JPS6332721B2 - - Google Patents

Info

Publication number
JPS6332721B2
JPS6332721B2 JP57112114A JP11211482A JPS6332721B2 JP S6332721 B2 JPS6332721 B2 JP S6332721B2 JP 57112114 A JP57112114 A JP 57112114A JP 11211482 A JP11211482 A JP 11211482A JP S6332721 B2 JPS6332721 B2 JP S6332721B2
Authority
JP
Japan
Prior art keywords
metal hydride
hydrogen
heat
heat medium
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57112114A
Other languages
Japanese (ja)
Other versions
JPS593001A (en
Inventor
Michoshi Nishizaki
Minoru Myamoto
Kazuaki Myamoto
Yasushi Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP57112114A priority Critical patent/JPS593001A/en
Publication of JPS593001A publication Critical patent/JPS593001A/en
Publication of JPS6332721B2 publication Critical patent/JPS6332721B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 本発明は金属水素化物反応器に関する。[Detailed description of the invention] The present invention relates to metal hydride reactors.

ある種の金属、合金が可逆的に水素を吸蔵放出
することが知られている。水素吸蔵は発熱反応で
あり、水素放出は吸熱反応である。このような金
属水素化物の特性を利用したヒートポンプ、水素
貯蔵装置、水素精製装置、ケミカルエンジン等が
提案されている。
It is known that certain metals and alloys reversibly absorb and release hydrogen. Hydrogen storage is an exothermic reaction, and hydrogen release is an endothermic reaction. Heat pumps, hydrogen storage devices, hydrogen purification devices, chemical engines, etc. that utilize the characteristics of such metal hydrides have been proposed.

これらの金属水素化物装置において、金属水素
化物は密閉容器の中で水素吸蔵放出反応を行なう
が、反応速度は水素拡散と熱伝導により規制され
る。金属水素化物は水素吸蔵放出により膨張、収
縮し微粉体化して、密に充填され、水素が金属水
素化物層に円滑に流通しなくなり、微粉末体化の
ため金属水素化物層の熱伝導が低下する問題があ
つた。
In these metal hydride devices, the metal hydride undergoes a hydrogen absorption/desorption reaction in a closed container, but the reaction rate is regulated by hydrogen diffusion and heat conduction. The metal hydride expands, contracts, and becomes a fine powder due to hydrogen absorption and release, and is densely packed, making it impossible for hydrogen to flow smoothly into the metal hydride layer, and reducing the heat conduction of the metal hydride layer due to the fine powder formation. I had a problem.

上記の問題点の解決のため、発明者らは先に実
願昭56−40879号に示すように管状の容器の内部
に伝熱フインを設け、中央部に水素拡散のための
多孔質管を備えた金属水素化物反応器を提案した
が、多孔質管が金属水素化物の膨張のため圧潰し
て水素流通が阻害されることがあり、伝熱フイン
によつて熱伝導が向上するが、金属水素化物の充
填量が限られるとか、伝熱フインの熱容量が大と
なつて、ヒートポンプなどでは不利な条件となつ
ていた。
In order to solve the above problems, the inventors previously installed heat transfer fins inside a tubular container and a porous tube for hydrogen diffusion in the center, as shown in Utility Application No. 56-40879. However, the porous tubes may collapse due to the expansion of the metal hydride, inhibiting hydrogen flow, and although heat transfer fins improve heat conduction, The limited amount of hydride charged and the large heat capacity of the heat transfer fins were disadvantageous for heat pumps.

本発明者は金属水素化物と熱媒間の熱移動を充
填容器の容器壁を介して行なうのではなく、金属
水素化物層に多数の可撓性を有する細管からなる
熱媒管群を配置させて熱伝導させ、加えて水素流
通のための透過体を、圧潰しないようにあるいは
一部圧潰しても水素流通可能であるように、多数
の可撓性を有する管状の透過体群によつて水素流
通路を形成することに思いいたり、本発明をなし
た。
The inventor of the present invention did not transfer heat between the metal hydride and the heating medium through the container wall of the filled container, but arranged a heating medium tube group consisting of a large number of flexible thin tubes in the metal hydride layer. In addition, a group of flexible tubular permeable bodies is used so that the permeable body for hydrogen flow is not crushed or is partially crushed so that hydrogen can flow through it. The idea of forming a hydrogen flow path led to the invention.

本発明の要旨は、密閉容器内部に金属水素化物
が充填され、多数の可撓性を有する細管からなる
熱媒管群と、水素は透過するが金属水素化物を透
過しない多数の可撓性を有する管状の透過体から
なる水素透過体群が金属水素化物層内において互
に間に位置するようになされてなることを特徴と
する金属水素化物反応器に存する。
The gist of the present invention is to provide a group of heat medium tubes that are filled with a metal hydride inside a closed container and are made up of a large number of flexible thin tubes, and a large number of flexible tubes that allow hydrogen to pass through but not the metal hydride. The metal hydride reactor is characterized in that a group of hydrogen permeable bodies comprising tubular permeable bodies are positioned between each other in a metal hydride layer.

以下、本発明の一例を図面と共に説明する。 An example of the present invention will be described below with reference to the drawings.

第1図、第2図において1は密閉容器であり、
断面略円筒状になされ、両端部2,3が密閉され
ている。4,5は密閉容器1内で細管群を支える
ための支持板である。6,6は水素流通継手であ
り、支持板4に支持されている。7,7は熱媒流
通継手であり、支持板5に支持されている。
In FIGS. 1 and 2, 1 is a closed container,
It has a substantially cylindrical cross section, and both ends 2 and 3 are sealed. 4 and 5 are support plates for supporting the thin tube group within the closed container 1. Reference numerals 6 and 6 denote hydrogen flow joints, which are supported by the support plate 4. 7, 7 are heat medium flow joints, which are supported by the support plate 5.

水素流通継手6,6間には、多数の可撓性を有
する管状の透過体8群が設けられている。透過体
8は可撓性を有する管状のものであり、内径2〜
20mm程度であつて管壁に孔径1〜5μmの小孔が
多数設けられた多孔質の管体が好ましい。透過体
8の材質としては弗素樹脂などの合成樹脂多孔成
形品、合成樹脂焼結体、金属繊維又は炭素繊維の
不織布等があげられる。
A group of 8 flexible tubular permeable bodies is provided between the hydrogen flow joints 6, 6. The transparent body 8 has a flexible tubular shape, and has an inner diameter of 2 to 2.
A porous tube having a diameter of about 20 mm and having a large number of small pores with a diameter of 1 to 5 μm in the tube wall is preferred. Examples of the material for the transparent body 8 include porous molded products of synthetic resins such as fluororesin, sintered synthetic resins, nonwoven fabrics of metal fibers or carbon fibers, and the like.

該透過体8は密閉容器1の中にほぼ均一に分散
するようになされる。管状の透過体8の内径が2
mm未満であると水素流通抵抗が大きくなり、内径
が20mmを越えると透過体8が金属水素化物の膨張
圧縮で圧潰されてしまう傾向が生じる。透過体8
の小孔の孔径が1μ未満であれば、水素の透過拡
散の抵抗が大きくなり、5μを越えると微粉状の
金属水素化物が透過するようになる。
The permeable body 8 is dispersed almost uniformly within the closed container 1. The inner diameter of the tubular transparent body 8 is 2
If the inner diameter is less than 20 mm, the hydrogen flow resistance becomes large, and if the inner diameter exceeds 20 mm, the permeable body 8 tends to be crushed by the expansion and compression of the metal hydride. Transparent body 8
If the diameter of the small pores is less than 1μ, the resistance to permeation and diffusion of hydrogen will be large, and if it exceeds 5μ, fine powder metal hydride will be able to permeate.

多数の透過体8群の一例は第3図に示される。
多数の可撓性を有する細管からなる熱媒管9群
は、第3図の透過体8群と同じような外観を示す
が多孔質になつていない。熱媒管9群は密閉容器
1の中にほぼ均一に分散され、熱媒管9が透過体
8,8の間に位置するようなされている。そし
て、透過体8群と熱媒管9群の間には微粉状の金
属水素化物10が充填されている。熱媒管9は可
撓性を有するものであつて、弾性に富むものが好
ましく、ポリエチレン、ポリプロピレン、塩化ビ
ニル樹脂、弗素樹脂などにより形成される。これ
らの合成樹脂では熱媒中の夾雑物が付着しない利
点がある。熱媒管9の弾性は金属水素化物10の
膨張収縮を吸収し、熱媒管9の可撓性は金属水素
化物10の膨張収縮による圧迫で破壊されるのを
防止する。熱媒管9の内径は熱媒の流通抵抗を小
さくするため2mm以上であつて、金属水素化物1
0の膨張収縮による圧潰を防止するため20mm以下
であるのが好ましい。
An example of a large number of groups of 8 transparent bodies is shown in FIG.
The heat medium tube 9 group consisting of a large number of flexible thin tubes has an appearance similar to the transparent body 8 group shown in FIG. 3, but is not porous. The heat medium tubes 9 are distributed almost uniformly in the closed container 1, and the heat medium tubes 9 are positioned between the transparent bodies 8, 8. A finely powdered metal hydride 10 is filled between the 8 groups of transmitting bodies and the 9 groups of heat medium tubes. The heat medium tube 9 is flexible and preferably highly elastic, and is made of polyethylene, polypropylene, vinyl chloride resin, fluororesin, or the like. These synthetic resins have the advantage that impurities in the heat medium do not adhere to them. The elasticity of the heat medium tube 9 absorbs the expansion and contraction of the metal hydride 10, and the flexibility of the heat medium tube 9 prevents it from being destroyed by pressure caused by the expansion and contraction of the metal hydride 10. The inner diameter of the heat medium tube 9 is 2 mm or more in order to reduce the flow resistance of the heat medium, and the metal hydride 1
In order to prevent collapse due to zero expansion and contraction, the diameter is preferably 20 mm or less.

水素透過体8群及び熱媒管9群は、水素流通抵
抗、熱媒流通抵抗を別にすれば細く数が多い方が
よい。何故なら、水素透過体8から金属水素化物
10への水素拡散速度、熱媒と金属水素化物10
の間の熱伝導速度を大きくするために水素拡散の
距離、熱伝導の距離は小さい方がよく、水素透過
体8,8の距離、熱媒管9,9間の距離は好適に
は1〜50mmになされる。
It is better for the 8 groups of hydrogen permeable bodies and the 9 groups of heat medium pipes to be thin and large in number, apart from hydrogen flow resistance and heat medium flow resistance. This is because the hydrogen diffusion rate from the hydrogen permeable body 8 to the metal hydride 10, the heating medium and the metal hydride 10
In order to increase the heat conduction speed between the hydrogen diffusion and heat conduction distances, it is better to have a small distance, and the distance between the hydrogen permeable bodies 8 and the distance between the heat medium pipes 9 and 9 are preferably 1 to 1. Made in 50mm.

第4図、第5図は本発明の別の例である。 FIGS. 4 and 5 show another example of the present invention.

密閉容器1の両端部2,3の内側に支持板4,
5にそれぞれ熱媒流通継手7,7が支持され、更
に、支持板4には水素出入口継手11が支持され
ている。
Support plates 4,
Heat medium flow joints 7, 7 are supported on the support plate 4, respectively, and a hydrogen inlet/outlet joint 11 is further supported on the support plate 4.

水素透過体8a群の透過体8aは第1〜3図の
透過体8と異なり、一端がシールされている。本
発明の金属水素化物反応器を2個連結し、水素を
移動交換させて、ヒートポンプ装置を形成する場
合、第4図の水素透過体8a群を水素出入口継手
11を介して連結して水素移動可能にすることが
できる。
The hydrogen permeable bodies 8a of the group of hydrogen permeable bodies 8a are different from the permeable bodies 8 shown in FIGS. 1 to 3 in that one end thereof is sealed. When two metal hydride reactors of the present invention are connected to transfer and exchange hydrogen to form a heat pump device, the group of hydrogen permeable bodies 8a in FIG. can be made possible.

又、金属水素化物10層と密閉容器1の内壁面
の間に合成樹脂発泡体あるいは石綿などの断熱材
層12を設け、金属水素化物10と密閉容器1を
断熱している。断熱材層12を設けることによ
り、金属水素化物10が発生する熱は密閉容器1
に伝わらず、熱媒管9群を流通する熱媒に伝わ
り、熱損失が減少する。
Further, a heat insulating material layer 12 such as synthetic resin foam or asbestos is provided between the metal hydride 10 layer and the inner wall surface of the closed container 1 to insulate the metal hydride 10 and the closed container 1 from heat. By providing the heat insulating material layer 12, the heat generated by the metal hydride 10 is transferred to the closed container 1.
The heat is not transmitted to the heat medium, but is transmitted to the heat medium flowing through the group of heat medium pipes 9, thereby reducing heat loss.

本発明金属水素化物反応器は、上記の構成にな
されていることにより、以下に記載するような効
果を発揮する。
The metal hydride reactor of the present invention has the above-mentioned configuration and exhibits the effects described below.

熱媒と金属水素化物の距離が短かくなるか
ら、両者の間の熱伝導が良好となり金属水素化
物の水素吸蔵・放出反応を速やかに進行させる
ことができる。
Since the distance between the heating medium and the metal hydride is shortened, heat conduction between the two becomes good, and the hydrogen absorption/desorption reaction of the metal hydride can proceed rapidly.

多数の細管からなる熱媒管群が金属水素化物
層の中に分散して位置するので、金属水素化物
層の温度分布が均一となり、水素吸蔵・放出反
応を均一に進行させることができる。
Since the heat medium tube group consisting of a large number of thin tubes is distributed and located in the metal hydride layer, the temperature distribution of the metal hydride layer becomes uniform, and the hydrogen absorption/desorption reaction can proceed uniformly.

多数の透過体からなる水素透過体群が金属水
素化物層の中に位置するので、水素透過体から
金属水素化物への水素拡散は速やかに行なわ
れ、金属水素化物の水素吸蔵・放出反応速度が
大となる。
Since the hydrogen permeable body group consisting of many permeable bodies is located in the metal hydride layer, hydrogen diffusion from the hydrogen permeable body to the metal hydride occurs rapidly, and the hydrogen absorption/desorption reaction rate of the metal hydride is reduced. Becomes large.

可撓性を有する熱媒管群と可撓性を有する水
素透過体群が金属水素化物層の中に多数存在す
るので、金属水素化物の膨張収縮が吸収され、
密閉容器の壁に力が加わらず、変形破損を防止
することができ、密閉容器の壁厚を押えること
ができる。
Since a large number of flexible heat medium tube groups and flexible hydrogen permeable body groups exist in the metal hydride layer, expansion and contraction of the metal hydride is absorbed.
No force is applied to the wall of the sealed container, preventing deformation and damage, and reducing the thickness of the wall of the sealed container.

上記の通り、密閉容器に耐圧性が要求され
ず、金属水素化物層の反応を均一に行なわせる
ことができるから、密閉容器に大量の金属水素
化物を充填し、装置構造、操作を単純化するこ
とができる。
As mentioned above, the sealed container does not require pressure resistance and the reaction of the metal hydride layer can be carried out uniformly, so it is possible to fill the sealed container with a large amount of metal hydride, simplifying the device structure and operation. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明金属水素化物反応器の一例を示
す縦断面図、第2図は第1図―線で切欠いた
縦断面図、第3図は水素透過体群の一例を示す平
面図、第4図は本発明金属水素化物反応器の別の
例を示す縦断面図、第5図は第4図―線で切
欠いた縦断面図である。 1は密閉容器、8,8aは水素透過体、9は熱
媒管、10は金属水素化物。
FIG. 1 is a longitudinal sectional view showing an example of the metal hydride reactor of the present invention, FIG. 2 is a longitudinal sectional view cut away along the line of FIG. 1, and FIG. 3 is a plan view showing an example of a hydrogen permeable group. FIG. 4 is a longitudinal sectional view showing another example of the metal hydride reactor of the present invention, and FIG. 5 is a longitudinal sectional view taken along the line of FIG. 4. 1 is a closed container, 8 and 8a are hydrogen permeable bodies, 9 is a heating medium tube, and 10 is a metal hydride.

Claims (1)

【特許請求の範囲】[Claims] 1 密閉容器内部に金属水素化物が充填され、多
数の可撓性を有する細管からなる熱媒管群と、水
素は透過するが金属水素化物を透過しない多数の
可撓性を有する管状の透過体からなる水素透過体
群が金属水素化物層内においてお互に間に位置す
るようになされてなることを特徴とする金属水素
化物反応器。
1 A group of heat medium tubes filled with a metal hydride inside a closed container and consisting of a large number of flexible thin tubes, and a large number of flexible tubular permeable bodies that allow hydrogen to pass through but not the metal hydride. A metal hydride reactor, characterized in that a group of hydrogen permeable bodies consisting of the following are located between each other in a metal hydride layer.
JP57112114A 1982-06-28 1982-06-28 Reactor for metallic hydride Granted JPS593001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57112114A JPS593001A (en) 1982-06-28 1982-06-28 Reactor for metallic hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57112114A JPS593001A (en) 1982-06-28 1982-06-28 Reactor for metallic hydride

Publications (2)

Publication Number Publication Date
JPS593001A JPS593001A (en) 1984-01-09
JPS6332721B2 true JPS6332721B2 (en) 1988-07-01

Family

ID=14578512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57112114A Granted JPS593001A (en) 1982-06-28 1982-06-28 Reactor for metallic hydride

Country Status (1)

Country Link
JP (1) JPS593001A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4353333B2 (en) 2007-03-30 2009-10-28 Smc株式会社 Double-acting air cylinder positioning control mechanism
JP4353334B2 (en) 2007-03-30 2009-10-28 Smc株式会社 Single-acting air cylinder positioning control mechanism

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123811A (en) * 1974-07-31 1976-02-26 Hitachi Chemical Co Ltd SUISOKY UZOTANKU
JPS5848480Y2 (en) * 1976-12-27 1983-11-05 昭和電工株式会社 Hydrogen storage device using metal hydride
JPS5761601A (en) * 1980-09-29 1982-04-14 Sekisui Chem Co Ltd Reactor for metal hydride

Also Published As

Publication number Publication date
JPS593001A (en) 1984-01-09

Similar Documents

Publication Publication Date Title
US4457136A (en) Metal hydride reactor
US7651554B2 (en) Hydrogen storage system
JPH0444602B2 (en)
JPS6332721B2 (en)
EP0061191A1 (en) Metal hydride reactor
JPS62288495A (en) Heat exchanger
WAKAO et al. Kinetic studies and effective diffusivities in para to ortho hydrogen conversion reaction
JPS598601A (en) Reactor for metal hydride
JPS6118003Y2 (en)
JPS6334487A (en) Hydrogenated metal heat exchanger
JPS63225799A (en) Manufacture of reactor for hydrogen absorption alloy
JPS591952B2 (en) Structure of heat exchanger using metal hydride
JPS591950B2 (en) Structure of heat exchanger using hydrogen storage metal
JPS62258996A (en) Heat exchanger
JPS6118004Y2 (en)
JPS5899104A (en) Reactor for metallic hydride
JPH0253362B2 (en)
JPS59141403A (en) Metal hydride reactor vessel
JP3032998B2 (en) Hydrogen storage alloy holding container
JPH0121279Y2 (en)
JPS62251600A (en) Hydrogen flow material for metal hydride reaction container
JPS63259300A (en) Heat exchanger unit for hydrogen-storing alloy
JPS6248800B2 (en)
JPS58145601A (en) Reaction vessel for metal hydride
JPS58164994A (en) Vessel for metal hydride