JPS6332303A - Alignment device - Google Patents

Alignment device

Info

Publication number
JPS6332303A
JPS6332303A JP61175075A JP17507586A JPS6332303A JP S6332303 A JPS6332303 A JP S6332303A JP 61175075 A JP61175075 A JP 61175075A JP 17507586 A JP17507586 A JP 17507586A JP S6332303 A JPS6332303 A JP S6332303A
Authority
JP
Japan
Prior art keywords
alignment
light
wafer
mirror
wavelengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61175075A
Other languages
Japanese (ja)
Inventor
Takashi Kamono
加茂野 隆
Hideki Ine
秀樹 稲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61175075A priority Critical patent/JPS6332303A/en
Publication of JPS6332303A publication Critical patent/JPS6332303A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform high-accuracy alignment when the alignment is performed by using light reflected by a reflection mirror by correcting an error in return position generated when the reflection mirror is returned after a wafer surface is shot by using the signal of a detecting means. CONSTITUTION:When the reflection mirror 13 is at its normal position as shown by a solid line, two alignment light beams of different wavelength forming images at a point P2 on the surface of the wafer 4 form images on points P1 and P2 on straight lines P1 and P0. Then, when the mirror 13 shifts from the normal position by an angle theta/2 and returns, one of two light beams of different wavelength forming an image at a point P'0 on the surface of the wafer 4 forms an image at a point P'1 on the surface of a reticle 1 and the other light beam forms an image at a point P'0. The difference in length between those segments P1P'1 and P0P'0 causes variation in offset value between the two light beams. For the purpose, the reflection position D' of, for example, luminous flux from a light source 14 based on the mirror 13 is detected 15 and the output of the detecting means 15 is utilized to adjust the offset between the two wavelengths. Consequently, the position error of the mirror 13 is corrected to prevent alignment accuracy from deteriorating owing to chromatic aberration at the time of use of plural wavelengths.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は2つの物体を所定の関係でアライメントを行う
アライメント装置に関し、特に半導体製造装置において
レチクル若しくはマスク等の第1物体とウェハ等の第2
物体とを一定量の空隙を設けて若しくは投影光学系を介
してアライメントを行う際に好適なアライメント装置に
関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an alignment device that aligns two objects in a predetermined relationship, and particularly in semiconductor manufacturing equipment, a first object such as a reticle or mask and a first object such as a wafer. 2
The present invention relates to an alignment device suitable for performing alignment with an object by providing a certain amount of gap or via a projection optical system.

(従来の技術) 最近の半導体製造装置には集積回路の高密度化に伴い、
ウェハ面上に形成される電子回路パターンの微細化がよ
り要求されている。そしてこれに伴い電子回路パターン
の形成されているレチクルやマスク(以下「マスク」と
いう。)とウェハを高精度にアライメントすることか要
求されてきている。
(Conventional technology) Recent semiconductor manufacturing equipment has increased the density of integrated circuits.
There is a growing demand for finer electronic circuit patterns formed on wafer surfaces. Along with this, there is an increasing demand for highly accurate alignment between a reticle or mask (hereinafter referred to as a "mask") on which an electronic circuit pattern is formed and a wafer.

本出願人は特開昭58−25638号公報で観察装置を
利用したアライメント装置を提案している。
The present applicant has proposed an alignment device using an observation device in Japanese Unexamined Patent Publication No. 58-25638.

同公報ではウェハ面に投影露光する為の投影光学系にg
線(436nm)の光を用い、アライメント系にHe−
Cdレーザーから放射される波長(442nm)の光を
用いている。このとき使用する2つの波長は略等しい為
、主に投影光学系を対象に構成することにより、両波長
の光で略等しい光学性能を得ている。
The same bulletin describes the projection optical system for projection exposure on the wafer surface.
He-
Light of a wavelength (442 nm) emitted from a Cd laser is used. Since the two wavelengths used at this time are approximately equal, by configuring the projection optical system mainly, approximately equal optical performance is obtained for light of both wavelengths.

多くの場合ウェハ面上のアライメントマークから得られ
る回折敗乱光信号はレジストの塗布ムラやアライメント
マークの段差構造のバラツキ等の影響により不安定とな
る傾向があった。
In many cases, the diffracted scattered light signal obtained from the alignment mark on the wafer surface tends to become unstable due to the effects of uneven resist coating, variations in the step structure of the alignment mark, and the like.

又投影露光する波長とアライメントを行う波長な路間−
にするとウェハ面上に塗布するレジストに多層レジスト
を用いたとき多層レジストがアライメント光を吸収して
ウェハ面上のアライメントマークからの反射光を減少さ
せS/N比が低下し、アライメント精度が低下する場合
があった。
Also, the distance between the wavelength for projection exposure and the wavelength for alignment.
When a multilayer resist is used as the resist applied on the wafer surface, the multilayer resist absorbs the alignment light and reduces the reflected light from the alignment mark on the wafer surface, resulting in a decrease in S/N ratio and a decrease in alignment accuracy. There were times when I did.

そこでこれらの欠点を改良する為に複数の波長を用いて
アライメントを行い、アライメント精度を向上させよう
とすることが考えられている。
Therefore, in order to improve these drawbacks, it has been considered to perform alignment using a plurality of wavelengths to improve alignment accuracy.

多くの半導体製造用の露光装置ではアライメント照明系
からの複数の波長の光束をマスク面上方に配置した光学
要素、例えば反射鏡等で反射させ投影光学系を介してマ
スク面上に入射させている。そしてこれらの装置では、
ウニへ面への各ショット毎に反射鏡をアライメント照明
系の光路中より離脱させている。しかしながら一般には
投影光学系に色収差が残存している為、反射鏡の復帰位
置の誤差、例えば角度誤差等か複数の波長を用いたにも
かかわらずアライメント精度を低下させる原因となって
いる。
In many exposure systems for semiconductor manufacturing, light beams of multiple wavelengths from an alignment illumination system are reflected by an optical element, such as a reflector, placed above the mask surface, and then incident on the mask surface via a projection optical system. . And in these devices,
The reflecting mirror is removed from the optical path of the alignment illumination system for each shot toward the surface of the sea urchin. However, since chromatic aberration generally remains in the projection optical system, errors in the return position of the reflecting mirror, such as angular errors, are the cause of deteriorating alignment accuracy even when a plurality of wavelengths are used.

(発明が解決しようとする問題点) 本発明は複数の波長の光を用いレチクル面の上方に配置
した反射鏡で反射させた光を用いてアライメントを行う
際、反射鏡をウニへ面の各ショット毎にアライメント光
路中から離脱させ、ショット後復帰させるときに生ずる
復帰位置の誤差を検出手段からの信号を用いて補正する
ことにより、常に良好なるアライメントを可能としたア
ライメント装置の提供を目的とする。
(Problems to be Solved by the Invention) When performing alignment using light of a plurality of wavelengths and reflected by a reflecting mirror disposed above the reticle surface, the present invention aims to move the reflecting mirror to each part of the surface of the reticle. The purpose of the present invention is to provide an alignment device that always enables good alignment by correcting errors in the return position that occur when the lens is removed from the alignment optical path for each shot and returned after each shot using a signal from the detection means. do.

(問題点を解決する為の手段) 照明系によって照明された第1物体を投影光学系を介し
て第2物体面上に投影する際、ml記第1物体と第2物
体とのアライメントの為に該第1物体上に設けたアライ
メントマークを前記照明系と第1物体との間若しくは該
照明系中に設けたアライメント照明系の一部の光学要素
を介して照射するアライメント装置において、前記光学
要素をアライメント照明系の光路から離脱可能に設置し
、該光学要素の姿勢を検出する検出手段からの信号を利
用して航記第1物体と第2物体のアライメントを行った
ことである。
(Means for solving the problem) When projecting the first object illuminated by the illumination system onto the second object plane via the projection optical system, for alignment between the first object and the second object. In an alignment apparatus that illuminates an alignment mark provided on the first object through some optical elements of an alignment illumination system provided between the illumination system and the first object or in the illumination system, the optical The element is installed so as to be removable from the optical path of the alignment illumination system, and the first object and the second object are aligned using a signal from a detection means that detects the attitude of the optical element.

(実施例) 第1図は本発明を縮少投影光学系を用いた半導体製造用
の露光装置に適用したときの一部分の光学系の概略図で
ある。
(Embodiment) FIG. 1 is a schematic diagram of a part of an optical system when the present invention is applied to an exposure apparatus for semiconductor manufacturing using a reduction projection optical system.

同図において1はレチクル、2は投影光学系、3は属波
長板、4はウェハである。16.17はアライメント用
の光源であり、このうち16はHe−Neレーザーで波
長632.8nmの光を放射している。又17はHe−
Cdレーザーであり波長442nmの光を放射している
。13はレチクル1の上方のアライメント光路中に着脱
自在に設けた光学要素で、例えば反射鏡より成っている
In the figure, 1 is a reticle, 2 is a projection optical system, 3 is a wavelength plate, and 4 is a wafer. Numerals 16 and 17 are light sources for alignment, and 16 of these are He-Ne lasers that emit light with a wavelength of 632.8 nm. Also, 17 is He-
It is a Cd laser and emits light with a wavelength of 442 nm. Reference numeral 13 denotes an optical element detachably provided in the alignment optical path above the reticle 1, and is made of, for example, a reflecting mirror.

本実施例では不図示の照明系によりレチクル1を照明し
、投影光学系2により所定倍率でレチクル面上の回路パ
ターンをウェハ面上に投影し露光している。
In this embodiment, the reticle 1 is illuminated by an illumination system (not shown), and the circuit pattern on the reticle surface is projected and exposed onto the wafer surface at a predetermined magnification by the projection optical system 2.

又光[16,17からの波長の異った2つの光をハーフ
ミラ−18で反射させ、更にウニへ面のシゴットのとき
にはアライメント照明系の光路から離脱させるようにし
た反射鏡13で反射させた後レチクル1面上のアライメ
ントマークを照明している。そしてレチクル1面上のア
ライメントマークを投影光学系2によりウェハ面上に縮
少投影している。
In addition, the two lights with different wavelengths from the lights [16 and 17] were reflected by a half mirror 18, and further reflected by a reflecting mirror 13 which was designed to be removed from the optical path of the alignment illumination system when working on the surface of the sea urchin. The alignment mark on one side of the rear reticle is illuminated. The alignment mark on the reticle 1 is then reduced and projected onto the wafer surface by the projection optical system 2.

このときウニへ面4上では波長442nmの光と波長6
32.8nmの光の2つの光が共に結像し、即ちピント
が合うようにしている。又レチクル面1上では例えば波
長442nmの光が結像するように構成している。そう
すると波長632゜8nmの光は投影光学系の色収差の
為にレチクル面1上では結像せず、例えばレチクル面1
の上方の点Poに結像するようになる。
At this time, on the sea urchin surface 4, light with a wavelength of 442 nm and light with a wavelength of 6
The two lights of 32.8 nm are imaged together, that is, brought into focus. Further, the configuration is such that, for example, light having a wavelength of 442 nm is imaged on the reticle surface 1. In this case, the light with a wavelength of 632°8 nm will not form an image on the reticle surface 1 due to the chromatic aberration of the projection optical system.
The image will be focused on a point Po above.

本実施例ではウェハ面4からのアライメント信号をピン
トの合フでいる前述の2つの波長の光を用いて検出し、
レチクル面1上からのアライメント信号はピントの合っ
ている波長(442nm)の1つの光を用いて検出して
いる。
In this embodiment, the alignment signal from the wafer surface 4 is detected using the aforementioned two wavelengths of light that are in focus,
The alignment signal from the reticle surface 1 is detected using one light beam having a focused wavelength (442 nm).

このとき投影光学系2の瞳位置近傍にイ波長板3を配置
し、レチクル1から直接反射してくるレチクル信号用の
反射光とイ波長板3を往復させたウェハ信号用の反射光
とを90度直線偏光成分を異ならしめている。これによ
り偏光ビームスプリッタ−7で各偏光成分毎に2つの光
束に分離してレチクル信号とウェハ信号とを各々独立に
検出している。
At this time, an e-wavelength plate 3 is placed near the pupil position of the projection optical system 2, and the reflected light for the reticle signal that is directly reflected from the reticle 1 and the reflected light for the wafer signal that has been reciprocated through the e-wavelength plate 3 are separated. The 90 degree linearly polarized light components are made different. As a result, each polarized light component is separated into two beams by the polarizing beam splitter 7, and a reticle signal and a wafer signal are detected independently.

即ちレチクル信号の光を偏光ビームスプリッタ−7で反
射させてレチクル信号充電検出系10に導光し、ウェハ
信号の2つの波長の光を偏光ビームスプリッタ−7を透
過させている。そしてハーフミラ−8で2つに分割し、
一方は波長442nmの光を透過させ、波長632.8
nmの光を不透過とするフィルター9で波長442nm
の光をウェハ信号光電検出系11で検出している。
That is, the reticle signal light is reflected by the polarizing beam splitter 7 and guided to the reticle signal charge detection system 10, and the wafer signal light having two wavelengths is transmitted through the polarizing beam splitter 7. Then divide it into two with half mirror 8,
One transmits light with a wavelength of 442 nm, and the other transmits light with a wavelength of 632.8 nm.
Wavelength 442 nm with filter 9 that does not transmit nm light.
The wafer signal photoelectric detection system 11 detects the light.

他方はハーフミラ−8で反射させ反射鏡8°を介し波長
632.8nmの光を通過させ波長442nmの光を不
透過とするフィルター9゛で波長632.8nmの光を
ウェハ信号光電検出系12で検出している。そしてウェ
ハ信号光電検出系11.12からの2つの信号を利用し
て例えば重み付けをしたり若しくは平均値を用いてアラ
イメントを行うことによりアライメント精度の向上を図
っている。
The other side is reflected by a half mirror 8, passes the light with a wavelength of 632.8 nm through a reflecting mirror 8°, and passes the light with a wavelength of 632.8 nm through a filter 9' that does not transmit the light with a wavelength of 442 nm. Detected. The alignment accuracy is improved by, for example, weighting the two signals from the wafer signal photoelectric detection systems 11 and 12, or by performing alignment using an average value.

このようにウェハ信号検出を2波長で行うことによりア
ライメントマーク7の段差構造のバラツキやウェハ面上
のレジストムラのよる回折散乱光の影響による信号を平
均化すること等により安定した信号を得るようにしてい
る。
By performing wafer signal detection at two wavelengths in this way, a stable signal can be obtained by averaging signals caused by variations in the step structure of the alignment mark 7 and the influence of diffracted and scattered light due to resist unevenness on the wafer surface. I have to.

又本実施例では投影光学系による軸上色収差により2つ
の波長の間で一定量のシフトが生じてくる。そこで1波
長で予め調製ずみのウェハを用い若しくは基準マークを
用いることによって2つの波長で別々にウェハ信号の取
り込みを行い、オフセットを行うことにより、このとき
のシフトを補正するようにしている。
Furthermore, in this embodiment, a certain amount of shift occurs between the two wavelengths due to axial chromatic aberration caused by the projection optical system. Therefore, by using a pre-prepared wafer at one wavelength or by using a reference mark, wafer signals are acquired separately at two wavelengths and offset is performed to correct the shift at this time.

本実施例ではウェハ面の各ショット毎に反射鏡13をア
ライメント照明系より離脱させ、ショット終了後再び元
の位置に復帰させている。
In this embodiment, the reflecting mirror 13 is removed from the alignment illumination system for each shot of the wafer surface, and returned to its original position after the shot is completed.

この為反射鏡の再現性の角度誤差が投影光学系より生ず
る色収差が原因して2波長間のオフセット値を変化させ
てしまう。
For this reason, the angular error in the reproducibility of the reflecting mirror causes the offset value between the two wavelengths to change due to chromatic aberration caused by the projection optical system.

例えば第2図の実線で示すように反射鏡13が正規の位
置にあるとすればウェハ面4上の点P2に結像している
2つの波長の光は各々点211点Poに結像し、直aP
tPo上に結像する。例えば投影光学系がテレセントリ
ック系であれば、投影光学系の光軸から各々等しい距離
に点P1と点Poは結像される。
For example, if the reflecting mirror 13 is in the normal position as shown by the solid line in FIG. , direct aP
Image is formed on tPo. For example, if the projection optical system is a telecentric system, the points P1 and Po are imaged at equal distances from the optical axis of the projection optical system.

しかしながら反射鏡13の位置が正規の位置より角度θ
/2だけズして復帰したとすると、ウェハ面4上の一点
22″に結像する2つの波長の光のうち波長442nm
の光はレチクル面1上の一点Pl°に結像するが波長6
32.8nmの光は点P0に結像する。
However, the position of the reflector 13 is at an angle θ from the normal position.
If it returns after shifting by
The light is focused on a point Pl° on the reticle surface 1, but the wavelength is 6.
The 32.8 nm light is focused on point P0.

このとき同図に示す如く寸法を用いて各点の距離を求め
ると P、 P、’=j2.tanθ1 P、 Po’=uOtanθ1 となる。この長さの違いはそのまま予め求めておいた2
つの波長のオフセット値を変化させる原因となってくる
At this time, if we calculate the distance between each point using the dimensions as shown in the figure, we get P, P,'=j2. tanθ1 P, Po'=uOtanθ1. This difference in length was calculated in advance as it is 2
This causes the offset value of two wavelengths to change.

そこで本実施例では反射鏡13の位置が正規の位置より
どれだけ角度誤差があるかを光源14と検出手段5を利
用して、例えば反射鏡13の裏面に設けたマークを検出
したり、若しくは光源14からの光束の反射鏡13によ
る反射位置をD’ =11anθより検出したりして求
めている。
Therefore, in this embodiment, the light source 14 and the detection means 5 are used to detect the angular error of the position of the reflecting mirror 13 from the normal position, for example, by detecting a mark provided on the back surface of the reflecting mirror 13, or The position of reflection of the light beam from the light source 14 by the reflecting mirror 13 is determined by detecting D' = 11 an θ.

そして検出手段15からの出力信号を利用して2波長間
のオフセットを調整している。これにより反射fi13
の位置の誤差を補正し、複数の波長を用いたときの色収
差によるアライメント精度の低下を防止している。
Then, the output signal from the detection means 15 is used to adjust the offset between the two wavelengths. This causes reflection fi13
This corrects positional errors and prevents deterioration in alignment accuracy due to chromatic aberration when multiple wavelengths are used.

尚本実施例では2つの波長の光を用いた場合を示したが
、2つ以上の波長の光を用いて各々の波長の光で得られ
た信号に重みっけをしたり、又は平均値をとったりして
アライメントを行っても良い。
Although this example shows the case where light with two wavelengths is used, it is also possible to use light with two or more wavelengths and weight the signals obtained with the light of each wavelength, or to calculate the average value. Alignment may be performed by taking .

(発明の効果) 本発明によれば複数の波長を用い、レチクル面の上方に
配置した着脱可能の反射鏡を介してアライメントを行う
際、反射鏡の復帰位置、即ち姿勢を検出し、投影光学系
の色収差のよる反射鏡の復帰位置誤差から生ずるオフセ
ットを良好に補正することにより、高精度なアライメン
トを可能としたアライメント装置を達成している。
(Effects of the Invention) According to the present invention, when alignment is performed using a plurality of wavelengths via a removable reflector placed above the reticle surface, the return position, that is, the attitude of the reflector is detected, and the projection optical system is By properly correcting the offset caused by the return position error of the reflecting mirror due to the chromatic aberration of the system, an alignment device that enables highly accurate alignment has been achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は投影光学系を用いた半導体製造用の露光装置に
適用したときの一実施例の光学系の一部分の概略図、第
2図は色収差により生ずる2波長のレチクル面近傍の結
像位置を示す説明図である。 図中1はレチクル、2は投影光学系、3は属波長板、4
はウェハ、7は偏光ビームスプリッタ−28,18はハ
ーフミラ−19,9′はフィルター、10はレチクル信
号光電検出系、11゜12はウェハ信号充電検出系、1
3は反射鏡、14は光源、15は検出手段である。
Fig. 1 is a schematic diagram of a part of an optical system of an embodiment when applied to an exposure apparatus for semiconductor manufacturing using a projection optical system, and Fig. 2 shows the imaging position near the reticle surface of two wavelengths caused by chromatic aberration. FIG. In the figure, 1 is a reticle, 2 is a projection optical system, 3 is a wavelength plate, and 4 is a reticle.
is a wafer, 7 is a polarizing beam splitter 28, 18 is a half mirror, 9' is a filter, 10 is a reticle signal photoelectric detection system, 11° 12 is a wafer signal charge detection system, 1
3 is a reflecting mirror, 14 is a light source, and 15 is a detection means.

Claims (1)

【特許請求の範囲】[Claims] (1)照明系によって照明された第1物体を投影光学系
を介して第2物体面上に投影する際、前記第1物体と第
2物体とのアライメントの為に該第1物体上に設けたア
ライメントマークを前記照明系と第1物体との間若しく
は該照明系中に設けたアライメント照明系の一部の光学
要素を介して照射するアライメント装置において、前記
光学要素をアライメント照明系の光路から離脱可能に設
置し、該光学要素の姿勢を検出する検出手段からの信号
を利用して前記第1物体と第2物体のアライメントを行
ったことを特徴とするアライメント装置。
(1) When projecting the first object illuminated by the illumination system onto the second object plane via the projection optical system, a In an alignment apparatus that irradiates an alignment mark between the illumination system and a first object or through some optical elements of the alignment illumination system provided in the illumination system, the optical element is emitted from the optical path of the alignment illumination system. An alignment device, characterized in that the first object and the second object are aligned by using a signal from a detecting means that is removably installed and detects the attitude of the optical element.
JP61175075A 1986-07-25 1986-07-25 Alignment device Pending JPS6332303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61175075A JPS6332303A (en) 1986-07-25 1986-07-25 Alignment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61175075A JPS6332303A (en) 1986-07-25 1986-07-25 Alignment device

Publications (1)

Publication Number Publication Date
JPS6332303A true JPS6332303A (en) 1988-02-12

Family

ID=15989794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61175075A Pending JPS6332303A (en) 1986-07-25 1986-07-25 Alignment device

Country Status (1)

Country Link
JP (1) JPS6332303A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529625B2 (en) 1997-06-02 2003-03-04 Canon Kabushiki Kaisha Position detecting method and position detecting device for detecting relative positions of objects having position detecting marks by using separate reference member having alignment marks
US6559924B2 (en) 2000-06-01 2003-05-06 Canon Kabushiki Kaisha Alignment method, alignment apparatus, profiler, exposure apparatus, exposure apparatus maintenance method, semiconductor device manufacturing method, and semiconductor manufacturing factory
US6636311B1 (en) 1998-12-01 2003-10-21 Canon Kabushiki Kaisha Alignment method and exposure apparatus using the same
JP2013251342A (en) * 2012-05-30 2013-12-12 Canon Inc Measurement method, exposure method and device
JP2015084437A (en) * 2014-12-08 2015-04-30 キヤノン株式会社 Measurement method, exposure method and device
US9534888B2 (en) 2014-09-05 2017-01-03 Canon Kabushiki Kaisha Detection apparatus, measurement apparatus, exposure apparatus, method of manufacturing article, and measurement method
US9675347B2 (en) 1999-10-20 2017-06-13 Krt Investors, Inc. Apparatus for the treatment of tissue

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529625B2 (en) 1997-06-02 2003-03-04 Canon Kabushiki Kaisha Position detecting method and position detecting device for detecting relative positions of objects having position detecting marks by using separate reference member having alignment marks
US6636311B1 (en) 1998-12-01 2003-10-21 Canon Kabushiki Kaisha Alignment method and exposure apparatus using the same
US9675347B2 (en) 1999-10-20 2017-06-13 Krt Investors, Inc. Apparatus for the treatment of tissue
US6559924B2 (en) 2000-06-01 2003-05-06 Canon Kabushiki Kaisha Alignment method, alignment apparatus, profiler, exposure apparatus, exposure apparatus maintenance method, semiconductor device manufacturing method, and semiconductor manufacturing factory
JP2013251342A (en) * 2012-05-30 2013-12-12 Canon Inc Measurement method, exposure method and device
US9534888B2 (en) 2014-09-05 2017-01-03 Canon Kabushiki Kaisha Detection apparatus, measurement apparatus, exposure apparatus, method of manufacturing article, and measurement method
JP2015084437A (en) * 2014-12-08 2015-04-30 キヤノン株式会社 Measurement method, exposure method and device

Similar Documents

Publication Publication Date Title
JP3109852B2 (en) Projection exposure equipment
US4901109A (en) Alignment and exposure apparatus
US6057908A (en) Exposure condition measurement method
JPH02102518A (en) Detection of surface position
CA2078731C (en) Positional deviation measuring device and method thereof
US5323207A (en) Projection exposure apparatus
US4798962A (en) Multi-wavelength projection exposure and alignment apparatus
JPH0743245B2 (en) Alignment device
JPS58112330A (en) Projection type exposure device
JPS6332303A (en) Alignment device
JP2650396B2 (en) Position detecting device and position detecting method
US5294980A (en) Positioning detecting method and apparatus
US5671057A (en) Alignment method
JP3019505B2 (en) Exposure apparatus and method of manufacturing semiconductor chip using the same
JPH0743312A (en) Surface inspection device and aligner therewith
JP2004247476A (en) Surface position measuring method
US5760411A (en) Alignment method for positioning a plurality of shot areas on a substrate
CN113448189B (en) Alignment system and photoetching machine
JPS62140418A (en) Position detector of surface
JP2796347B2 (en) Projection exposure method and apparatus
US6313916B1 (en) Position detecting system and projection exposure apparatus with the same
JPH10239015A (en) Surface position detector
JP2888233B2 (en) Position detecting apparatus, exposure apparatus and method
JPH01112726A (en) Exposure device
JP3352161B2 (en) Exposure apparatus and method of manufacturing semiconductor chip using the same