JPS633235A - Zero-point calibrating method for three-directional force detector - Google Patents

Zero-point calibrating method for three-directional force detector

Info

Publication number
JPS633235A
JPS633235A JP14672686A JP14672686A JPS633235A JP S633235 A JPS633235 A JP S633235A JP 14672686 A JP14672686 A JP 14672686A JP 14672686 A JP14672686 A JP 14672686A JP S633235 A JPS633235 A JP S633235A
Authority
JP
Japan
Prior art keywords
force detector
directional force
axis
calibration
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14672686A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Minami
南 善勝
Shigeyuki Kurebayashi
榑林 敏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP14672686A priority Critical patent/JPS633235A/en
Publication of JPS633235A publication Critical patent/JPS633235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PURPOSE:To derive the calibration value of a three-directional force detector regardless of the attitude of a tool by rotating the tip shaft at some attitude of, for example, an industrial robot fixed to the three-directional force detector. CONSTITUTION:The three-directional force detector 2 is mounted on the industrial robot by fixing it to the wrist part 1 of the robot and also fixing the tool 3 to the detector 2. When the wrist part 1 is at some attitude, the tip shaft is rotated to store respective data of the detector 2 at least three points, and respective shaft calibration values are computed in a robot controller, etc., based on the detected values. Here, the fitting directions of the wrist tip shaft and detector 2 are fixed, so the Z components of the detected values are equal at each point. The Z components are erased from the respective shaft detected values at >=3 points and calibration values of X and Y are obtained by approximation, so that a calibration value of Z is derived from them.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば産業用ロボットの作業端に装着して使
う3方向力検出器の零点較正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a zero point calibration method for a three-directional force detector that is used, for example, by being attached to the working end of an industrial robot.

〔従来の技術〕[Conventional technology]

産業用ロボット手首部に3方向力検出器を介してツール
を装着し、ロボットが作業を行なう場合の構成を表わす
要部の側面図を第2図に示す。
FIG. 2 is a side view of the main parts showing a configuration in which a tool is attached to the wrist of an industrial robot via a three-directional force detector and the robot performs work.

ロボットアーム4の先端のロボット手首部1に3方向力
検出器2を取り付けて、その先にツール3を固定してお
り、ツール3は3次元の空間において自在に可動できる
ようにしである。
A three-directional force detector 2 is attached to the robot wrist 1 at the tip of the robot arm 4, and a tool 3 is fixed to the tip thereof, so that the tool 3 can freely move in three-dimensional space.

作業中にツール3が受ける外力を3方向力検出器2で検
出する場合に問題となるのは、ツール3自身のmmによ
る影響である。
When the three-directional force detector 2 detects the external force that the tool 3 receives during work, a problem arises due to the influence of the tool 3 itself in mm.

従来例として、この影響を取り除くため、作業開始前の
ある姿勢における各軸(X、Y、Z軸)検出値X、Y、
Z1を、そのときの較正値Xo、Yo、Zoすなわち Xo−Xl Yo=Y1 2  =2゜ として用い、外力Fが印加されたときの各軸検出値がX
・、Y、、Z、であれば としている。
As a conventional example, in order to remove this influence, the detected values of each axis (X, Y, Z axis) in a certain posture before starting work are
Using Z1 as the calibration values Xo, Yo, and Zo at that time, that is, Xo-Xl Yo=Y1 2 = 2°, each axis detected value when external force F is applied is
,Y,,Z,.

また、本出願人が先に開発し提案した特WA昭60−2
74764号の先行例がある。
In addition, the special WA 1986-2 developed and proposed by the applicant
There is a precedent in No. 74764.

この先行例は、第6図の側面図と各軸の検出値の説明図
〔(a )は(a2)に(bl〉は(b2)に対応する
)に表わすように、作業前に予め、 作業具重量Wを計測し、゛ 3方向力検出器のX軸を鉛直方向にしツール重量はY軸
、Z軸にかからないようにしてそのときのY、Z軸の出
力Y−Y  、Z=Zoをとり、自動機械の先端をZ軸
回りに90°回転しツール14ffiは3方向力検出冴
のXITOにかからないようにしてそのときのX軸の出
力X=XQをとり、これらX。、Yo、Zoを基準値と
し、任意の作業姿勢にて外力が加えられているときの3
方向力検出器のX、Y、Z軸の出力値X=x1.y−y
  、z=z1の情報から外力Fは により補正して演n導出する3方向力検出器の較正方法
である。
In this prior example, as shown in the side view and explanatory diagram of the detected values of each axis in Fig. 6 ((a) corresponds to (a2) and (bl> corresponds to (b2)), Measure the weight W of the work tool, set the X-axis of the 3-direction force detector vertically so that the weight of the tool does not touch the Y-axis and Z-axis, and calculate the output Y-Y of the Y- and Z-axes at that time, Z = Zo , rotate the tip of the automatic machine 90 degrees around the Z axis, prevent the tool 14ffi from being affected by XITO of the three-direction force detector, and take the output of the X axis at that time, X=XQ, and calculate these X. , Yo, and Zo as reference values, and 3 when external force is applied in any working posture.
Output values of the X, Y, and Z axes of the directional force detector X=x1. y-y
, z=z1, the external force F is corrected as follows and the calculation n is derived.

(発明が解決しようとする問題点) ところが、従来例ではツール3が同じ姿勢で作業を行な
う場合は有効であるが、ツール3の姿勢が変化する作業
の場合は使用できない。
(Problems to be Solved by the Invention) However, although the conventional method is effective when the tool 3 performs work in the same posture, it cannot be used when the tool 3 changes its posture.

また、先行例は3方向力検出器2のX軸、Y軸を鉛垂方
向に合わせることが困難なこともあり、ツール3の姿勢
変化、にも影響されないとしているものの特定の2つの
姿勢での較正値であり、3方向力検出器2のクロストー
ク、熱等による特性を考慮した手段とは言えない。
In addition, in the previous example, it was difficult to align the X-axis and Y-axis of the three-directional force detector 2 in the vertical direction, and although it is said that it is not affected by changes in the posture of the tool 3, it is difficult to align the This is a calibration value, and cannot be said to be a means that takes into account the characteristics of the three-directional force detector 2 due to crosstalk, heat, etc.

ここにおいて本発明は、これら従来例、先行例の難点を
克服し、例えば産業用ロボット手首部に装着した3方向
力検出器の較正値を、ツールの姿勢に関係なく、3方向
力検出器の特性を考慮して、導出する零点較正方法を提
供することを、その目的とする。
Here, the present invention overcomes the difficulties of these conventional examples and precedent examples, and, for example, the calibration value of the three-directional force detector attached to the wrist of an industrial robot can be adjusted regardless of the posture of the tool. The purpose is to provide a zero point calibration method that takes into account the characteristics.

(問題点を解決するための手段) 本発明の3方向力検出器の零点較正方法は、ツール重量
Wを測定し、 産業用ロボットのある姿勢において最先端軸を回転させ
、 少なくとも3ポイント以上での外力の各軸(X。
(Means for Solving the Problems) The zero point calibration method of the three-directional force detector of the present invention measures the tool weight W, rotates the leading edge axis in a certain posture of the industrial robot, and calibrates the zero point of the three-directional force detector at least three points or more. Each axis of external force (X.

Y、Z)検出値をとり、 3方向力検出器の取り付は方向が固定であることから、
検出値のZ成分tよ各ポイントで等しいことに着目し、
X、Yの較正値を近似、解で算出し、それらから7の較
正値を導出する手段である。
Y, Z) detection values are taken, and since the mounting direction of the 3-directional force detector is fixed,
Noting that the Z component t of the detected value is equal at each point,
This is a means of calculating the calibration values of X and Y using approximations and solutions, and deriving the calibration value of 7 from them.

作業内容の必要に応じ、産業用ロボットの姿勢を変化さ
せ、前記手段を繰り返し行ないその平均値を較正値とす
る手段である。
This means changes the posture of the industrial robot according to the needs of the work, repeats the above steps, and uses the average value as a calibration value.

〔作 用〕[For production]

外力のX、Y、Z軸方向成分において、Z成分は各姿勢
変化でも等しくしていることから、 3ポイント以上の各軸検出値から、2成分を消去し、X
、Yの較正値を近似解で求められ、それらから2の較正
値も導出される。
Regarding the X, Y, and Z axis direction components of external force, since the Z component is made equal for each posture change, two components are deleted from each axis detection value of 3 points or more, and the
, Y are obtained by approximate solutions, and the calibration values of 2 are also derived from them.

〔実施例〕〔Example〕

以下、本発明の一実施例について、図面を参照して説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は、この一実施例における零点較正方法を表わす
フローチャートである。
FIG. 1 is a flowchart showing the zero point calibration method in this embodiment.

3方向力検出器2の産業用ロボットへの装着は、第2図
に示すとおりロボット手首部1に固定であり、ツール3
も3方向力検出器2に固着されている。
The three-directional force detector 2 is attached to the industrial robot by fixing it to the robot wrist 1 as shown in FIG.
is also fixed to the three-directional force detector 2.

第3図は、ツールの3つのポイント形態図と各軸検出値
の関係図で、(al)は(C2)に、(bl)は(b2
)に、(C1)は(C2)にそれぞれ対応する。
Figure 3 is a diagram showing the relationship between the three point configurations of the tool and the detected values of each axis, where (al) corresponds to (C2), and (bl) corresponds to (b2).
), and (C1) corresponds to (C2), respectively.

まず、ロボット手首部1のある姿勢において、最先端軸
を回転動作させ、第3図に示すように、少なくとも、3
ポイント以上で3方向力検出器2の各軸データを記憶し
、その検出値を基にロボット制′m装置内等において、
各軸較正値を演算する。
First, in a certain posture of the robot wrist part 1, the most advanced axis is rotated, and as shown in FIG.
At a point or higher, each axis data of the three-directional force detector 2 is memorized, and based on the detected value, it is used in a robot control device, etc.
Calculate each axis calibration value.

各ポイントでの各軸データを (X  、  yl 、  Zl ) (x  、V2.Z2) (X3 ・ y3・ Z3) ツール3のm8をWとし、 各軸較正値をX  、 yo 、Zoとすると、(X 
 X )+(Vl  yo)+(z、−zo)=W  
++・・・(1)(X   −X   )+(y −y
  )+(Z2−Zo )=W    ・・・・・・+
2)(x3−xo)+(y3−yo)+(z3−zO)
=W  −・−・(3)となる。
Assuming that the axis data at each point is (X, yl, Zl) (x, V2.Z2) (X3・y3・Z3), m8 of tool 3 is W, and each axis calibration value is X, yo, Zo, (X
X ) + (Vl yo) + (z, -zo) = W
++...(1)(X −X )+(y −y
)+(Z2-Zo)=W ・・・・・・+
2) (x3-xo)+(y3-yo)+(z3-zO)
=W −・−・(3).

ここで、手首最先端軸と3方向力検出器3の取り付は方
向は、第2図に示すように固定であるため、その検出値
のZ成分は各ポイントで等しく、その値は第4図((a
)は手首先端の要部側面図。
Here, since the mounting direction of the wrist tip axis and the three-direction force detector 3 is fixed as shown in FIG. 2, the Z component of the detected value is equal at each point, and the value is Figure ((a
) is a side view of the main part of the wrist tip.

(b)・(C)はZ軸方向検出値の説明図)に示すよう
に、最先端軸のベクトルaの方向余弦(Z方向)C2で
決定される。
As shown in (b) and (C) (explanatory diagram of Z-axis direction detected value), it is determined by the direction cosine (Z direction) C2 of the vector a of the leading edge axis.

= (z3−zO)=W1  −−−−−−(4)W1
=−WXaz        ・・・・・・・・・(5
)W2=W  −W1=W  (1−a、)・・・・・
・(6) また、(1)、<2)、(3)、(4)、(6)式より (x  −Xo)+ (yl−yo)=W2・・・・・
・(7) ・・・・・・(8) ・・・・・・(9) と表わすことができる。
= (z3-zO)=W1 --------(4) W1
=-WXaz ・・・・・・・・・(5
)W2=W -W1=W (1-a,)...
・(6) Also, from equations (1), <2), (3), (4), and (6), (x - Xo) + (yl-yo) = W2...
・(7) ......(8) ......(9) It can be expressed as follows.

これを以下のように茸ぎ換えて、較正ffl x o 
Replace this as below and calibrate ffl x o
.

yoを変数とみなすと、円として表わすことができる。If yo is regarded as a variable, it can be expressed as a circle.

・・・・・・(10) ・・・・・・(11) ・・・・・・(12) この3つの(10)、(11)、(12)式を ・満た
す近似解X。、yoが較正値となる。
......(10) ......(11) ......(12) Approximate solution X that satisfies these three equations (10), (11), and (12). , yo are the calibration values.

この較正値を求める計算は、まず各2つの円の交点を結
ぶ直線を求める。
To calculate this calibration value, first find a straight line connecting the intersections of two circles.

(10)、(11)、(12)式より となり、3つの直線は 2 (Xl −X2 ) X□ +2 (yI   V
2 ) V。
From equations (10), (11), and (12), the three straight lines are 2 (Xl −X2 ) X□ +2 (yI V
2) V.

”(X   X2)+(VI  V2)  ・・・(1
6)2 (X2  X3 ) XO+ 2 (y2−y
3 ) V。
”(X X2)+(VI V2)...(1
6) 2 (X2 X3) XO+ 2 (y2-y
3) V.

= (x、、−X3 )+ (y2−y3)  ・・・
(17)2 (x3 Xl)Xo +2 (y3 Vl
)y0= (X3−Xl ) + (y3  ’l’l
 )  ・・118)と表わすことができる。
= (x,, -X3)+ (y2-y3)...
(17) 2 (x3 Xl)Xo +2 (y3 Vl
)y0= (X3-Xl) + (y3 'l'l
) ...118).

さらに、(16)、<17)、(18)式をそれぞれ(
10)、(11)、(12)式に代入し、交点の座標(
x、y  )を得る。
Furthermore, equations (16), <17), and (18) are changed to (
10), (11), and (12) and calculate the coordinates of the intersection (
x, y).

この場合、第5図の解析図に示すように、交点の2座標
のうち、(16)、(17)、(18)式の交点Pに近
い方を選択するものとする。
In this case, as shown in the analytical diagram of FIG. 5, of the two coordinates of the intersection, the one closer to the intersection P of equations (16), (17), and (18) is selected.

計算された結果を、 (xol・yol) (xy) 02’  02 (x、y) とすると、較正値X  、’10は Xo−(X01+X02+xo3)/3VO= (yo
1+ yo2+ yo3) / 3となる。
If the calculated result is (xol・yol) (xy) 02' 02 (x, y), then the calibration value X,'10 is Xo-(X01+X02+xo3)/3VO= (yo
1+yo2+yo3)/3.

次に、(4)、<6)、(7)、(8)、(9)式より (zl−zol)=W −((x、−xo>+(y、−
yo>)  −(19) ’(z2−2o2)2=W2
−〔(X2−Xo)2+(y2−yo)2〕・・・(2
0)(z −z  )=W −((x3−x。)+(y
3−yo))  ・(21)と表ねずことができる。た
だし、zo1〜zo3はXo1〜xo3等にべζしる。
Next, from equations (4), <6), (7), (8), and (9), (zl-zol)=W −((x, −xo>+(y, −
yo>) −(19) '(z2−2o2)2=W2
-[(X2-Xo)2+(y2-yo)2]...(2
0)(z −z )=W −((x3−x.)+(y
3-yo)) ・(21) can be expressed as follows. However, zo1 to zo3 are based on Xo1 to xo3, etc.

したがって、較正値Z□は Z o =(Z o1+ Z 02 + Z o3) 
/ 3と求めることができる。
Therefore, the calibration value Z□ is Z o = (Z o1 + Z 02 + Z o3)
/ 3 can be obtained.

また、この演算を手首部の姿勢を変えてn(n〉3)回
行なったならば、較正値x、yo。
Moreover, if this calculation is performed n (n>3) times while changing the posture of the wrist, the calibration values x, yo are obtained.

Zoは zo(E  zo、’)/n J=1 となる。Zo is zo(E zo,’)/n J=1 becomes.

このように姿勢変化に対応して演算を繰り返しその平均
値を較正値とすることで、その確度がさらに格段と向上
する。
By repeating calculations in response to posture changes and using the average value as the calibration value, the accuracy is further improved.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば、3方向力検出鼎に固定した例
えば産業用ロボットにおいて、ロボットのある姿勢での
最先端軸を回転させ、そのときに得る3方向力検出器の
各軸の検出値を得るだけで、特別な姿勢の調整を要する
ことなく、正確な各軸較正値を正確に簡単に導出するこ
とができ、作業の信頼性が向上し、効率が著しく増大す
る。
Thus, according to the present invention, in an industrial robot, for example, which is fixed to a three-directional force detector, the most advanced axis of the robot in a certain posture is rotated, and the detected values of each axis of the three-directional force detector obtained at that time are obtained. By simply obtaining the information, accurate calibration values for each axis can be easily and accurately derived without requiring any special posture adjustment, improving work reliability and significantly increasing efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における演算過程を表わす流
れ図、第2図は産業用ロボットのの手首部に3方向力検
出器を装着しその先にツールを固定した構成を示す側面
図、第3図は産業川口ボットの最先端軸を回転させたと
きの正面図と各軸検出値を示す図、第4図(よ最先端軸
の向く方向と3方向力検出器の2軸が一致していること
を表ゎず図、第5図は一実施例の計算式を示す図、第6
図は先行例の説明図である。 1・・・・・・ロボット手首部(3方向力検出器支持部
材) 2・・・・・・3方向力検出器 3・・・・・・ツール 4・・・・・・ロボットアーム。 出願人代理人  佐  藤  −雄 第2図 (α2)   (b2)   (C2)第3区 第4図 第6図 第5図
FIG. 1 is a flowchart showing the calculation process in an embodiment of the present invention, and FIG. 2 is a side view showing a configuration in which a three-directional force detector is attached to the wrist of an industrial robot and a tool is fixed to the tip of the sensor. Figure 3 shows the front view and the detected values for each axis when the most advanced axis of the Industrial Kawaguchi Bot is rotated, and Figure 4 shows the direction in which the most advanced axis faces and the two axes of the three-directional force detector. Figure 5 is a diagram showing the calculation formula of one example, Figure 6 is a diagram showing the calculation formula of one example,
The figure is an explanatory diagram of a prior example. 1...Robot wrist part (3-directional force detector support member) 2...3-directional force detector 3...Tool 4...Robot arm. Applicant's agent Mr. Sato Figure 2 (α2) (b2) (C2) District 3 Figure 4 Figure 6 Figure 5

Claims (1)

【特許請求の範囲】 1、3方向力検出器を支持部材に固定し、 ツール重量Wを測定し、 ツールを3方向力検出器に固着させ、 支持部材の最先端軸を回転し、 少なくとも3ポイント以上での各軸(X、Y、Z)にか
かる力の検出値をとり、 それら検出値のZ成分は各ポイントで等しいことに着目
し、X、Yの較正値を近似解で算出し、それらからZの
較正値を導出する ことを特徴とする3方向力検出器の零点較正方法。 2、支持部材の最先端軸の回転を3より多い回数変化さ
せ、それらから導出した較正値の平均値をとる 特許請求の範囲第1項記載の3方向力検出器の零点較正
方法。
[Claims] 1, 3-directional force detector is fixed to the support member, the tool weight W is measured, the tool is fixed to the 3-directional force detector, the most extreme axis of the support member is rotated, and at least 3-directional force detector is fixed to the support member. Take the detected values of the force applied to each axis (X, Y, Z) above the point, pay attention to the fact that the Z component of these detected values is equal at each point, and calculate the calibration values for X and Y using an approximate solution. , a zero point calibration method for a three-directional force detector, characterized in that a calibration value of Z is derived from them. 2. The zero point calibration method for a three-directional force detector according to claim 1, wherein the rotation of the most extreme axis of the support member is changed more than three times and the average value of the calibration values derived therefrom is taken.
JP14672686A 1986-06-23 1986-06-23 Zero-point calibrating method for three-directional force detector Pending JPS633235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14672686A JPS633235A (en) 1986-06-23 1986-06-23 Zero-point calibrating method for three-directional force detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14672686A JPS633235A (en) 1986-06-23 1986-06-23 Zero-point calibrating method for three-directional force detector

Publications (1)

Publication Number Publication Date
JPS633235A true JPS633235A (en) 1988-01-08

Family

ID=15414179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14672686A Pending JPS633235A (en) 1986-06-23 1986-06-23 Zero-point calibrating method for three-directional force detector

Country Status (1)

Country Link
JP (1) JPS633235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7383717B2 (en) * 2004-09-17 2008-06-10 Honda Motor Co., Ltd. Force sensor abnormality detection system for legged mobile robot
JP2022168639A (en) * 2021-04-26 2022-11-08 株式会社トライフォース・マネジメント Calibration method of force sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7383717B2 (en) * 2004-09-17 2008-06-10 Honda Motor Co., Ltd. Force sensor abnormality detection system for legged mobile robot
JP2022168639A (en) * 2021-04-26 2022-11-08 株式会社トライフォース・マネジメント Calibration method of force sensor

Similar Documents

Publication Publication Date Title
US5383363A (en) Inertial measurement unit providing linear and angular outputs using only fixed linear accelerometer sensors
JP4980541B2 (en) Method and apparatus for correcting coordinate measurement error due to vibration of coordinate measuring machine (CMM)
US5060175A (en) Measurement and control system for scanning sensors
JPH10507271A (en) Apparatus and method for performing high precision calibration of machine tools
JP2009505062A (en) Self-calibration for inertial instrument based on real-time bias estimator
JP2012040634A (en) Calibration device and method for power-controlled robot
JPS61254792A (en) Positioning device for boom of rock drill
Canepa et al. Kinematic calibration by means of a triaxial accelerometer
GB2090973A (en) A directional gyro compass
JP3421503B2 (en) Contact type three-dimensional measuring method and system
JPS633235A (en) Zero-point calibrating method for three-directional force detector
JP2640339B2 (en) Automatic correction method for robot constants
JP2000055664A (en) Articulated robot system with function of measuring attitude, method and system for certifying measuring precision of gyro by use of turntable for calibration reference, and device and method for calibrating turntable formed of n-axes
JPS638904A (en) Robot calibrating device
CN112327006B (en) Method for calibrating accelerometer in IMU and related device
JP2003139536A (en) Declinometer and azimuth measuring method
CN111750846A (en) Marine compass and dynamic calibration method thereof
JP4938496B2 (en) Direction measuring apparatus and method
US20230311338A1 (en) Apparatus and Method for Tool Monitoring
JPH02300644A (en) Measuring method for gravity center position of body
JP2769906B2 (en) Three-dimensional measuring method and device
JPH06190687A (en) Thermal displacement correcting device for machine tool
JPH02303793A (en) Operation detector for robot
JPS62126404A (en) Calibration device for manipulator
JPS62165116A (en) Processing system for determined value of artificial satellite attitude