JPS6332357A - Surface evaluating device - Google Patents

Surface evaluating device

Info

Publication number
JPS6332357A
JPS6332357A JP17558486A JP17558486A JPS6332357A JP S6332357 A JPS6332357 A JP S6332357A JP 17558486 A JP17558486 A JP 17558486A JP 17558486 A JP17558486 A JP 17558486A JP S6332357 A JPS6332357 A JP S6332357A
Authority
JP
Japan
Prior art keywords
substrate
sample
water
drops
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17558486A
Other languages
Japanese (ja)
Inventor
Takashi Ekusa
俊 江草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17558486A priority Critical patent/JPS6332357A/en
Publication of JPS6332357A publication Critical patent/JPS6332357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To inspect the uniformity of the surface of a substrate nondestructively by controlling the temperature and humidity in a sample chamber and cooling the sample substrate to below its dew point, and varying the relative position between the sample and an illuminator. CONSTITUTION:The sample substrate 11 is fitted on a sample table 12 and a humidity control means 14 and a temperature control means 13 fitted on the sample table 12 are controlled to cool the substrate 11 below the dew point, so that drops of water are condensed over the surface of the substrate 11. The lighting device 15 lights the substrate 11 at an angle within a specific range to observe the surface through a microscope 17. At this time, the position relation where the diffusion intensity of light by the drops of water is large and the nonuniformity of the surface of the substrate 11 can be observed with the best contrast is found and the drops of water on the surface of the substrate 11 are irradiated with light, so that the drops of water diffuse the light in every direction. The intensity and direction of the scattering depend upon the size and shape of water drops, so a hydrophilic and hydrophobic degree difference is observed as a difference in the size and shape of the drops of water to inspect the uniformity of the substrate surface sensitively without any destruction.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電気的あるいは光学的素子に用いられる有機
薄膜を形成した半導体基板等の表面状聾の均一性を検出
するための表面評価装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention detects the uniformity of the surface condition of a semiconductor substrate on which an organic thin film used for electrical or optical elements is formed. This invention relates to a surface evaluation device for surface evaluation.

(従来の技術) 近年超薄膜を利用した構造を有する電気的および光学的
素子の開発が活発化している。これらは基板上にオング
ストローム単位の薄膜を1層あるいは複数層形成して素
子構造を構築する。従って基板表面状態が薄膜を均一な
厚み、特性を保って形成できるかどうかに深くかかわっ
ている。あるいは基板上に形成された薄膜の表面状態が
次の層を均一な厚み、特性を保って形成できるどうかに
深くかかわっている。
(Prior Art) In recent years, development of electrical and optical elements having structures using ultra-thin films has become active. These device structures are constructed by forming one or more angstrom-sized thin films on a substrate. Therefore, the condition of the substrate surface is deeply related to whether a thin film can be formed with uniform thickness and properties. Alternatively, the surface condition of the thin film formed on the substrate is deeply related to whether the next layer can be formed with uniform thickness and properties.

この様な超薄膜の例としてラングミュア・プロジェット
法(LB法)による有機薄膜の製造法が注目されている
。LB法は水面上に有機分子を展開し、表面積を減少さ
せることによって圧縮して有機薄膜(一般に単分子膜)
を形成し、これを基板上に累積する方法である。LB法
により有機薄膜を基板上に均一に累積するためには基板
表面の均一性が問題となる他、1層1層累積される各々
の膜の均一性も要求される。なぜなら膜内に存在する欠
陥は次の膜の欠陥を形成するように欠陥は履歴する傾向
にあるからである。そして欠陥は素子特性を悪化させる
As an example of such ultra-thin films, a method for producing organic thin films using the Langmuir-Prodgett method (LB method) is attracting attention. The LB method spreads organic molecules on the water surface and compresses them by reducing the surface area to form an organic thin film (generally a monolayer).
This is a method of forming and accumulating this on a substrate. In order to uniformly accumulate an organic thin film on a substrate by the LB method, not only the uniformity of the substrate surface becomes a problem, but also the uniformity of each film that is accumulated layer by layer. This is because defects existing in a film tend to form defects in the next film. In addition, defects deteriorate device characteristics.

LB法による薄膜の形成は、現状ではまだ1mm〜0.
01fiZ’lのサイズのマクロレベルの欠陥が問題と
なっている。すなわち水面上の単分子膜を精密に基板上
に移し取る製造条件あるいはその検査方法がまだ十分に
開発されていない。
At present, thin film formation by the LB method is still limited to 1 mm to 0.0 mm.
A macro-level defect with a size of 01fiZ'l is a problem. In other words, manufacturing conditions for precisely transferring a monomolecular film on a water surface onto a substrate, or methods for inspecting the same, have not yet been fully developed.

薄膜を検査する方法としては、光学顕微」−過凰電子顕
微i4 (TEM)や走査型電子顕微鏡(SEX)があ
る。TEMは数十オングストロームの厚みの薄膜を検出
することが可能だが、試料形態が電子線を透過する必要
があり現実の基板上で検査できない欠点がある。SEM
は基板上の薄膜を検査するのに使われる方法だが検出で
きるのは表面の凹凸であり、表面状態の違いを検出する
には他の電子線を用いた表面分析装置を備えた装置を使
用する必要がある。SEMもTEMもLB膜のように1
層の厚みが数十オングストロームしかないものの構造の
乱れを検出するためには、数万倍以上の倍率が必要であ
りかえって基版表団全体の評価は多大な時間がかかる。
Methods for inspecting thin films include an optical microscope (TEM) and a scanning electron microscope (SEX). Although TEM is capable of detecting thin films with a thickness of several tens of angstroms, it has the disadvantage that the specimen must be transparent to electron beams and cannot be inspected on an actual substrate. SEM
is a method used to inspect thin films on substrates, but it only detects surface irregularities, and to detect differences in surface conditions, a device equipped with a surface analysis device that uses other electron beams is used. There is a need. Both SEM and TEM are 1 like LB film.
In order to detect disturbances in the structure of a layer whose thickness is only a few tens of angstroms, a magnification of tens of thousands of times or more is required, and it takes a great deal of time to evaluate the entire substrate surface.

また電子線を用いた表面評価装置は強い電子線のため、
LB膜のような有機薄膜に対してはその構造を破壊する
恐れがある。
In addition, surface evaluation equipment using electron beams is a strong electron beam, so
There is a fear that the structure of organic thin films such as LB films may be destroyed.

また、微分干渉顕微鏡、多重光束干渉計では、表面の凹
凸状態が観察できるのみで、組成変化などを検出するこ
とができない(日本化学会編、新実験化学講座、18巻
、第30頁〜第31頁参照)。
In addition, differential interference microscopes and multiple beam interferometers can only observe surface irregularities, but cannot detect changes in composition (edited by the Chemical Society of Japan, New Experimental Chemistry Course, Vol. 18, pp. 30-30). (See page 31).

(発明が解決しようとする問題点) 試料の表面の均一性を評価するために、表面から数十オ
ングストローム以下の厚みの構造あるいは組成変化を敏
感に検出でき、試料表面全体にわたる評価が短時間で済
み、非破壊的な評価が可能な表面評価装置が望まれてい
る。
(Problems to be Solved by the Invention) In order to evaluate the uniformity of the surface of a sample, it is possible to sensitively detect changes in structure or composition within a thickness of several tens of angstroms from the surface, and to evaluate the entire surface of the sample in a short time. There is a need for a surface evaluation device that is capable of non-destructive evaluation.

本発明は試料表面の均一性を非破壊的に敏感に検査でき
る表面評価装置を提供することを目的とする。
An object of the present invention is to provide a surface evaluation device that can non-destructively and sensitively inspect the uniformity of a sample surface.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)本発明は、試料
室と、試料室に設けられた試料観察手段、試料室内の温
度制(1)試料室内の雲度制(1)試料室内に設けられ
た試料台と、試料室内の温度制(1) 試料との相対位置を可変できるように試料室内に設けら
れた照明装置を具備したことを特徴とする表面評価装置
である。
(Means and effects for solving the problems) The present invention provides a sample chamber, sample observation means provided in the sample chamber, temperature control in the sample chamber, (1) cloudiness control in the sample chamber, and (1) cloudiness control in the sample chamber. A sample stage provided and temperature control in the sample chamber (1) This is a surface evaluation device characterized by comprising an illumination device provided in the sample chamber so that the relative position with respect to the sample can be varied.

本発明者は基板表面の構造あるいは組成変化がその表面
親水性疎水性に影響を及ぼすことを利用した表面評価方
法偽滴付着法を開発した。水滴付着法は次のようなもの
である。比較的高湿度の雰囲気中で基板を冷却して露点
以下の温度にすると、雰囲気中の水分が基板表面に凝縮
する。このときの水滴の大きさは条件によって違うが0
.001mm−Q、5 mmの範囲である。さらに基板
表面の親水性疎水性の違いがこの水滴の大きさ、形状に
影響する。この水滴に光を照明すると水滴は光を四方に
散乱するが、この散乱強度と方向は水滴の大きき、形状
に依存するので、基板表面の親水、疎水性度の違いを光
散乱の違い、すなわち光の明暗の違いとして観察するこ
とが可能となる(第2図参照)5この水滴付着法は、微
小領域の接触角を測定していると考えることができる。
The present inventors have developed a surface evaluation method, the pseudodrop attachment method, which utilizes the fact that changes in the structure or composition of a substrate surface affect its surface hydrophilicity and hydrophobicity. The water droplet deposition method is as follows. When a substrate is cooled to a temperature below the dew point in a relatively high humidity atmosphere, moisture in the atmosphere condenses on the substrate surface. The size of the water droplets at this time varies depending on the conditions, but is 0.
.. The range is 001mm-Q, 5mm. Furthermore, the difference in hydrophilicity and hydrophobicity of the substrate surface affects the size and shape of this water droplet. When these water droplets are illuminated with light, the water droplets scatter the light in all directions, but the intensity and direction of this scattering depend on the size and shape of the water droplets, so the difference in light scattering is based on the difference in hydrophilicity and hydrophobicity of the substrate surface. In other words, it becomes possible to observe the difference in brightness and darkness of light (see Figure 2).5 This water droplet deposition method can be thought of as measuring the contact angle in a minute area.

これは完全に表面の性質を検出しているので、表面から
数オングストロームないしは数十オングストロームの深
さの構造あるいは組成変化を検出できる。
Since this method completely detects the properties of the surface, it is possible to detect changes in structure or composition at a depth of several angstroms to several tens of angstroms from the surface.

この水滴付着法によシ試料の表面状態を観察する際て本
発明の表面評価装置を用いることができる。本発明の使
用例を以下に記す。
The surface evaluation device of the present invention can be used when observing the surface condition of a sample using this water droplet adhesion method. Examples of use of the present invention are described below.

試料を試料台上に取付け、試料室内の温度と湿に対して
45〜90oの角度で照明し、その対する方向から顕微
鏡で試料を観察する。観察方向は45〜90’の範囲で
水滴による光の散乱強度が大きくかつまた試料表面の不
均一性をもっともコントラスト良く観察できる相対位置
を探す。
The sample is mounted on a sample stage, illuminated at an angle of 45 to 90 degrees relative to the temperature and humidity inside the sample chamber, and observed with a microscope from the opposite direction. The observation direction is in the range of 45 to 90', and a relative position is searched for where the intensity of light scattering by water droplets is large and the non-uniformity of the sample surface can be observed with the best contrast.

試料表面が一様な親水、疎水性度を持っているならば、
水滴の光散乱状態も一様であり何の模様も観察されない
。しかし親水、疎水性度に影響する僅かの構造あるいは
組成変化も検出が可能である。試料には水滴が付着する
だけなので再び試料を露点以上の温度にすれば水滴は蒸
発しそのまま次の試料処理を行うことができる。
If the sample surface has uniform hydrophilicity and hydrophobicity,
The light scattering state of the water droplets is also uniform, and no pattern is observed. However, it is also possible to detect slight structural or compositional changes that affect hydrophilicity or hydrophobicity. Since only water droplets adhere to the sample, if the sample is brought to a temperature above the dew point again, the water droplets will evaporate and the next sample treatment can be carried out as is.

(実施例) 実施例I LB法による累積膜の欠陥を水滴付着法によって評価し
た例を示す。ステアリン酸のようなLB分子は1分子内
に親水基を備えているので、その累積膜の表面は親水基
あるいは疎水基のいずれか一方が一様に蕗出しているは
ずである。このとき上記水滴付着法での評価では一様な
光散乱状態が観察される。しかしLB膜の累積状態が悪
化している場合にはその構造の乱れ方によって親水基と
疎水基の露出間が異なり、表面の親水性、疎水性度が不
均一になる。もしこの構造の乱れが光学顕微鏡で検出で
きる程度以上の大きさを持っていれば、上記水滴付着法
によシ光散乱状態の違いとして観察することができる。
(Example) Example I An example will be shown in which defects in a cumulative film obtained by the LB method were evaluated by a water droplet adhesion method. Since an LB molecule such as stearic acid has a hydrophilic group within one molecule, either the hydrophilic group or the hydrophobic group should be uniformly exposed on the surface of the accumulated film. At this time, a uniform light scattering state is observed in the evaluation using the water droplet adhesion method. However, when the cumulative state of the LB film is deteriorated, the exposure of hydrophilic groups and hydrophobic groups differs depending on how the structure is disturbed, and the hydrophilicity and hydrophobicity of the surface become non-uniform. If this structural disturbance is large enough to be detected with an optical microscope, it can be observed as a difference in the light scattering state using the water droplet deposition method described above.

塩化カドミウム濃度が2.5X10  mol /i 
、水温15°Cの水面上にステアリン酸のクロロホルム
溶液を展開し、クロロホルムが蒸発するのを待って仕切
υ板によって水面の表面積を減少させることによって圧
縮し、表面圧を25 dyne / amに保つとステ
アリン酸の単分子膜が水面上に形成される。あらかじめ
水中に沈めてあったところの、王水で10分間処理した
後に水洗したシリコン基板を10朋/分の速度で水面に
垂直な角度で水面上に引上げと、ステアリン酸の単分子
膜が1層累積される。このとき基板と累積されつつある
単分子膜の間に水溶液を含みこれが乾燥するときに膜の
構造を乱す。
Cadmium chloride concentration is 2.5×10 mol/i
, a chloroform solution of stearic acid is spread on the water surface at a water temperature of 15 °C, and after waiting for the chloroform to evaporate, it is compressed by reducing the surface area of the water surface with a partition plate, and the surface pressure is maintained at 25 dyne/am. A monomolecular film of stearic acid and stearic acid is formed on the water surface. A silicon substrate that had been previously submerged in water, treated with aqua regia for 10 minutes, and then washed with water, was lifted onto the water surface at a speed of 10 m/min at an angle perpendicular to the water surface, and a monomolecular film of stearic acid was Layers are accumulated. At this time, an aqueous solution is contained between the substrate and the monomolecular film that is being accumulated, which disturbs the structure of the film when it dries.

このようにして得られた有機薄膜が形成された基板を本
発明の一実施例である表面評価装置を用いて検査した。
The substrate on which the organic thin film thus obtained was formed was inspected using a surface evaluation apparatus that is an embodiment of the present invention.

本実施例の表面評価装置は空気清浄器を備えた湿度およ
び温度を制御できる試料室16と、その中に迅速に@度
を上下できる機能を備えた試料台12を有し、この試料
台12を照明する照明装置15と、試料台12を観察、
記録するだめの2〜20倍の望遠型顕微鏡17とそれに
付属する写真撮影装置を備えている。さらにこの表面評
価装置の試料台12上の基板11と照明装置15および
顕微鏡17との相対位置を可変できるようになっている
。試料台12には、小型電子冷却機と熱電対による温度
測定系を設えた冷却システムからなる試料温度制御手段
13が設けられている。温度及び湿度制御手段14は出
力100Wの全密閉型圧縮機と300Wのヒータと超音
波加湿器と除湿機としてのプレートフィンクーラードサ
ーミスタ電子式温度調節器による比例制御系と湿球方式
の湿度センサーによる電子式湿度調節系とからなる。湿
度は50〜90%の適当な状態に保たれる。補給水とし
ては基板の汚染を防ぐため超純水を用いることが望まし
い。
The surface evaluation device of this embodiment has a sample chamber 16 that is equipped with an air purifier and can control humidity and temperature, and a sample stage 12 that has a function to quickly raise and lower the temperature. Observing the illumination device 15 that illuminates the sample stage 12,
It is equipped with a telescopic microscope 17 with a magnification of 2 to 20 times as large as a recording device, and an attached photographic device. Further, the relative positions of the substrate 11 on the sample stage 12, the illumination device 15, and the microscope 17 of this surface evaluation device can be varied. The sample stage 12 is provided with a sample temperature control means 13 consisting of a cooling system equipped with a small electronic cooler and a temperature measurement system using a thermocouple. The temperature and humidity control means 14 includes a fully hermetic compressor with an output of 100 W, a 300 W heater, an ultrasonic humidifier, a plate fin cooler thermistor as a dehumidifier, a proportional control system using an electronic temperature controller, and a wet bulb type humidity sensor. It consists of an electronic humidity control system. Humidity is maintained at an appropriate level of 50-90%. It is desirable to use ultrapure water as makeup water to prevent contamination of the substrate.

基板を試料台12上に取付け、試料室内の温度と湿度を
所定の値にする。試料室内の温度と湿度によって決まる
露点よりさらに5°C低い温度に基板を冷却すると基板
表面に一面に水滴が凝縮する。
The substrate is mounted on the sample stage 12, and the temperature and humidity in the sample chamber are set to predetermined values. When the substrate is cooled to a temperature 5° C. lower than the dew point determined by the temperature and humidity inside the sample chamber, water droplets condense all over the substrate surface.

照明装置15を基板表面に対して45〜900の角度で
照明し、その対する方向から顕微鏡17で基板を観察す
る。観察方向は45〜900の範囲で水滴による光の散
乱強度が大きくかつまた基板の不均一性をもっともコン
トラスト良く観察できる相対位置を探す。
The illumination device 15 illuminates the substrate surface at an angle of 45 to 900 degrees, and the substrate is observed with a microscope 17 from the opposite direction. The observation direction is in the range of 45 to 900 degrees, and a relative position is searched for where the intensity of light scattering by water droplets is large and where the non-uniformity of the substrate can be observed with the best contrast.

第3図にこのステアリン酸の単分子膜が1層累積された
シリコン基板の水滴付着法を本表面評価装置によって行
った写真を示す。25オングストロームの厚みの単分子
膜構造の乱れが明瞭なコントラストで記録できた。写真
の基板与筈の横方向に走る半円弧状の模様は、基板が水
中より引上げられるときに出来る水面のメニスカスが引
上げられては下がるという撮動運動をしたことと丁度対
この様な模様の見える凰分子累積 膜上にさらに累積を続けると必ず累積性が悪化し、最後
には累積が不可能になった。
FIG. 3 shows a photograph of a silicon substrate on which one monolayer of stearic acid was deposited using the water droplet adhesion method using this surface evaluation apparatus. Disturbances in the monolayer structure with a thickness of 25 angstroms could be recorded with clear contrast. The semi-circular pattern running horizontally on the board in the photo is exactly the same as the meniscus on the water surface that is created when the board is lifted out of the water, and the photographic movement of being pulled up and down. Further accumulation on the visible phosphor molecule accumulation film always worsened the accumulation, and eventually accumulation became impossible.

実施例2 シリコン基板を5チフツ化水素酸で1分間処理するとシ
リコンの自然酸化膜が除去され、純粋なシリコン単結晶
面が出る。この面は水に対する接触角が約90’ある疎
水面である。しかしフッ化水素酸処理後、水況したシ空
気中に出すと直ちに酸化層が形成される。この自然酸化
層の厚みは数オングストロームから数十オングストロー
ムと非常た表面評価装置を用いて水滴付暦法評価を行っ
た写真を示す。
Example 2 When a silicon substrate is treated with 5-hydrofluoric acid for 1 minute, the natural oxide film of silicon is removed and a pure silicon single crystal surface is exposed. This surface is a hydrophobic surface with a contact angle to water of approximately 90'. However, after treatment with hydrofluoric acid, an oxidized layer is immediately formed when exposed to air under water. The thickness of this natural oxidation layer ranges from several angstroms to several tens of angstroms, as shown in the photograph, which was evaluated using a water droplet method using a highly sophisticated surface evaluation device.

10オングストロ一ム程度の厚みの酸化膜の面内分布が
検出できた。水洗のとき水の流れた痕跡が観察される。
The in-plane distribution of an oxide film with a thickness of about 10 angstroms could be detected. Traces of water flow can be observed during washing.

これによシシリコンの自然酸化膜は水洗により瞬時に形
成されることが明らかとなる。
This reveals that a natural oxide film of silicon is instantly formed by washing with water.

他の実施例 試料観察手段として顕微鏡のかわりに透明前面パネルを
設けてもよい。
Other Examples A transparent front panel may be provided in place of the microscope as the sample observation means.

〔発明の効果〕〔Effect of the invention〕

本発明によれば表面から数十オングストローム以下の厚
みの構造あるいは組成変化を敏感に検出でき、試料表面
全体にわたる評価が短時間で済む非破壊的な試料表面均
一性の評価が可能な表面評価装置を提供することができ
る。
According to the present invention, a surface evaluation device is capable of sensitively detecting changes in structure or composition with a thickness of several tens of angstroms or less from the surface, and is capable of non-destructive evaluation of sample surface uniformity, allowing evaluation over the entire sample surface in a short time. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を表わす図、第2図は水滴付
着法の原理を示す図、笛3図及び第4図は基盤の結晶の
構造を表わした図である。 1・・・親水性基板 2・・・疎水性薄膜 3・・・水滴 4・・・照明光 5・・・散乱光 1.1・・・基板 12・・・試料台 13・・・試料温度制御手段 14・・・温度及び湿度制御手段 15・・・照度装置 16・・・試料室 17・・・顕微鏡 18・・・ガイドウヱイー 19・・・回転ステージ 第1図
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the principle of the water droplet adhesion method, and FIGS. 3 and 4 are diagrams showing the structure of the crystal of the base. 1... Hydrophilic substrate 2... Hydrophobic thin film 3... Water droplet 4... Illumination light 5... Scattered light 1.1... Substrate 12... Sample stage 13... Sample temperature Control means 14...Temperature and humidity control means 15...Illuminance device 16...Sample chamber 17...Microscope 18...Guide wire 19...Rotation stage Fig. 1

Claims (2)

【特許請求の範囲】[Claims] (1)試料室と、試料室に設けられた試料観察手段と、
試料室内の温度制御手段と、試料室内の温度制御手段と
、試料室内に設けられた試料台と、試料台に設けられた
試料温度制御手段と、試料との相対位置を可変できるよ
うに試料室内に設けられた照明装置を具備したことを特
徴とする表面評価装置。
(1) A sample chamber, a sample observation means provided in the sample chamber,
A temperature control means in the sample chamber, a temperature control means in the sample chamber, a sample stand provided in the sample chamber, a sample temperature control means provided in the sample stand, and a temperature control means in the sample chamber so that the relative position with respect to the sample can be varied. 1. A surface evaluation device characterized by comprising an illumination device provided in the surface evaluation device.
(2)前記試料観察手段として顕微鏡を設けたことを特
徴とする特許請求の範囲第1項記載の表面評価装置。
(2) The surface evaluation apparatus according to claim 1, characterized in that a microscope is provided as the sample observation means.
JP17558486A 1986-07-28 1986-07-28 Surface evaluating device Pending JPS6332357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17558486A JPS6332357A (en) 1986-07-28 1986-07-28 Surface evaluating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17558486A JPS6332357A (en) 1986-07-28 1986-07-28 Surface evaluating device

Publications (1)

Publication Number Publication Date
JPS6332357A true JPS6332357A (en) 1988-02-12

Family

ID=15998638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17558486A Pending JPS6332357A (en) 1986-07-28 1986-07-28 Surface evaluating device

Country Status (1)

Country Link
JP (1) JPS6332357A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5815256A (en) * 1996-02-09 1998-09-29 Kabushiki Kaisha Toshiba Apparatus and method for measuring in-plane distribution of surface free energy
JP2008070268A (en) * 2006-09-14 2008-03-27 Nippon Soda Co Ltd Thin film verifying method and thin film verifying device
JP2014215068A (en) * 2013-04-23 2014-11-17 株式会社ディスコ Protective film detection apparatus
JP2015068708A (en) * 2013-09-27 2015-04-13 株式会社東芝 Surface condition evaluation device and surface condition evaluation method
CN112986235A (en) * 2019-12-02 2021-06-18 陈军 Product material difference uniformity measuring platform and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5815256A (en) * 1996-02-09 1998-09-29 Kabushiki Kaisha Toshiba Apparatus and method for measuring in-plane distribution of surface free energy
JP2008070268A (en) * 2006-09-14 2008-03-27 Nippon Soda Co Ltd Thin film verifying method and thin film verifying device
JP2014215068A (en) * 2013-04-23 2014-11-17 株式会社ディスコ Protective film detection apparatus
JP2015068708A (en) * 2013-09-27 2015-04-13 株式会社東芝 Surface condition evaluation device and surface condition evaluation method
CN112986235A (en) * 2019-12-02 2021-06-18 陈军 Product material difference uniformity measuring platform and method

Similar Documents

Publication Publication Date Title
Williams et al. Applications of metallic shadow‐casting to microscopy
US20070229823A1 (en) Determination of the number concentration and particle size distribution of nanoparticles using dark-field microscopy
US4967095A (en) Method and apparatus for detecting and sizing particles on surfaces
TWI333544B (en) Substrate inspection apparatus
KR960002722A (en) Positioning method and analysis method of external particle and analyzer
JPH05340885A (en) Particle inspecting method
JPS6332357A (en) Surface evaluating device
KR102184780B1 (en) Method and system for inspecting growth quality of graphine
US7863003B2 (en) Apparatus for implementing non-destructive quality control of substrates and printed biological microarrays
JPH10209237A (en) Method and apparatus for testing wafer
TWI662271B (en) Detection method
JPH06194320A (en) Method and equipment for inspecting mirror face substrate in semiconductor manufacturing line and method for manufacturing
CN109580650A (en) A kind of detection method of graphene surface cleannes
JP3417494B2 (en) Method and apparatus for inspecting surface undulation of glass substrate
JP3323927B2 (en) Substrate surface inspection method and apparatus used for the method
JP2000019135A (en) Surface property inspection device for test body
US6544803B2 (en) Method for determining the concentration of contamination on a component
Buck et al. Investigations of surface recombination velocities on germanium by the photoelectromagnetic method
JP3013519B2 (en) Inspection method and inspection device for thin film structure
Yu et al. AFM study of adsorption of protein A on a poly (dimethylsiloxane) surface
US5061068A (en) Process for detection of sub-micron particulate contamination on a bare (planar) substrate
US6333785B1 (en) Standard for calibrating and checking a surface inspection device and method for the production thereof
JP2006270111A (en) Method for inspecting semiconductor device and its equipment
RU2119694C1 (en) Method for checking layers of porous silicon on single-crystalline silicon for uniformity
US20080220541A1 (en) Process for structuring a surface layer