JPS6332613A - Photoelectric guide system for unmanned vehicle - Google Patents

Photoelectric guide system for unmanned vehicle

Info

Publication number
JPS6332613A
JPS6332613A JP61177430A JP17743086A JPS6332613A JP S6332613 A JPS6332613 A JP S6332613A JP 61177430 A JP61177430 A JP 61177430A JP 17743086 A JP17743086 A JP 17743086A JP S6332613 A JPS6332613 A JP S6332613A
Authority
JP
Japan
Prior art keywords
output
photoelectric conversion
circuit
unmanned vehicle
turn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61177430A
Other languages
Japanese (ja)
Inventor
Hisatsugu Watanabe
久嗣 渡辺
Yuki Suzuki
鈴木 勇記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kito KK
Kito Corp
Original Assignee
Kito KK
Kito Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kito KK, Kito Corp filed Critical Kito KK
Priority to JP61177430A priority Critical patent/JPS6332613A/en
Publication of JPS6332613A publication Critical patent/JPS6332613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To smoothly drive straight or turn right and left an unmanned vehicle at a turning point of a guide band in response to a turning command, by providing a holding circuit which fixes the outputs of a pair of right and left photoelectric transducers and a detecting circuit for maximum output. CONSTITUTION:When a turning indication shows a straight drive of an unmanned carrier, the FFs 20 and 21 are set and the fixed output values of amplifiers 10 and 11 are delivered form the sample holding circuits 14 and 15. The vehicle travels straight. When the vehicle crosses a guide band bending right and left together with the maximum output secured, the detecting circuits 12 and 13 reset the circuits 14 and 15. Then both FFs 20 and 21 are reset and a normal drive mode is reset. At the time of right turn only the FF 20 is set and the fixed output value of the amplifier 10 is delivered from the circuit 14. Thus the carrier is steered by the outputs received from the circuit 14 and the amplifier 11 and turn to the right. A maximum output detecting circuit 12 detects the output of the amplifier 10, i.e., the output of a left photoelectric transducer and then detects which crosses the left and straight guide bands and has its maximum value. Then the circuit 14 and then the FF 20 are reset. Thus a normal drive mode is reset. Then the carrier is turned left by reversing the operations done at the time of right turn.

Description

【発明の詳細な説明】 〔産業上の利用分骨〕 本発明は、無人車の車体に取付けた左右一対の光電変換
素子により床面に張られた誘導帯からの反射光を検出し
、その検出信号により無人車を誘導帯に沿って誘導させ
る無人車の光電誘導方式に関するものである。
[Detailed Description of the Invention] [Industrial Application] The present invention detects reflected light from a guide strip stretched on the floor using a pair of left and right photoelectric conversion elements attached to the body of an unmanned vehicle. This invention relates to a photoelectric guidance system for unmanned vehicles that guides unmanned vehicles along a guidance zone using detection signals.

〔従来技術〕[Prior art]

無人車を所定の経路に沿って誘導する無人車誘導装置に
関する技術としては、従来、特公昭53−26753号
公報に開示きれた1車両の誘導装置」及び特開昭50−
42580号公報に開示きれた1無人運搬車」等がある
。しかしながら、上記特公昭53−26753号公報に
開示されたものは、誘導線の床面への埋設に溝掘り、線
の埋設、埋め戻し、養生等の繁雑な作業が伴うという欠
点があり、また上記特開昭50−42580号公報に開
示きれたものは、車体の誘導帯からのずれをディジタル
的に検出するので、無人車の走行操舵に円滑性を欠くと
いう問題点があった。
Techniques related to an unmanned vehicle guidance device for guiding an unmanned vehicle along a predetermined route are conventionally disclosed in Japanese Patent Publication No. 53-26753, ``One-Vehicle Guidance Device'' and Japanese Patent Application Laid-Open No. 1983-1989.
1 Unmanned Transport Vehicle Disclosed in Publication No. 42580. However, the method disclosed in the above-mentioned Japanese Patent Publication No. 53-26753 has the disadvantage that burying the guide wire in the floor involves complicated work such as trench digging, burying the wire, backfilling, and curing. The method disclosed in Japanese Patent Application Laid-Open No. 50-42580 digitally detects the deviation of the vehicle body from the guide zone, and therefore has a problem in that the steering of the unmanned vehicle lacks smoothness.

そこで本出願人は、先に誘導帯の敷設が容易な光学式誘
導方式で、且つ無人車の誘導及び操舵が円滑となる無人
車用光学式誘導装置を開発し出願している(特願昭61
−131305号)。
Therefore, the applicant has previously developed and filed an application for an optical guidance system for unmanned vehicles that uses an optical guidance system that makes it easy to install a guidance belt and that allows for smooth guidance and steering of unmanned vehicles. 61
-131305).

第2図は、上記本出願人が先に出願した無人車用光学式
誘導装置のシステム構成の概要を示す図である。同図に
おいて、31は床面32に張設されたアルミニューム板
等の光反射効率の良い誘導帯、33.34は前記誘導帯
31からの反射光を受光して電気信号に変換する光電変
換素子、35は前記光電変換素子33.34の出力の差
を取り増幅する差動増幅器、36は前記差動増幅器35
・のアナログ出力信号に応じて操舵角信号を作り出力す
る操舵角信号発生回路、3゛7は前記操舵角信号発生回
路36からの操舵角信号に応じて舵取モータ38を駆動
する舵取モータ駆動装置、39は車flfh40の操舵
角を検出するポテンショメータ、41は走行モータ、4
2は前記走行モータ41を駆動する走行モータ駆動装置
である。
FIG. 2 is a diagram showing an outline of the system configuration of an optical guidance device for an unmanned vehicle that was previously filed by the applicant. In the figure, reference numeral 31 indicates an induction band with good light reflection efficiency such as an aluminum plate stretched over the floor surface 32, and 33 and 34 refer to a photoelectric converter that receives reflected light from the induction band 31 and converts it into an electrical signal. 35 is a differential amplifier that takes and amplifies the difference between the outputs of the photoelectric conversion elements 33 and 34; 36 is the differential amplifier 35;
a steering angle signal generating circuit that generates and outputs a steering angle signal according to the analog output signal of 3 and 7; a steering motor that drives the steering motor 38 according to the steering angle signal from the steering angle signal generating circuit 36; A drive device, 39 is a potentiometer that detects the steering angle of the car flfh40, 41 is a travel motor, 4
2 is a travel motor drive device that drives the travel motor 41.

誘導帯31からの反射光は、光電変換素子33.34に
より電気信号に変換され、差動増幅器35に入力される
。差動増幅器35は、前記光電変換素子33.34の出
力信号の差を取り増幅し、操舵角信号発生回路36へ出
力する。操舵角信号発生回路36は、差動増幅器35か
らの反射光量に応じた操舵角信号を作り、該操舵角信号
を舵取モータ駆動装置37に送る。舵取モータ駆動装置
37は、該操舵角信号に応じて舵取モータ38を駆動す
る。これにより車輪4oは右或いは左に旋回する。この
旋回量はポテンショメータ39で検出され前記舵取モー
タ駆動装置37にフィードバックされる。
The reflected light from the induction band 31 is converted into an electrical signal by photoelectric conversion elements 33 and 34, and is input to the differential amplifier 35. The differential amplifier 35 takes the difference between the output signals of the photoelectric conversion elements 33 and 34, amplifies it, and outputs it to the steering angle signal generation circuit 36. The steering angle signal generation circuit 36 generates a steering angle signal according to the amount of reflected light from the differential amplifier 35 and sends the steering angle signal to the steering motor drive device 37. The steering motor drive device 37 drives the steering motor 38 according to the steering angle signal. This causes the wheels 4o to turn to the right or left. This turning amount is detected by a potentiometer 39 and fed back to the steering motor drive device 37.

上記無人車用光学式誘導装置は車体が誘導帯31からず
れた場合、そのずれ量を誘導帯31からの反射光量の変
化として検出し、該反射光量の変化に応じた操舵信号を
得、この操舵信号に応じて舵取モータ38を駆動するか
ら、操舵信号と車輪40の操舵角度、操舵速度とを関連
づけることにより゛、簡単な構造で無人車を連続的に操
舵誘導できると共に、円滑な無人車の舵取りが可能とな
るという優れた効果を有する。
When the vehicle body deviates from the guide band 31, the optical guidance system for unmanned vehicles detects the amount of deviation as a change in the amount of reflected light from the guide band 31, obtains a steering signal corresponding to the change in the amount of reflected light, and detects the amount of deviation as a change in the amount of reflected light from the guide band 31. Since the steering motor 38 is driven in accordance with the steering signal, by associating the steering signal with the steering angle and steering speed of the wheels 40, it is possible to continuously steer and guide the unmanned vehicle with a simple structure, and also to smoothly operate the unmanned vehicle. This has the excellent effect of making it possible to steer the car.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如く上記本出願人が先に出願した無人車用光学式
誘導装置は、優れた効果を有するものであるが、無人車
が第3図に示すように、誘導帯31が直進、右及び左と
曲っている分岐点において、無人車を誘導帯31に沿っ
て上記光学式誘導方式の特徴を生かし、且つ無人車をス
ムーズに直進、左及び右旋回させて誘導される技術を開
発していなかった。
As mentioned above, the optical guidance system for unmanned vehicles that the applicant previously applied for has excellent effects, but as shown in FIG. We have developed a technology that takes advantage of the characteristics of the optical guidance method described above to guide an unmanned vehicle along the guidance zone 31 at a junction where the vehicle turns left, and also allows the unmanned vehicle to smoothly go straight and turn left and right. It wasn't.

本発明は上述の点に鑑みてなされたもので、上記構成の
無人車用光学式誘導装置の誘導帯の分岐点において、分
岐指令に応じてスムーズに無人車を誘導帯に沿って直進
、左及び右旋回させることが可能な無人車の光電誘導方
式を提供することにある。
The present invention has been made in view of the above-mentioned points, and at the branch point of the guide zone of the optical guidance system for unmanned vehicles having the above-mentioned configuration, the unmanned vehicle can smoothly move straight along the guide zone and to the left in response to a branching command. Another object of the present invention is to provide a photoelectric guidance system for an unmanned vehicle that can turn right.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため本発明は、舵取モータ及び該
舵取モータを駆動するモータ駆動装置等を具備する車体
に取付けられた左右一対の光電変換素子により床面に張
られた誘導帯からの反射光を該光電変換素子で受光し、
該光電変換素子の出力差により前記モータ駆動装置を介
して前記舵取モータを駆動し、無人運を前記誘導帯に沿
って誘導させる無人車の光電誘導装置において、前記左
右一対のそれぞれの光電変換素子の出力を固定するホー
ルド回路を設けると共に、それぞれの光電変換素子の最
大出力を検出する最大出力検出回路とを設け、誘導帯の
分岐点で直進の指示があった場合は、ホールド回路で一
対の光電変換素子のいずれの出力も固定すると共に最大
出力検出回路が最大出力を検出したらその立下りで該固
定を解除し無人車を誘導帯に沿って直進させ、前記誘導
帯の分岐点で右折又は左折の指示があった場合は、ホー
ルド回路で左側或いは右側の光電変換素子の出力を固定
すると共に最大出力検出回路が該固定された光電変換素
子の出力の最大出力を検出したらその立下りで前記固定
を解除することにより、無人車を誘導帯に沿って右或い
は左旋回されるように構成した。
In order to solve the above-mentioned problems, the present invention has been developed to provide an induction band extending from the floor surface using a pair of left and right photoelectric conversion elements attached to a vehicle body equipped with a steering motor and a motor drive device for driving the steering motor. The reflected light of is received by the photoelectric conversion element,
In the photoelectric guidance device for an unmanned vehicle that drives the steering motor via the motor drive device based on the output difference between the photoelectric conversion elements and guides the unmanned vehicle along the guidance zone, each of the pair of left and right photoelectric conversion A hold circuit is provided to fix the output of the element, and a maximum output detection circuit is provided to detect the maximum output of each photoelectric conversion element. Both outputs of the photoelectric conversion elements are fixed, and when the maximum output detection circuit detects the maximum output, the fixation is released at the falling edge of the output, and the unmanned vehicle is driven straight along the guide zone, and turns right at the branch point of the guide zone. Or, if there is an instruction to turn left, the hold circuit fixes the output of the left or right photoelectric conversion element, and when the maximum output detection circuit detects the maximum output of the fixed photoelectric conversion element, it detects the output at the falling edge. By releasing the fixation, the unmanned vehicle is configured to turn to the right or left along the guide zone.

〔作用〕[Effect]

上記の如く構成することにより、無人車が誘導帯の分岐
点に到達すると、指示が直進、右或いは左旋回の指示か
により、直進の場合は左右一対の光電変換素子の出力の
両方の出力を固定し、該固定した出力で車体を誘導し、
分岐点を越えた点で再び両光電変換素子の検出出力で誘
導し、右旋回指示の場合は左の光1変換素子の出力を固
定し、右の光重変換素子の出力で無人車を誘導し、分岐
点を越えた点で再び両光電変換素子の検出出力で誘導し
、更に左旋回指示の場合は右の光電変換素子の出力を固
定し、左の光電変換素子の出力で無人車を誘導し、分岐
点を越えた点で再び両光電変換素子の検出出力で誘導す
るから、光電誘導方式の特徴を生かし且つ分岐指令に応
じてスムースに無人車を誘導帯に沿って分岐誘導できる
With the above configuration, when the unmanned vehicle reaches the branch point of the guidance zone, depending on whether the instruction is to go straight, turn right, or turn left, if the unmanned vehicle is going straight, both outputs of the left and right photoelectric conversion elements are output. fixed, and guide the vehicle body with the fixed output,
At the point beyond the junction, the unmanned vehicle is guided again by the detection outputs of both photoelectric conversion elements, and in the case of a right turn instruction, the output of the left light 1 conversion element is fixed, and the output of the right light weight conversion element is used to guide the unmanned vehicle. After passing the junction, the unmanned vehicle is guided again using the detection outputs of both photoelectric conversion elements, and if a left turn is instructed, the output of the right photoelectric conversion element is fixed, and the output of the left photoelectric conversion element is used to guide the unmanned vehicle. The system guides the unmanned vehicle along the guidance zone by taking advantage of the characteristics of the photoelectric guidance method and smoothly branching and guiding the unmanned vehicle along the guidance zone in response to the branching command. .

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

先ず本発明の無人車の光電誘導方式の原理を第3図を用
いて説明する。左右一対の光電変換素子R,Lを具備す
る無人車が、誘導帯31に沿って誘導され、誘導帯31
が直進及び左右に分岐する分岐点に達すると分岐指示部
43が指示する分岐指示に従い、直進、左或いは右に誘
導帯31に沿って旋回する。「直進ヨの分岐指示であれ
ば、左右一対の光電変換素子R,Lの出力を固定して走
行妨せ、分岐ゾーンXを越えた点で光電気変換素子R,
Lの固定を解除啓せ通常の誘導方法で走行きせる。′左
旋回」の分岐指示であれば、右の光重変換素子Rの出力
を固定し、左の光電気変換素子りのみで誘導帯31に沿
って左旋回させ分岐ゾーンXを越えた点で右の光電変換
素子Rの固定を解除し通常の誘導方法で走行きせる。ま
た、1右旋回」の分岐指示であれば、左の光電変換素子
りの出力を固定し、右の光電変換素子Rのみで誘導帯3
1に沿って左旋回きせ分岐ゾーンXを越えた点で左の光
電変換素子りの固定を解除し通常の誘導方法で走行きせ
る。
First, the principle of the photoelectric guidance method for an unmanned vehicle according to the present invention will be explained using FIG. An unmanned vehicle equipped with a pair of left and right photoelectric conversion elements R and L is guided along the guide zone 31 and
When the vehicle reaches a branch point where the vehicle goes straight and branches left and right, it goes straight and turns along the guide band 31 to the left or right in accordance with the branch instruction from the branch instruction section 43. ``If there is a branch instruction to go straight ahead, the outputs of the left and right pair of photoelectric conversion elements R and L are fixed to prevent the driver from traveling, and at the point beyond the branch zone X, the photoelectric conversion elements R,
Unfix L and let it run using the normal guidance method. If the branch instruction is 'turn left', fix the output of the right light-grain conversion element R, turn left along the guidance zone 31 using only the left photoelectric conversion element, and at the point where it crosses the branch zone X. Release the fixation of the right photoelectric conversion element R and run using the normal guidance method. In addition, if the branch instruction is "1 right turn", the output of the left photoelectric conversion element R is fixed, and only the right photoelectric conversion element R is used to control the induction band 3.
1, at the point where the vehicle crosses the left turning branch zone X, the fixation of the left photoelectric conversion element is released and the vehicle is allowed to travel in the normal guidance method.

第1図は本発明に係る無人車の光電誘導方式を適用する
分岐誘導部のシステム構成を示すブロック回路図である
。同図において、1はクロックパルスを発する発振回路
、2はフリップフロップ回路、3はゲート、4,5は駆
動回路、6,7は発光ダイオード、8は発光制御回路、
9は調整抵抗器、10.11は増幅器、12.13は最
大出力検出回路、14.15はサンプルホールド回路、
16.17は増幅器、18.19はゲート、20.21
はフリ・7プフロツプ回路である。
FIG. 1 is a block circuit diagram showing the system configuration of a branch guidance section to which the photoelectric guidance method of an unmanned vehicle according to the present invention is applied. In the figure, 1 is an oscillation circuit that generates clock pulses, 2 is a flip-flop circuit, 3 is a gate, 4 and 5 are drive circuits, 6 and 7 are light emitting diodes, 8 is a light emission control circuit,
9 is an adjustment resistor, 10.11 is an amplifier, 12.13 is a maximum output detection circuit, 14.15 is a sample and hold circuit,
16.17 is the amplifier, 18.19 is the gate, 20.21
is a flip-flop circuit.

上記構成の分岐誘導部において、 端子T+及びT2は
、それぞれ第2図の光電変換素子33及び34の出力端
子に接続され、端子T、及びT、の出力はそれぞれ第2
図の光T変換素子33及び34の出力が入力きれる差動
増幅器35の入力端子a及びbに接続される。また、端
子T、及びT5は第3図に示すような誘導帯31の分岐
点に設けられた、分岐指示部43からの指示信号A、B
を読み取るセンサ(図示せず)が接続きれる。
In the branch guide section having the above configuration, the terminals T+ and T2 are connected to the output terminals of the photoelectric conversion elements 33 and 34 shown in FIG. 2, respectively, and the outputs of the terminals T and T are respectively connected to the second output terminal.
The outputs of the optical T-conversion elements 33 and 34 shown in the figure are connected to input terminals a and b of a differential amplifier 35 that can be inputted. Further, terminals T and T5 are connected to instruction signals A and B from a branch instruction section 43 provided at a branch point of the induction band 31 as shown in FIG.
A sensor (not shown) that reads the data can be connected.

発振回路1から第6図のAに示す波形のクロックパルス
P、が出力され、ゲート3からは同図のBに示す波形の
パルスP、が駆動回路4,5に出力きれる。駆動回路4
,5はパルスP、で発光ダイオード6.7を作動し、該
発光ダイオード6゜7からパルスP、に対応する光!、
2が、前記床面32に張設された誘導帯31(第2図参
照)に発射きれる。誘導帯31により反射された光は左
右の光電変換素子33及び34で検出され、その出力は
端子T、及びT、から、増幅器10及び】1に入力きれ
る。
The oscillation circuit 1 outputs a clock pulse P having the waveform shown in A in FIG. 6, and the gate 3 outputs a pulse P in the waveform shown in B in the same figure to the drive circuits 4 and 5. Drive circuit 4
, 5 activates the light emitting diode 6.7 with the pulse P, and the light corresponding to the pulse P, from the light emitting diode 6.7! ,
2 can be fired onto the guide belt 31 (see FIG. 2) stretched over the floor 32. The light reflected by the induction band 31 is detected by the left and right photoelectric conversion elements 33 and 34, and the output thereof is inputted to the amplifier 10 and 1 from the terminals T and T.

今、分岐指示部43の分岐指示信号A、Bが第4図に示
すようになっているとする。即ち、無人車が誘導帯31
に沿って通常の走行をしているときは分岐指示信号A、
Bは’0,0.、′直進。
Assume now that the branch instruction signals A and B of the branch instruction section 43 are as shown in FIG. That is, the unmanned vehicle is in the guidance zone 31.
When driving normally along the branch direction signal A,
B is '0,0. ,'Go straight.

のときの分岐指示信号A、Bは’1,1.、「右折」の
ときの分岐指示信号A、Bは’0,1.、「左折ヨのと
きの分岐指示信号A、Bは「1゜0」とする。
The branch instruction signals A and B at the time are '1, 1. , the branch instruction signals A and B at the time of "right turn" are '0, 1 . , ``When making a left turn, the branching instruction signals A and B are set to ``1°0''.

通常の走行の場合は分岐指示信号A、Bは「O20」で
あるから、フリップフロップ回路20及び21はいずれ
もセットされず、サンプルホールド回路14及び15は
作動しておらず、増幅器10及び11の出力は、それぞ
れ増幅器16及び17で増幅され端子T、及びT、を通
して、差動増幅器35に入力される。差動増幅器35か
らの出力信号により、操舵角信号発生回路36は操舵角
信号を作り、該操舵角信号により、舵取モータ駆動装置
37及び舵取モータ38を介し車輪40が右或いは左に
旋回しながら誘導帯31に沿って誘導されることは上記
と同様である。
In normal running, the branch instruction signals A and B are "O20", so the flip-flop circuits 20 and 21 are not set, the sample and hold circuits 14 and 15 are not operating, and the amplifiers 10 and 11 are not set. The outputs of are amplified by amplifiers 16 and 17, respectively, and input to a differential amplifier 35 through terminals T and T. Based on the output signal from the differential amplifier 35, the steering angle signal generation circuit 36 generates a steering angle signal, and the steering angle signal causes the wheels 40 to turn to the right or left via the steering motor drive device 37 and the steering motor 38. However, the guide along the guide band 31 is similar to the above.

第5図(a)、(b)、(C)は、それぞれ分岐指示部
43の分岐指示信号が1直進」、「右折」、「左折」の
場合における無人車の動作を説明するための図である。
FIGS. 5(a), (b), and (C) are diagrams for explaining the operation of the unmanned vehicle when the branching instruction signal of the branching instruction unit 43 is "go straight ahead", "turn right", and "turn left", respectively. It is.

以下各動作を説明する。Each operation will be explained below.

「直進」の場合、即ち、分岐指示部43の分岐指示部9
A、Bが’1.IJの場合、フリップフロップ回路20
及び21は、端子T3及びT、のrl」信号によりセッ
トされ、サンプルホールド回路14及び15は作動する
。これによりサンプルホールド回路14及び15からは
、その時の増幅器10及び11の出力値が固定されて出
力されることになる。該サンプルホールド回路14及び
15の出力は、それぞれ増幅器16及び17で増幅され
端子T、及びT、を通して、差動増幅器35に入力され
る。これにより、無人車は増幅器10及び11の実際の
出力には無関係に直進して走行する。光電変換素子33
及び34が左右に曲折する誘導帯31a、31cを横切
り、その出力が最大となったとき、最大出力検出回路1
2及び13が最大検出信号LMAX及びRMAXを検出
し、その立下りで、それぞれサンプルホールド回路14
及び15を復帰させるサンプルホールド回路復帰信号L
S/H及びR3/Hが出力され、フリップフロップ回路
20及び21がリセットされる。
In the case of "go straight", that is, the branch instruction section 9 of the branch instruction section 43
A and B are '1. In the case of IJ, flip-flop circuit 20
and 21 are set by the ``rl'' signal at terminals T3 and T, and the sample and hold circuits 14 and 15 are activated. As a result, the output values of the amplifiers 10 and 11 at that time are fixed and outputted from the sample and hold circuits 14 and 15. The outputs of the sample and hold circuits 14 and 15 are amplified by amplifiers 16 and 17, respectively, and input to a differential amplifier 35 through terminals T and T. As a result, the unmanned vehicle travels straight regardless of the actual outputs of the amplifiers 10 and 11. Photoelectric conversion element 33
and 34 cross the guiding bands 31a and 31c which bend left and right, and when the output reaches the maximum, the maximum output detection circuit 1
2 and 13 detect the maximum detection signals LMAX and RMAX, and at the falling edge, the sample and hold circuits 14
and sample hold circuit return signal L that returns 15.
S/H and R3/H are output, and flip-flop circuits 20 and 21 are reset.

これにより、上記通常の誘導走行に復帰する。This causes the vehicle to return to the normal guided travel.

「右折、の場合、即ち、分岐指示部43の分岐指示信号
A、Bが’0,1.の場合、フリップフロップ回路20
は、端子T、の11」信号によりセットされるが、ブリ
ッププロップ回路21はセットきれないから、サンプル
ホールド回路14は動作するが、サンプルホールド回路
15は動作しない。これによりサンプルホールド回路1
4からは、その時の増幅器10の出力値が固定されて出
力され、また増幅器11の出力はサンプルホールド回路
15を通過して増幅器17人力される。
In the case of "turn right," that is, when the branch instruction signals A and B of the branch instruction section 43 are '0, 1.', the flip-flop circuit 20
is set by the 11'' signal at the terminal T, but since the blip-prop circuit 21 cannot be fully set, the sample-and-hold circuit 14 operates, but the sample-and-hold circuit 15 does not operate. As a result, sample hold circuit 1
4, the output value of the amplifier 10 at that time is fixed and outputted, and the output of the amplifier 11 passes through a sample and hold circuit 15 and is inputted to the amplifier 17.

これにより、無人車はサンプルホールド回路14からの
出力と増幅器11からの出力で操舵されることになる。
As a result, the unmanned vehicle is steered by the output from the sample and hold circuit 14 and the output from the amplifier 11.

即ち右の光電変換素子34により、右に曲折する誘導帯
31cにそって誘導きれることになる。最大出力検出回
路12は、増幅器10の出力、即ち光電変換素子33の
出力を検出し、該光電変換素子33が左に曲折する誘導
帯31a及び直進する誘導帯31bを横切り、その出力
が最大となる最大検出信号LMAXを検出し、該最大検
出信号LMAXの立下りでサンプルホールド回路14を
復帰させるサンプルホールド回路復帰信号LS/Hが出
力する。これにより、フリップフロップ回路20がリセ
ット、上記通常の誘導走行に復帰する。
That is, the right photoelectric conversion element 34 can guide the light along the guiding band 31c that bends to the right. The maximum output detection circuit 12 detects the output of the amplifier 10, that is, the output of the photoelectric conversion element 33, and detects when the photoelectric conversion element 33 crosses the guiding band 31a that bends to the left and the guiding band 31b that goes straight, and the output reaches the maximum. A sample-and-hold circuit return signal LS/H is output that returns the sample-and-hold circuit 14 at the falling edge of the maximum detection signal LMAX. As a result, the flip-flop circuit 20 is reset and the normal guided running is resumed.

また、′左折、の場合、即ち、分岐指示部43の分岐指
示信号A、Bが’1,0.の場合、フリッププロップ回
路21は、端子T4のrl、信号によりセットされるが
、フリップフロップ回路20はセットされないから、サ
ンプルホールド回路15は動作するが、サンプルホール
ド回路14は動作しない。これにより、無人車は増幅器
10からの出力とサンプルホールド回路15からの出力
とで操舵されることになる。即ち左の光電変換素子33
により、左に曲折する誘導帯31aにそって誘導される
ことになる。また、最大出力検出回路13は、増幅器1
1の出力、即ち光電変換素子34の出力を検出し、該光
電変換素子34が右に曲折する誘導帯31c及び直進す
る誘導帯31bを横切り、その出力が最大とな、った最
大検出信号LMAXを検出し、該最大検出信号LMAX
の立下りでサンプルホールド回路15を復帰させるサン
プルホールド回路復帰信号R3/Hが出力され、ブリッ
プフロップ回路21がリセット、これにまり、上記通常
の誘導走行に復帰する。
In addition, in the case of 'left turn', that is, the branch instruction signals A and B of the branch instruction section 43 are '1, 0. In this case, the flip-flop circuit 21 is set by the rl signal at the terminal T4, but the flip-flop circuit 20 is not set, so the sample-and-hold circuit 15 operates, but the sample-and-hold circuit 14 does not operate. As a result, the unmanned vehicle is steered by the output from the amplifier 10 and the output from the sample and hold circuit 15. That is, the left photoelectric conversion element 33
As a result, the vehicle is guided along the guide band 31a that bends to the left. Further, the maximum output detection circuit 13
1 output, that is, the output of the photoelectric conversion element 34, the photoelectric conversion element 34 crosses the rightward bending guide band 31c and the straight-going guide band 31b, and the maximum detection signal LMAX is obtained when the output becomes maximum. is detected, and the maximum detection signal LMAX
At the falling edge of , a sample-and-hold circuit return signal R3/H is outputted to return the sample-and-hold circuit 15, and the flip-flop circuit 21 is reset, thereby returning to the above-mentioned normal guided running.

以上、上記無人車の光電誘導装置によると、無人車が誘
導帯31の分岐点に到達すると、分岐指示部43の分岐
指示が直進、左或いは右旋回の指示かにより、直進の場
合は左右一対の光電変換素子33.34の出力をサンプ
ルホールド回路14及び15で固定し、該固定した出力
で無人車を誘導し、分岐点を越えた点で該固定を解除し
、再び両光電変換素子33.34の検出出力で無人車を
誘導し、右旋回指示の場合は左の光電変換素子33の出
力をサンプルホールド回路14で固定し、右の光電変換
素子34の出力で無人車を誘導し、分岐点を越えた点で
該固定を解除し再び両光電変換素子33.34の検出出
力で誘導し、更に左旋回指示の場合は右の光電変換素子
34の出力をサンプルホールド回路15で固定し、左の
光電変換素子33の出力で無人車を誘導し、分岐点を越
えた点で該固定を解除し再び両光電変換素子33゜34
の検出出力で誘導するから、光電誘導方式の特徴を生か
し且つ分岐点で分岐指令に応じてスムーズに無人車を誘
導帯に沿って分岐誘導できる。なお、無人車を誘導帯3
1に沿って誘導許せる誘導装置は、本出願人が先に出願
した無人車用光学式誘導装置(特願昭61−13130
5号)と略凹じであるから詳細は省略する 〔発明の効果〕 以上説明したように本発明によれば、無人車が誘導帯の
分岐点に到達すると、分岐指示が直進の場合は、左右一
対の光電変換素子の両出力をホールド回路で固定し、該
固定した出力で無人車を誘導し、分岐点を越えた点で再
び両光電変換素子の検出出力で誘導し、右旋回指示或い
は左旋回指示の場合は、左の光電変換素子の出力或いは
右の光電変換素子の出力をホールド回路で固定し、右の
光電変換素子或いは左の光電変換素子の出力で無人車を
誘導し、分岐点を越えた点で再び両光電変換素子の検出
出力で誘導するから、光電誘導方式の特徴を生かし且つ
分岐指令に応じてスムーズに無人車を誘導帯に沿って分
岐誘導できるという優れた効果が得られる。
As described above, according to the photoelectric guidance device for an unmanned vehicle, when the unmanned vehicle reaches a branch point in the guide zone 31, depending on whether the branch instruction from the branch instruction section 43 is an instruction to go straight, turn left, or turn right, in the case of going straight, it turns left or right. The outputs of the pair of photoelectric conversion elements 33 and 34 are fixed by sample and hold circuits 14 and 15, the unmanned vehicle is guided by the fixed outputs, the fixation is released at the point beyond the branch point, and both photoelectric conversion elements are connected again. 33. The unmanned vehicle is guided by the detection output of 34, and in the case of a right turn instruction, the output of the left photoelectric conversion element 33 is fixed by the sample hold circuit 14, and the unmanned vehicle is guided by the output of the right photoelectric conversion element 34. Then, at the point beyond the branch point, the fixation is released and guidance is again provided by the detection outputs of both photoelectric conversion elements 33 and 34. Furthermore, in the case of a left turn instruction, the output of the right photoelectric conversion element 34 is sent to the sample and hold circuit 15. The unmanned vehicle is guided by the output of the left photoelectric conversion element 33, and when it crosses the junction, the fixation is released and both photoelectric conversion elements 33 and 34 are fixed again.
Since the system uses the detection output of the sensor to guide the unmanned vehicle, it is possible to take advantage of the features of the photoelectric guidance system and smoothly branch and guide the unmanned vehicle along the guidance zone in response to a branch command at a branch point. Please note that unmanned vehicles are placed in guidance zone 3.
The guidance device that allows guidance according to 1.
5), so the details will be omitted. [Effects of the Invention] As explained above, according to the present invention, when an unmanned vehicle reaches a branching point of a guide zone, if the branching instruction is to go straight, Both outputs of the pair of left and right photoelectric conversion elements are fixed with a hold circuit, and the unmanned vehicle is guided by the fixed output, and when it crosses the junction, it is guided again by the detection outputs of both photoelectric conversion elements, and a right turn is instructed. Alternatively, in the case of a left turn instruction, the output of the left photoelectric conversion element or the output of the right photoelectric conversion element is fixed with a hold circuit, and the unmanned vehicle is guided by the output of the right photoelectric conversion element or the left photoelectric conversion element, Since the detection outputs of both photoelectric conversion elements are used to guide the vehicle once it crosses the branch point, it has the excellent effect of making use of the features of the photoelectric guidance method and smoothly branching and guiding the unmanned vehicle along the guidance zone in response to the branch command. is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る無人車の光電誘導方式を適用する
分岐誘導部のシステム構成を示すブロック回路図、第2
図は本出願人が先に出願した無人車用光学式誘導装置の
システム構成の概要を示す図、第3図は誘導帯の分岐点
部分を示す図、第4図は分岐指示部の分岐指示信号と左
右(R,L)の光電変換素子の動作状態を示す図、第5
図(a)、(b)、(c)はそれぞれ分岐点での無人車
の動作を説明するための図、第6図は発振回路のクロッ
クパルスと発光ダイオードの作動パルスの波形を示す図
である。 図中、1・・・・発振回路、2・・・・フリップフロッ
プ回路、3・・・・ゲート、4,5・・・・駆動回路、
6.7・・・・発光ダイオード、8・・・・発光制御回
路、9・・・・調整抵抗器、10.11・・・・増幅器
、12.13・・・・最大出力検出回路、14.15・
・・・サンプルホールド回路、16.17・・・・増幅
器、18.19・・・・ゲート、20.21・・・・フ
リップフロップ回路、31・・・・誘導帯、32・・・
・床面、33.34・・・・光電変換素子、35・・・
・差動増幅器、36・・・・操舵角信号発生回路、37
・・・・舵取モータ駆動装置、38・・・・舵取モータ
、39・・・・ボテンシミメータ、40・・・・車輪、
41・・・・走行モータ、42・・・・走行モータ駆動
装置。
FIG. 1 is a block circuit diagram showing the system configuration of a branch guidance section to which the photoelectric guidance method of an unmanned vehicle according to the present invention is applied;
The figure shows an overview of the system configuration of the optical guidance device for unmanned vehicles that the present applicant previously applied for, Figure 3 shows the branching point of the guidance zone, and Figure 4 shows the branching instructions of the branching indicating section. Figure 5 showing signals and operating states of left and right (R, L) photoelectric conversion elements
Figures (a), (b), and (c) are diagrams for explaining the operation of an unmanned vehicle at a branch point, respectively, and Figure 6 is a diagram showing the waveforms of the clock pulse of the oscillation circuit and the activation pulse of the light emitting diode. be. In the figure, 1: oscillation circuit, 2: flip-flop circuit, 3: gate, 4, 5: drive circuit,
6.7...Light emitting diode, 8...Light emission control circuit, 9...Adjusting resistor, 10.11...Amplifier, 12.13...Maximum output detection circuit, 14 .15・
...Sample and hold circuit, 16.17...Amplifier, 18.19...Gate, 20.21...Flip-flop circuit, 31...Induction band, 32...
・Floor surface, 33.34...Photoelectric conversion element, 35...
・Differential amplifier, 36...Steering angle signal generation circuit, 37
... Steering motor drive device, 38 ... Steering motor, 39 ... Potentimeter, 40 ... Wheels,
41... Travel motor, 42... Travel motor drive device.

Claims (1)

【特許請求の範囲】[Claims] 舵取モータ及び該舵取モータを駆動するモータ駆動装置
等を具備する車体に取付けられた左右一対の光電変換素
子により床面に張られた誘導帯からの反射光を該光電変
換素子で受光し、該光電変換素子の出力差により前記モ
ータ駆動装置を介して前記舵取モータを駆動し、無人車
を前記誘導帯に沿って誘導させる無人車の光電誘導装置
において、前記左右一対のそれぞれの光電変換素子の出
力を固定するホールド回路を設けると共にそれぞれの光
電変換素子の最大出力を検出する最大出力検出回路とを
設け、前記誘導帯の分岐点で直進の指示があった場合は
前記ホールド回路で一対の光電変換素子のいずれの出力
も固定すると共に最大出力検出回路が最大出力を検出し
たら該固定を解除し車体を誘導帯に沿って直進させ、ま
た分岐点で右折或いは左折の指示があった場合は前記ホ
ールド回路で左側或いは右側の光電変換素子の出力を固
定すると共に前記最大出力検出回路が該固定された光電
変換素子の出力の最大出力を検出したら固定を解除する
ことにより、車体を誘導帯に沿って右或いは左に旋回さ
せることを特徴とする無人車の光電誘導方式。
A pair of left and right photoelectric conversion elements attached to a vehicle body equipped with a steering motor and a motor drive device for driving the steering motor receive reflected light from an induction band stretched on the floor surface with the photoelectric conversion elements. , in the photoelectric guidance device for an unmanned vehicle that drives the steering motor via the motor drive device based on the output difference of the photoelectric conversion element to guide the unmanned vehicle along the guide band, each of the pair of left and right photoelectric converters A hold circuit is provided to fix the output of the conversion element, and a maximum output detection circuit is provided to detect the maximum output of each photoelectric conversion element. Both outputs of a pair of photoelectric conversion elements are fixed, and when the maximum output detection circuit detects the maximum output, the fixation is released and the vehicle proceeds straight along the guidance zone, and at the fork, there is an instruction to turn right or left. In this case, the hold circuit fixes the output of the left or right photoelectric conversion element, and when the maximum output detection circuit detects the maximum output of the fixed photoelectric conversion element, the fixation is released, thereby guiding the vehicle body. A photoelectric guidance system for unmanned vehicles that allows them to turn to the right or left along a band.
JP61177430A 1986-07-28 1986-07-28 Photoelectric guide system for unmanned vehicle Pending JPS6332613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61177430A JPS6332613A (en) 1986-07-28 1986-07-28 Photoelectric guide system for unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61177430A JPS6332613A (en) 1986-07-28 1986-07-28 Photoelectric guide system for unmanned vehicle

Publications (1)

Publication Number Publication Date
JPS6332613A true JPS6332613A (en) 1988-02-12

Family

ID=16030800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61177430A Pending JPS6332613A (en) 1986-07-28 1986-07-28 Photoelectric guide system for unmanned vehicle

Country Status (1)

Country Link
JP (1) JPS6332613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838426A (en) * 1995-05-09 1998-11-17 Canon Kabushiki Kaisha Exposure apparatus and method which changes wavelength of illumination light in accordance with pressure changes occurring around projection optical system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157505A (en) * 1980-05-08 1981-12-04 Shinko Electric Co Ltd Control system for running on branching path of unattended induced car
JPS60157612A (en) * 1984-01-26 1985-08-17 Daifuku Co Ltd Optical guiding method of automatic running vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157505A (en) * 1980-05-08 1981-12-04 Shinko Electric Co Ltd Control system for running on branching path of unattended induced car
JPS60157612A (en) * 1984-01-26 1985-08-17 Daifuku Co Ltd Optical guiding method of automatic running vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838426A (en) * 1995-05-09 1998-11-17 Canon Kabushiki Kaisha Exposure apparatus and method which changes wavelength of illumination light in accordance with pressure changes occurring around projection optical system

Similar Documents

Publication Publication Date Title
DE69907753D1 (en) CONTROL SYSTEM FOR REGULATING ELECTRIC MOTORS FOR DRIVING A TRANSPORT CARRIER
JP3266747B2 (en) Vehicle guidance and travel control device
JPS6332613A (en) Photoelectric guide system for unmanned vehicle
JP2000293227A (en) Travel vehicle
JPS62287309A (en) Optical guidance device for unmanned car
JP2639921B2 (en) Unmanned traveling system capable of detouring
JP2837986B2 (en) Vehicle turning control system
JP3303989B2 (en) Guided traveling vehicle
JP2581035B2 (en) Unmanned vehicle control device
JP2564127B2 (en) Unmanned vehicles that can make detours
JPH0212410A (en) Steering device for magnetic induction type unattended carrier
KR890004487B1 (en) A loading out sensor device and a leading out method for manless vehicles
JPH0436404B2 (en)
JPH03127105A (en) Steering device of magnetic induction type unmanned carrying car
JPS60195621A (en) Running system of unmanned carrier car
JPS6172309A (en) Guidance controller for unmanned truck
JPH06309028A (en) Unmanned traveling vehicle
JPS63231507A (en) Method for returning to guiding course for automatically guided unmanned vehicle
JPS61154772A (en) Method and device for guiding of carriage
JP2543873Y2 (en) Deflection detection device for automatic guided vehicles
JPS61228509A (en) Drive controller for unmanned carrier
JPS6345611A (en) Deceleration/stop control method for unmanned vehicle
JPH01137310A (en) Guiding system for unmanned carrier
JPS61168023A (en) Guiding device of unmanned carrier car
JPS59132009A (en) Automatic operation controller of unattended vehicle