to produce a W 2 -O emulsion. (E) Mix the above W 2 -O emulsion and W 1 , W 2
-The process of making O-W 1 . (F) A step of spray drying the composite emulsion W 2 -O-W 1 . (g) A process of press forming into the desired shape. (h) Sintering process in a non-oxidizing atmosphere. A method for producing highly thermally conductive ceramics consisting of
JP57085600A 1982-05-20 1982-05-20 Manufacture of hightemperature heat conductive ceramics Granted JPS58204863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57085600A JPS58204863A (en) 1982-05-20 1982-05-20 Manufacture of hightemperature heat conductive ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57085600A JPS58204863A (en) 1982-05-20 1982-05-20 Manufacture of hightemperature heat conductive ceramics

Publications (2)

Publication Number Publication Date
JPS58204863A JPS58204863A (en) 1983-11-29
JPS6332743B2 true JPS6332743B2 (en) 1988-07-01

Family

ID=13863313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57085600A Granted JPS58204863A (en) 1982-05-20 1982-05-20 Manufacture of hightemperature heat conductive ceramics

Country Status (1)

Country Link
JP (1) JPS58204863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460918U (en) * 1990-09-29 1992-05-26

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508643B2 (en) * 2013-12-06 2019-05-08 Koa株式会社 Method for producing composition for electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460918U (en) * 1990-09-29 1992-05-26

Also Published As

Publication number Publication date
JPS58204863A (en) 1983-11-29

Similar Documents

Publication Publication Date Title
KR900002303B1 (en) Insulating paste for multilayer substrate
US5518969A (en) Process for producing low shrink ceramic composition
JPH0817217B2 (en) Copper-based sintered paste and multilayer ceramic packages
JPH0610927B2 (en) Ceramic substrate manufacturing method
JPS6332743B2 (en)
JPH0582760B2 (en)
EP1443031A1 (en) Thermally insulating coating material for refractory containing carbon
JPS6235201B2 (en)
CN112142485B (en) Ceramic fiber material and preparation method thereof
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
JPS6222941B2 (en)
US1658334A (en) Resistance material
JPS6221740B2 (en)
JPH02221162A (en) Production of aluminum nitride-based sintered body
JPH11163487A (en) Conductive paste for ceramic multilayered circuit board
JPS6128629B2 (en)
JPH02212363A (en) Production of sintered compact of aluminum nitride
JPS6155579B2 (en)
JP2891518B2 (en) Manufacturing method of aluminum nitride multilayer wiring board
JP2611290B2 (en) Manufacturing method of high thermal conductive ceramic substrate
JPS6319470B2 (en)
JPS6121959A (en) Manufacture of composite sintered body
JPS60122767A (en) Manufacture of high heat conductivity ceramics
JPH0768067B2 (en) Ceramic laminate and method for manufacturing the same
JPH01290556A (en) Ceramic sintered body calcined at low temperature