JPS6332488B2 - - Google Patents

Info

Publication number
JPS6332488B2
JPS6332488B2 JP6448979A JP6448979A JPS6332488B2 JP S6332488 B2 JPS6332488 B2 JP S6332488B2 JP 6448979 A JP6448979 A JP 6448979A JP 6448979 A JP6448979 A JP 6448979A JP S6332488 B2 JPS6332488 B2 JP S6332488B2
Authority
JP
Japan
Prior art keywords
metal
pore diameter
thickness
less
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6448979A
Other languages
Japanese (ja)
Other versions
JPS55155769A (en
Inventor
Yasuyuki Abe
Tomihiro Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP6448979A priority Critical patent/JPS55155769A/en
Publication of JPS55155769A publication Critical patent/JPS55155769A/en
Publication of JPS6332488B2 publication Critical patent/JPS6332488B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、均一な目孔径を有し、開孔率の高い
機械強度を有する超微細粒子のふるいわけ用金属
フイルターの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a metal filter for screening ultrafine particles having uniform pore size, high mechanical strength, and high pore size.

従来、粉塵、鉄鋼中の非金属介在物、顔料、研
磨剤等のふるい分け、粒度分布測定用フイルター
はニツケルまたは銅などの金属を、写真製版され
たレジストパターンを有する導電性基板上に電気
メツキすることにより製造されており、通常は5
〜25μの目孔のあいたフイルターであるが、所要
に応じて目孔径5μ以下のフイルターも製造され
ている。
Conventionally, filters for screening dust, nonmetallic inclusions in steel, pigments, abrasives, etc., and measuring particle size distribution are made by electroplating metals such as nickel or copper onto a conductive substrate having a photolithographic resist pattern. It is manufactured by
This filter has pores of ~25μ, but filters with pores of 5μ or less are also manufactured as required.

第1図及び第2図は従来の方法による金属フイ
ルター製造の模式断面図である。従来より微細な
目孔径、例えば、目孔径5μ以下の金属フイルタ
ーを得るには、第1図に示す如く目孔径5μ以上
のパターンを有するフオトマスクを介して、あら
かじめフオトレジスト層が設けられた導電性基板
1、例えば、銅、ニツケル、クロム、ステンレス
等の金属板上に写真製版法によりレジストパター
ン2を形成させ(第1図a)、基板の露出部にニ
ツケルまたは銅などの金属3を電気メツキして
(第1図b)目孔径5μ以上のフイルターを製作し
た後、フイルター3を基板1から剥離し(第1図
c)、レジスト剥膜後、さらにメツキして目孔径
を縮小する(第1図d)方法、あるいは第2図に
示す如く、絶縁基板4上に設けられた、金、銀、
白金、パラジウム、クロム、酸化錫、酸化インジ
ウム等の導電性被膜5をその上に設けたフオトレ
ジスト層(図示せず)を介してフオトエツチング
法によつてメツシユ状のパターンを形成し(第2
図b)、次いでこの導電性基板上にニツケル、銅
などの金属を電気メツキして(第2図c)、目孔
径5μ以上のフイルターを製作した後、フイルタ
ー3を基板4及び導電性被膜5から剥離し(第2
図d)、さらにメツキして目孔径を縮小する(第
2図e方法等により所望の目孔径を有するフイル
ターを製造することが行なわれるが、これらの方
法により得られる導電性基板上又は導電性被膜上
のレジストパターンはピツチが大きく、目孔径を
縮小するため、開孔率はますます低下するという
欠点を有している。
FIGS. 1 and 2 are schematic cross-sectional views of metal filter manufacturing by a conventional method. In order to obtain a metal filter with a finer pore diameter than conventional ones, for example, a pore diameter of 5 μm or less, a conductive film on which a photoresist layer has been previously provided is used as shown in FIG. A resist pattern 2 is formed on a substrate 1, for example, a metal plate made of copper, nickel, chrome, stainless steel, etc., by photolithography (Fig. 1a), and a metal 3 such as nickel or copper is electroplated on the exposed part of the substrate. After manufacturing a filter with a pore diameter of 5μ or more (Fig. 1b), the filter 3 is peeled off from the substrate 1 (Fig. 1c), and after the resist is removed, it is further plated to reduce the pore diameter (Fig. 1c). 1d) method, or as shown in FIG. 2, gold, silver,
A mesh-like pattern is formed by a photoetching method through a photoresist layer (not shown) on which a conductive film 5 of platinum, palladium, chromium, tin oxide, indium oxide, etc. is provided.
Figure b), then electroplating metal such as nickel or copper on this conductive substrate (Figure 2 c) to produce a filter with an pore diameter of 5μ or more. Peel it off (second
d), and further plating to reduce the pore diameter (Fig. 2 e method is used to manufacture a filter with a desired pore diameter. The resist pattern on the film has a large pitch, and as the pore diameter is reduced, the pore area ratio is further reduced.

そして、この場合に用いる感光性材料は目的と
する金属フイルターの目孔径は微細であつても、
最初のレジストパターンの目孔径は5μ以上であ
るので、必ずしも、微細加工用として用いられる
フオトレジスト、例えばAZ系レジスト(シツプ
レー社)waycoat(ハント社)、KMR(コダツク
社)等の溶剤系レジストでなくても良いため、解
像体が溶剤系より劣るポリビニルアルコール、カ
ゼイン、ブリユー、ゼラチン、卵白、シエラツク
等を主成分とする水溶性レジストも使用される。
しかしながらこれらの方法で得た金属フイルター
は開口部の形状も悪く、開口率も極めて低いとい
う欠点があり又、これらの方法では開口率を高く
したい場合には、金属厚を厚くできないという欠
点があつた。更に、金属厚が薄い場合には、金属
自身の自重により、金属フイルターにシワ、タル
ミを生じて開口部の寸法及び位置精度が変つてし
まうという欠点や、機械強度が小さいために破損
し易く、実用性に乏しいという欠点があつた。通
常、ふるい分け用金属フイルターとして使用する
場合、機械強度を維持するためには金属厚は5μ
以上が必要である。
The photosensitive material used in this case can be used to
Since the pore diameter of the initial resist pattern is 5μ or more, it is not necessary to use photoresists used for microfabrication, such as solvent-based resists such as AZ resist (Shippray), waycoat (Hunt), and KMR (Kodatsu). Water-soluble resists whose main ingredients are polyvinyl alcohol, casein, brew, gelatin, egg white, and ciara, etc., whose resolution is inferior to those of solvent-based resists, are also used.
However, the metal filters obtained by these methods have the disadvantage that the shape of the openings is poor and the aperture ratio is extremely low.Also, with these methods, if you want to increase the aperture ratio, you cannot increase the metal thickness. Ta. Furthermore, when the metal is thin, the weight of the metal itself causes wrinkles and sagging in the metal filter, which changes the dimensions and positional accuracy of the opening, and the mechanical strength is low, making it easy to break. The drawback was that it lacked practicality. Normally, when used as a metal filter for sieving, the metal thickness must be 5μ to maintain mechanical strength.
The above is necessary.

本発明は、上記の如き従来の金属フイルターの
欠点を改良すべく、種々研究の結果、平滑な導電
性基板を用い、フオトレジストの膜厚を厚くし、
かつ結晶粒子の微細な金属を析出させることで、
メツキによる目孔径の縮小を行なうことなしに、
導電性基板上にエレクトロフオーミング法により
目孔径25μ以下の均一な微細目孔径を有し、開口
率の高く、機械強度を有する微細粒子のふるい分
け用金属フイルターの製造方法を提供するもので
ある。
In order to improve the above-mentioned drawbacks of conventional metal filters, the present invention, as a result of various researches, uses a smooth conductive substrate, thickens the photoresist film,
And by precipitating metal with fine crystal grains,
Without reducing the pore diameter by plating,
The present invention provides a method for manufacturing a metal filter for sieving fine particles, which has a uniform fine pore size of 25 μm or less, has a high aperture ratio, and has mechanical strength by electroforming on a conductive substrate.

以下、上記の本発明について図面を参照しつつ
詳細に説明する。第3図は、フオトマスクPを用
いて金属フイルターを製造する方法の一例の各工
程を模式的に示す断面図である。まず、第3図a
に示す如く、フオトマスクPを用いて導電性基板
21上に設けたフオトレジスト層22に微細なパ
ターンを有する原版を密着して紫外光又は遠紫外
光20で焼きつける。しかる後第3図bに示す如
く現像することによりレジストパターン22Aを
得る。次いで、通常のエレクトロフオーミング法
により、第3図cに示す如く金属23を電気メツ
キし、次いで第3図dに示す如く該金属23を剥
離することにより金属フイルターが製造できる。
Hereinafter, the above-described present invention will be explained in detail with reference to the drawings. FIG. 3 is a cross-sectional view schematically showing each step of an example of a method for manufacturing a metal filter using a photomask P. First, Figure 3a
As shown in FIG. 2, an original plate having a fine pattern is brought into close contact with a photoresist layer 22 provided on a conductive substrate 21 using a photomask P, and then burned with ultraviolet light or deep ultraviolet light 20. Thereafter, a resist pattern 22A is obtained by developing as shown in FIG. 3b. Next, a metal filter can be manufactured by electroplating the metal 23 as shown in FIG. 3c using a conventional electroforming method, and then peeling off the metal 23 as shown in FIG. 3d.

上記において用いる導電性基板は、目孔径を均
一(許容差10%以内)にするためには表面が平滑
性であることが必要であり、表面粗さは0.5μ以下
でなければならない。例えば、銅、ニツケル、ス
テンレス等の金属板を用い、目孔径が25μ以下の
金属フイルターを製造する場合は電解研磨又は化
学研磨による化学的方法、バフ研磨仕上げによる
機械的方法により、表面粗さを0.5μ以下とする。
また、うねり、へこみ、傷等があつてはならな
い。一方、絶縁性材料、たとえばガラス上に導電
性被膜の設けられた導電性基板を用いる場合でも
平滑性及び傷等の欠陥に関しては同等である。基
板表面の粗さは感光性材料の塗布膜厚の均一性お
よび露光時のマスク原版と導電性基板との密着性
に影響を及ぼし表面粗さが増す程、感光性材料の
解像性は悪くなり、表面粗さが0.5μより粗いと目
孔径の均一性が著しく欠け本発明には適用し得な
い。
The conductive substrate used above must have a smooth surface in order to make the pore diameter uniform (within a tolerance of 10%), and the surface roughness must be 0.5 μ or less. For example, when manufacturing a metal filter with a pore diameter of 25μ or less using a metal plate made of copper, nickel, stainless steel, etc., the surface roughness can be improved by chemical methods such as electrolytic polishing or chemical polishing, or mechanical methods such as buffing. Should be 0.5μ or less.
Also, there should be no undulations, dents, scratches, etc. On the other hand, even when a conductive substrate having a conductive film formed on an insulating material such as glass is used, the smoothness and defects such as scratches are the same. The roughness of the substrate surface affects the uniformity of the coating thickness of the photosensitive material and the adhesion between the mask original and the conductive substrate during exposure, and the higher the surface roughness, the worse the resolution of the photosensitive material. Therefore, if the surface roughness is rougher than 0.5μ, the uniformity of the pore diameter will be significantly lacking and it cannot be applied to the present invention.

本発明では金属層の厚みはフオトレジスト層の
厚み5μ以下であるので、マスクパターンとほぼ
同等の均一な目孔径をもつ金属フイルターが得ら
れる。使用するフオトレジストの厚みが5μ以上
で、高解像性フオトレジストとしては、ポジ型フ
オトレジストが好ましく紫外線用レジストとし
て、AZ系レジスト(シツプレー社製)例えば
AZ111、AZ119、AZ1350J、AZ2400、AZ2430、
遠紫外線用レジストとしては、PMMA(ポリメチ
ルメタアクリレート、東京応化社製)、PMIPK
(ポリメチルイソプロペニルケトン)、PBMA(ポ
リブチルメタアクリレート)及びAZ2400、
AZ2430が適する。
In the present invention, since the thickness of the metal layer is 5 μm or less than the thickness of the photoresist layer, a metal filter having a uniform pore diameter almost equivalent to that of the mask pattern can be obtained. The thickness of the photoresist used is 5μ or more, and as a high-resolution photoresist, a positive type photoresist is preferable, and as an ultraviolet ray resist, an AZ-based resist (manufactured by Shippray Co., Ltd.), for example, is used.
AZ111, AZ119, AZ1350J, AZ2400, AZ2430,
As far-UV resists, PMMA (polymethyl methacrylate, manufactured by Tokyo Ohka Co., Ltd.), PMIPK
(polymethyl isopropenyl ketone), PBMA (polybutyl methacrylate) and AZ2400,
AZ2430 is suitable.

尚、レジスト厚みが5μより薄いと金属フイル
ターの厚みが不充分となり機械的強度が不足す
る。
Incidentally, if the resist thickness is thinner than 5 μm, the thickness of the metal filter will be insufficient and the mechanical strength will be insufficient.

また、メツキの均一電着性、粒子の大きさも孔
径精度に影響を及ぼすので、電着条件及びメツキ
溶の組成等を考慮した平滑性微細粒子として結晶
粒子の大きさが2.5μ以下のものを用いる。金属フ
イルターの目孔径は本発明による場合、フオトレ
ジストの画線部の大きさにより決定され、目孔の
最小部分を目孔径と定義すれば、メツキ粒子の大
きさにより目孔の断面の各部で目孔径が異なるこ
とになる。すなわち、メツキ粒子の半径をrとす
れば、2rだけ目孔径の大きい部分が存在すること
になり、目孔径25μ以下の金属フイルターを精度
10%以内(2.5μ以内)で製作する場合はメツキ粒
子の大きさ(2r)は2.5μ以下としなければなら
ず、2.5μより大きいものは本発明には適用しえな
い。上記金属としてはニツケル、銅などが用いら
れる。
In addition, the uniform electrodeposition of the plating and the size of the particles also affect the pore diameter accuracy, so smooth fine particles with a crystal grain size of 2.5μ or less should be selected, taking into consideration the electrodeposition conditions and the composition of the plating solution. use In the case of the present invention, the pore diameter of the metal filter is determined by the size of the image area of the photoresist, and if the smallest part of the pore is defined as the pore diameter, the diameter of the pore is determined by the size of the plating particles at each part of the cross section of the pore. The pore diameters will be different. In other words, if the radius of the plating particle is r, there will be a part with a larger pore diameter by 2r, which means that the precision of a metal filter with a pore diameter of 25μ or less will be
In the case of production within 10% (within 2.5μ), the size of the plating particles (2r) must be 2.5μ or less, and those larger than 2.5μ cannot be applied to the present invention. Nickel, copper, etc. are used as the metal.

メツキの均一電着性及び平滑化は、金属イオン
濃度、温度、PH、緩衝剤、光沢剤、電流密度によ
つて異なるが、本発明の方法によるニツケルメツ
キ浴及び電着条件の一例を示すと次の通りであ
る。
Uniform electrodeposition and smoothness of plating vary depending on metal ion concentration, temperature, pH, buffering agent, brightener, and current density, but an example of the nickel plating bath and electrodeposition conditions according to the method of the present invention is as follows. It is as follows.

メツキ浴 硫酸ニツケル 240g/ 塩化ニツケル 45g/ 硼 酸 30g/ ブチン−1、4−ジオールナフタリン−スルホン
酸ソーダー 5〜10g/ ホルマリン 1〜2c.c./ 電着条件 PH 3.8〜4.5 温 度 40〜50℃ 電流密度 2〜10A/dm2 上記金属フイルターに耐薬品性を付加したい場
合は、メツキを剥離した後、メツキ表面に化学的
活性化処理を行ない、厚さ数千Å〜数μの金、白
金、ロジウム、パラジウム、インジウム、ルテニ
ウム等のメツキを行なつてもよい。
Metal bath Nickel sulfate 240g / Nickel chloride 45g / Boric acid 30g / Butyne-1,4-diolnaphthalene-sulfonic acid sodium 5-10g / Formalin 1-2 c.c. / Electrodeposition conditions PH 3.8-4.5 Temperature 40-50 °C Current density 2 to 10 A/dm 2 If you want to add chemical resistance to the above metal filter, remove the plating and then chemically activate the plating surface to create a gold layer with a thickness of several thousand Å to several μ. Plating with platinum, rhodium, palladium, indium, ruthenium, etc. may be performed.

この場合、若干目孔径は縮小されるが、縮小さ
れる分だけあらかじめマスクパターンの寸法を補
正しておけばよい。この場合においても、目孔径
の縮小率は少ないので、目孔径の均一性は、従来
の金属フイルターよりも優れている。
In this case, the pore diameter is slightly reduced, but the dimensions of the mask pattern may be corrected in advance by the amount of reduction. Even in this case, since the reduction rate of the pore diameter is small, the uniformity of the pore diameter is superior to that of conventional metal filters.

本発明の方法によれば、25μ以下の目孔径の金
属フイルターが得られるが、さらに、基板表面粗
さが0.1μ以下かつメツキ結晶粒子径を0.1μ以下と
することにより目孔径1μ以下のものが得られる
という特徴を有する。
According to the method of the present invention, a metal filter with a pore size of 25μ or less can be obtained, but it is also possible to obtain a metal filter with a pore size of 1μ or less by setting the substrate surface roughness to 0.1μ or less and the plating crystal particle size to 0.1μ or less. It has the characteristic that it can be obtained.

本発明による場合は、平滑な導電性基板を用
い、かつ感光性材料として、フイルターの要求す
る厚み以上の膜厚で、高解像性の材料を用い、さ
らに結晶粒子の極めて微細な金属を析出させるの
で、製作される金属フイルターの目孔径は微細で
均一であり、開孔率は従来のフイルターに比べ非
常に高い。また、メツキによるフイルターの目孔
径の縮小は不要である。
In the case of the present invention, a smooth conductive substrate is used, a high-resolution material is used as the photosensitive material with a film thickness greater than that required by the filter, and a metal with extremely fine crystal grains is deposited. Therefore, the pore diameter of the manufactured metal filter is fine and uniform, and the pore size is much higher than that of conventional filters. Further, it is not necessary to reduce the pore diameter of the filter by plating.

以下、実施例を示して本発明をさらに具体的に
説明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 導電性基板として、表面粗さ約0.1μ、板厚0.3
mmの銅板(玉川機械金属社製)を5%クロム酸水
溶液中に浸漬し、次いで水洗を行ない剥離層を形
成した。次いで、PMMAレジスト(東京応化工
業社製)をスピンナーにて塗布し、乾燥後約6μ
の膜厚を得た。次いで石英ガラス(日本石英硝子
社製)を基板とする線巾3μ×3μ、ピツチ8μのメ
ツシユパターンを有するフオトマスクを密着し、
キセノン−水銀ランプ光源(ウシオ電気社製、
UXM−500MA)にて遠紫外線露光し、次いで、
酢酸イソアミルと酢酸エチルの9:1混合溶液に
て現像し、乾燥後、レジスト画像を電子顕微鏡写
真より観察したところ四角柱構造であり、レジス
ト線巾はマスクパターン線巾とほぼ同様であつ
た。次に、光沢スルフアミン酸ニツケル浴にて浴
温60℃、電流密度5A/dm2にて5μ厚のニツケル
メツキを行ない、結晶粒子の大きさを測定したと
ころ最大0.2μであつた。次いでメツキを基板より
剥離して、目孔径3μ、ピツチ8μ、開孔率約14%
の均一な目孔径を有する微細粒子のふるい分け用
金属フイルターを得た。
Example 1 As a conductive substrate, the surface roughness is approximately 0.1 μ and the plate thickness is 0.3
A copper plate (manufactured by Tamagawa Kikai Kinzoku Co., Ltd.) having a diameter of 1 mm was immersed in a 5% aqueous chromic acid solution and then washed with water to form a release layer. Next, apply PMMA resist (manufactured by Tokyo Ohka Kogyo Co., Ltd.) using a spinner, and after drying, approximately 6μ
The film thickness was obtained. Next, a photomask having a mesh pattern with a line width of 3μ x 3μ and a pitch of 8μ, whose substrate is quartz glass (manufactured by Nippon Quartz Glass Co., Ltd.), is closely attached.
Xenon-mercury lamp light source (manufactured by Ushio Electric Co., Ltd.)
UXM-500MA) for deep UV exposure, then
After development with a 9:1 mixed solution of isoamyl acetate and ethyl acetate and drying, the resist image was observed using an electron microscope to find that it had a square prism structure, and the resist line width was almost the same as the mask pattern line width. Next, nickel plating was performed to a thickness of 5 μm in a bright nickel sulfamic acid bath at a bath temperature of 60° C. and a current density of 5 A/dm 2 , and the size of the crystal grains was measured and found to be 0.2 μm at maximum. Next, the plating was peeled off from the substrate, and the pore diameter was 3μ, the pitch was 8μ, and the pore size was approximately 14%.
A metal filter for sieving fine particles having a uniform pore size of .

実施例 2 導電性基板として表面粗さ約0.1μ、板厚0.5mm
のステンレス板(日本鋼業社製)使用し、脱脂、
水洗、乾燥からなる前処理を行ない、次いで
AZ1350Jレジスト(米国、シツプレー社製)をス
ピンナーにて塗布し、乾燥後約5μの膜厚を得た。
次いで、線幅3μ×3μ、ピツチ8μのメツシユパタ
ーンを有するフオトマスクを密着し超高圧水銀ラ
ンプ光源(ワコム製作所製BMD−500D)にて紫
外線露光し、次いでAZ1350Jレジスト用現像液
(シツプレー社)にて現像を行ない、乾燥後、レ
ジスト画像を電子顕微鏡より観察したところ、ほ
ぼ四角錐構造であり、マスクパターン線巾3μ×
3μに対し、レジストパターン線巾は最小部分が
2.5μ×2.5μであつた。次に光沢ワツトニツケル浴
にて50℃、電流密度5A/dm2にて5μ厚の微細粒
子のニツケルメツキ(結晶粒子径、最大0.2μ)
し、基板よりメツキを剥離し、目孔径2.5μ、ピツ
チ8μ、開孔率約9.8%の均一な目孔径を有する微
細粒子のふるい分け用金属フイルターを得た。
Example 2 Conductive substrate with surface roughness of approximately 0.1μ and plate thickness of 0.5mm
Using stainless steel plate (manufactured by Nippon Kogyo), degreasing,
Perform pre-treatment consisting of washing with water and drying, then
AZ1350J resist (manufactured by Shippray, USA) was applied using a spinner to obtain a film thickness of approximately 5 μm after drying.
Next, a photomask having a mesh pattern with a line width of 3 μ x 3 μ and a pitch of 8 μ was closely attached and exposed to ultraviolet light using an ultra-high pressure mercury lamp light source (BMD-500D manufactured by Wacom Manufacturing Co., Ltd.). After development and drying, the resist image was observed using an electron microscope, and it was found to have an almost quadrangular pyramidal structure, with a mask pattern line width of 3μ×
3μ, the minimum part of the resist pattern line width is
It was 2.5μ×2.5μ. Next, nickel plating of fine particles with a thickness of 5μ (crystal particle size, maximum 0.2μ) was performed in a bright wax nickel bath at 50℃ and a current density of 5A/ dm2 .
Then, the plating was peeled off from the substrate to obtain a metal filter for sieving fine particles having a uniform pore size of 2.5 μm in pore size, 8 μm in pitch, and a pore size of about 9.8%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来のエレクト
ロフオーミング法による金属フイルターの製造工
程を模式的に示す断面図である。第3図は、本発
明の方法により金属フイルターを製造する方法の
一例の各工程を模式的に示す断面図である。 20……紫外線又は遠紫外線、21……導電性
基板、22……フオトレジスト層、22A……レ
ジストパターン、23……金属。
FIGS. 1 and 2 are cross-sectional views schematically showing the manufacturing process of a metal filter by the conventional electroforming method, respectively. FIG. 3 is a cross-sectional view schematically showing each step of an example of a method for manufacturing a metal filter according to the method of the present invention. 20... Ultraviolet rays or deep ultraviolet rays, 21... Conductive substrate, 22... Photoresist layer, 22A... Resist pattern, 23... Metal.

Claims (1)

【特許請求の範囲】[Claims] 1 表面粗さ0.5μ以下の平滑な導電性基材上に、
感光性材料を厚さ5μ以上に塗布した後、該感光
性材料層にフオトマスクを介して微細パターンを
焼付けた後、現像してレジストパターンを形成
し、次いで該レジストパターンを有する導電性基
板上にエレクトロフオーミング法により結晶粒子
の大きさが2.5μ以下である金属を上記レジストパ
ターンの厚み以下に析出させ、しかる後、析出金
属を上記基板から剥すことを特徴とする超微細粒
子のふるい分け用金属フイルターの製造法。
1 On a smooth conductive base material with a surface roughness of 0.5μ or less,
After applying a photosensitive material to a thickness of 5μ or more, a fine pattern is printed on the photosensitive material layer through a photomask, and then developed to form a resist pattern, and then a resist pattern is formed on the conductive substrate having the resist pattern. A metal for sieving ultrafine particles, characterized in that a metal having a crystal grain size of 2.5 μm or less is deposited by an electroforming method to a thickness equal to or less than the thickness of the resist pattern, and then the deposited metal is peeled off from the substrate. Filter manufacturing method.
JP6448979A 1979-05-24 1979-05-24 Preparation of metallic filter Granted JPS55155769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6448979A JPS55155769A (en) 1979-05-24 1979-05-24 Preparation of metallic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6448979A JPS55155769A (en) 1979-05-24 1979-05-24 Preparation of metallic filter

Publications (2)

Publication Number Publication Date
JPS55155769A JPS55155769A (en) 1980-12-04
JPS6332488B2 true JPS6332488B2 (en) 1988-06-30

Family

ID=13259667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6448979A Granted JPS55155769A (en) 1979-05-24 1979-05-24 Preparation of metallic filter

Country Status (1)

Country Link
JP (1) JPS55155769A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332614U (en) * 1986-08-15 1988-03-02
JPS6332613U (en) * 1986-08-15 1988-03-02
JP2006068699A (en) * 2004-09-06 2006-03-16 New Industry Research Organization Filter, microreactor and manufacturing method for the same, structure constituted of juxtaposed microreactors, and analyzer
JP6193538B2 (en) * 2011-05-26 2017-09-06 株式会社オプトニクス精密 Nozzle, sieve
JP6091344B2 (en) * 2013-06-05 2017-03-08 株式会社オプトニクス精密 Sieve and method for producing sieve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261952A (en) * 1975-11-18 1977-05-21 Yoshizaki Kozo Method of manufacturing net structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261952A (en) * 1975-11-18 1977-05-21 Yoshizaki Kozo Method of manufacturing net structure

Also Published As

Publication number Publication date
JPS55155769A (en) 1980-12-04

Similar Documents

Publication Publication Date Title
JP6010580B2 (en) LIGA-UV manufacturing method of multilayer metal structure in which adjacent layers do not completely overlap and structure obtained thereby
JPS6332488B2 (en)
US4549939A (en) Photoelectroforming mandrel and method of electroforming
JPH0783196B2 (en) Electromagnetic wave shielding metal grid, electromagnetic wave shielding transparent article, and method for manufacturing electromagnetic wave shielding metal grid
JP3865085B2 (en) Manufacturing method of electroformed product
KR20110003084A (en) The gravure plate for offset printing and the method of manufacturing the same
JPH11323592A (en) Electroformed metallic body and its production
JPH08258051A (en) Production of lens mold
JPH07243086A (en) Ornamental sheet and its production
JPH10228114A (en) Production of metal mask
JPH06234202A (en) Manufacture of mask for screen printing
JP2800476B2 (en) Intaglio production method
JP2003072021A (en) Metal mask for printing
JPS63303737A (en) Metal mask for screen printing and its manufacture
JP2992642B2 (en) Manufacturing method of screen printing mask
US3647642A (en) Method of making mirror-like finishes on metal masters
JP3427332B2 (en) Method for producing electroformed product having precise fine pattern
JPH09300573A (en) Electrocast thin metal plate and manufacture thereof
Georgiou et al. DC electroplating of sub-micron gold patterns on X-ray masks
JPS60141887A (en) Manufacture of electroformed precision parts
JPH03146652A (en) Production of metallic parts having holes of fine pattern and master used therein
JP3262782B2 (en) Substrate for forming electroformed product, electroformed product with substrate, and method for producing electroformed product
JP2840666B2 (en) Screen printing mesh and method of manufacturing the same
JP2000301727A (en) Production of nozzle substrate for ink jet nozzle
JP2987389B2 (en) Method of producing plate-making screen for screen printing