JPS6332170B2 - - Google Patents

Info

Publication number
JPS6332170B2
JPS6332170B2 JP7999980A JP7999980A JPS6332170B2 JP S6332170 B2 JPS6332170 B2 JP S6332170B2 JP 7999980 A JP7999980 A JP 7999980A JP 7999980 A JP7999980 A JP 7999980A JP S6332170 B2 JPS6332170 B2 JP S6332170B2
Authority
JP
Japan
Prior art keywords
counter electrode
cellulose
electrochromic display
carbon
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7999980A
Other languages
Japanese (ja)
Other versions
JPS576826A (en
Inventor
Hiroo Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7999980A priority Critical patent/JPS576826A/en
Publication of JPS576826A publication Critical patent/JPS576826A/en
Publication of JPS6332170B2 publication Critical patent/JPS6332170B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は電気化学的酸化還元反応に基づく色の
着消色を利用したエレクトロクロミツク表示装置
(以下、ECDと記す)に関し、特に対向電極の作
製方法に関するものである。
[Detailed Description of the Invention] The present invention relates to an electrochromic display device (hereinafter referred to as ECD) that utilizes color addition/decolorization based on an electrochemical redox reaction, and particularly relates to a method for manufacturing a counter electrode. .

一般に、ECDは液体型のもの、及び固体型の
ものがあることは知られている。液体型のECD
は電解液中に溶融させたEC材料(例えば、ヘブ
チルビオロゲンブロマイド)を、二枚の相対する
電極間に保持し、表示極に於て還元させると着色
表示され、逆に酸化させると元の状態に戻り消色
されるものである。また、固体型のECDは表示
極側にあらかじめ薄膜化したEC材料(例えば、
三酸化タングステン)を付着させておき、さらに
電極間に電解液を保持したセルに於て先と同様の
酸化還元反応に基づく薄膜の着消色を行なうもの
である。
It is generally known that there are two types of ECD: liquid type and solid type. Liquid type ECD
An EC material (for example, hebutyl viologen bromide) melted in an electrolyte is held between two opposing electrodes, and when it is reduced at the display electrode, it is colored and displayed, and conversely, when it is oxidized, it returns to its original state. It returns to its original state and is erased. In addition, solid-state ECDs require a thin film of EC material (for example,
In a cell in which tungsten trioxide (tungsten trioxide) is adhered and an electrolytic solution is held between the electrodes, the thin film is colored and bleached based on the same oxidation-reduction reaction as described above.

第1図は酸化タングステンを用いたECDの基
本構成を示した図である。1はガラス基板であり
内面には透明電極2がコーテイングされている。
3は蒸着された酸化タングステン薄膜である。4
は表示の背景となる白色の板であり、通常多孔質
のセラミツク材が用いられる。5は酸化還元物質
を含むカーボンの対極であり、プレス加工によつ
て作られる。6は対極の集電体であり、Ti材が
用いられている。7は成形加工されたガラス容器
であり、前面基板1と接着し一体化する。8は表
示セル内に封入された電解液であり、過塩素酸リ
チウムの1M/プロピレンカーボネイト溶液で
ある。このセルに於て、表示極を負、対極を正に
して電圧を印加すると次の式で表わされる化学変
化で起り、WO3膜が青色に着色する。
FIG. 1 is a diagram showing the basic configuration of an ECD using tungsten oxide. Reference numeral 1 denotes a glass substrate, and a transparent electrode 2 is coated on the inner surface.
3 is a deposited tungsten oxide thin film. 4
is a white plate that serves as the background of the display, and is usually made of porous ceramic material. 5 is a carbon counter electrode containing a redox substance, and is made by press working. Reference numeral 6 represents a current collector serving as a counter electrode, and Ti material is used. 7 is a molded glass container, which is bonded and integrated with the front substrate 1. 8 is an electrolytic solution sealed in the display cell, which is a 1M lithium perchlorate/propylene carbonate solution. In this cell, when a voltage is applied with the display electrode being negative and the counter electrode being positive, a chemical change expressed by the following formula occurs, and the WO 3 film is colored blue.

WO3+xLi+xe-LixWO3 即ち、WO3薄膜中へのカチオンとエレクトロ
ンの注入がなされて、タングステンブロンズが形
成されるのが着色の原理である。また、逆に表示
極を正対極を負にしてこれと全く逆の反応を進行
させると消色反応が進行し、元の状態に戻る。こ
のようにECDでは表示の発消色と共にイオンの
移動を伴なうことが大きな特徴である。従つて、
表示の特性安定化の為には表示極側の反応に対応
してイオンの移動に伴なう対極側の反応もスムー
ズに働くことが必要である。
WO 3 +xLi+xe - LixWO 3 The principle of coloring is that cations and electrons are injected into the WO 3 thin film to form tungsten bronze. On the other hand, if the display electrode is made positive and the opposite electrode is made negative and a completely opposite reaction is allowed to proceed, a decoloring reaction proceeds and the original state is restored. As described above, a major feature of ECD is that it involves the movement of ions as well as the display coloring and fading. Therefore,
In order to stabilize the characteristics of the display, it is necessary that the reaction on the counter electrode side, which accompanies the movement of ions, work smoothly in response to the reaction on the display electrode side.

即ち、表示極の酸化還元反応に対して、対極の
これと全く逆の還元酸化反応が可逆性よく成立す
ることが必要である。そこで考えられたのが鉄の
錯体を用いた対極である。これは、錯体中にある
鉄の原子価が次式のように2価と3価に安定的に
遷移しうることを利用したものである。
That is, in contrast to the redox reaction at the display electrode, it is necessary that a completely opposite reduction-oxidation reaction at the counter electrode occur with good reversibility. The idea was to create a counter electrode using an iron complex. This takes advantage of the fact that the valence of iron in the complex can stably transition between divalent and trivalent as shown in the following formula.

Fe3+・Y3 -+Li++e- Fe2+・LiY3 - Y=〔Fe〓Fe〓(CN)6〕 従つて、これと同様の考えに基づきC0,Ni,
Mn等の金属錯体に於ける原子価の内部遷移を利
用すれば、対極に用いる酸化還元物質を用途に応
じて広く求めることができる。しかし、多くの場
合この種の錯体は電気の良導体とは言えない為、
電極材として直接使用することはできない。そこ
で、実際の使用ではこの種の錯体を黒鉛などのカ
ーボンと混合し、プレス成形することによつて電
極となす。また、このプレス成形電極の機械的強
度をたもつ為にこれに結着材を混合する事も一般
的である。しかし、この結着材が電気化学的に不
安定であると、表示セルの特性に著しい影響を及
ぼす。即ち、表示の応答が悪くなり、また、反応
の可逆性を悪くする為、デバイスとしての寿命を
短かくしてしまう。そこで従来この種の結着材と
してはポリスチレン、ポリエチレン等の熱可塑性
の高分子材料が用いられてきた。しかし、これら
はプレス成形電極の結着材として最適であつて
も、対極材を基板や芯材に塗布して使用する際に
は接着性の点で不向きである。即ち、前述したカ
ーボンと可逆性酸化還元物質からなる対極材料を
ハケ塗り、デイツピングあるいは印刷の方法によ
つて作製することは困難である。また、従来から
用いられてきた導電ペーストの接着剤であるエポ
キシやフエノール系接着剤も対極の結着材として
は向かないことが明らかとなつた。即ち、エポキ
シ系接着剤では硬化剤であるアミン系樹脂が電解
液中に溶出し、ECDの特性を大きく変えてしま
う事が分つた。また、フエノール系接着剤も電解
液中に溶出し、電解液を変色変質させてしまつ
た。そこで本発明ではこのような欠点のない結着
材を提供し、ハケ塗り、デイツピング、印刷塗布
等が可能な対向電極の作製方法を実現したもので
ある。
Fe 3+・Y 3 - +Li + +e - Fe 2+・LiY 3 - Y=[Fe〓Fe〓(CN) 6 ] Therefore, based on the same idea, C 0 , Ni,
By utilizing internal valence transitions in metal complexes such as Mn, it is possible to find a wide variety of redox substances to be used as counter electrodes depending on the application. However, in many cases, this type of complex is not a good conductor of electricity, so
It cannot be used directly as an electrode material. Therefore, in actual use, this type of complex is mixed with carbon such as graphite and press-molded to form an electrode. Furthermore, in order to ensure the mechanical strength of this press-molded electrode, it is common to mix a binder with it. However, if this binder is electrochemically unstable, it will significantly affect the properties of the display cell. That is, the display response becomes poor and the reversibility of the reaction becomes poor, thereby shortening the life of the device. Therefore, thermoplastic polymeric materials such as polystyrene and polyethylene have conventionally been used as this type of binder. However, although these materials are optimal as binders for press-molded electrodes, they are unsuitable in terms of adhesive properties when used as a counter electrode material coated on a substrate or core material. That is, it is difficult to produce the counter electrode material made of carbon and a reversible redox substance as described above by brushing, dipping, or printing methods. Furthermore, it has become clear that epoxy and phenolic adhesives, which are conventionally used conductive paste adhesives, are not suitable as binding materials for the counter electrode. In other words, it was found that in epoxy adhesives, the amine resin, which is a curing agent, is eluted into the electrolyte, which significantly changes the characteristics of the ECD. Furthermore, the phenolic adhesive was also eluted into the electrolyte, causing discoloration and deterioration of the electrolyte. Therefore, the present invention provides a binding material free from such drawbacks, and realizes a method for producing a counter electrode that allows coating by brushing, dipping, printing, etc.

本発明による対向電極は黒鉛、活性炭、カーボ
ンブラツク等のカーボン材料と、酸化還元物質で
ある金属錯体、さらにはこれにセルロース系の結
着材を混ぜたものを水に溶いてペースト状とな
し、ハケ塗り、印刷、デイツピング等の方法によ
つて基板、あるいは、芯材に塗布乾燥し作製す
る。本発明では黒鉛の他に活性炭、または、カー
ボンブラツクを適宜用いることが特に良い。それ
は、黒鉛が電気の良導体として作用することに加
えて、活性炭、あるいはカーボンブラツクが巨大
な表面積をもつことと、特異な吸着能を有するこ
とによつて対極反応に有効に作用する為である。
即ち活性炭あるいはカーボンブラツクを用いた対
極では電気二重層の形成によるイオン、あるいは
電荷の着脱が外部電圧の印加に応じて起ることが
分つた。例えば、黒鉛と活性炭からなる対極と、
黒鉛と鉄錯体からなる対極を比較した場合、反応
の可逆性に著しい差は生じなかつた事がこの傍証
といえよう。この結果から本発明では特にカーボ
ン材料として黒鉛と活性炭あるいはカーボンブラ
ツクの混合体を用いることを主張するものであ
る。
The counter electrode according to the present invention is made by dissolving a mixture of carbon materials such as graphite, activated carbon, and carbon black, a metal complex as a redox substance, and a cellulose-based binder in water to form a paste. It is prepared by coating and drying it on a substrate or core material by brushing, printing, dipping, or other methods. In the present invention, it is particularly preferable to appropriately use activated carbon or carbon black in addition to graphite. This is because, in addition to graphite acting as a good conductor of electricity, activated carbon or carbon black has a huge surface area and a unique adsorption ability, which effectively acts on the counter electrode reaction.
That is, it has been found that in the counter electrode using activated carbon or carbon black, ions or charges are attached and detached due to the formation of an electric double layer in response to the application of an external voltage. For example, a counter electrode made of graphite and activated carbon,
This can be said to be supported by the fact that there was no significant difference in the reversibility of the reaction when comparing counter electrodes made of graphite and iron complexes. Based on this result, the present invention particularly advocates the use of a mixture of graphite and activated carbon or carbon black as the carbon material.

次に本発明のもう一つの特徴である結着材につ
いてはセルロース系のもの、特にセルロースエー
テル類のカルボキシメチルセルロース、カルボキ
シエチルセルロース、アミノエチルセルロース等
が適当であることが分つた。即ち、これらのセル
ロースエーテルはセルロースの水酸基との置換度
が変化することによつて溶解性が大きく変る特徴
を有している。特に置換度0.5以上では水溶性で
ありながら有機溶剤には溶けないという対極の結
着材には好都合な条件となり、ノリ剤として用い
ることができる。従つて、前述したカーボンと金
属錯体の対極材料をセルロースエーテルと共に水
に溶かし、塗布乾燥したものはECDの対向電極
として電解液中に溶出することなく使用が可能で
ある。この他、セルロース系の結着材としてはセ
ルロースエステルも同様の性質を有しているので
広く応用することができる。いずれにしてもセル
ロース系結着材の良い点は有機溶剤に溶けにくい
点と、さらに、繊維質である為塗膜が多孔質にな
る事にある。特に、後者の多孔質という点は前述
した活性炭やカーボンブラツクと同様に対極の表
面二重層の形成に大きな寄与があるものと思われ
る。
Next, it has been found that cellulose-based binders, particularly cellulose ethers such as carboxymethyl cellulose, carboxyethyl cellulose, and aminoethyl cellulose, are suitable for the binder, which is another feature of the present invention. That is, these cellulose ethers have the characteristic that their solubility varies greatly depending on the degree of substitution with the hydroxyl group of cellulose. In particular, when the degree of substitution is 0.5 or more, this is a favorable condition for a binder on the other hand, which is soluble in water but insoluble in organic solvents, and can be used as a glue agent. Therefore, the above-mentioned counter electrode material of carbon and metal complex dissolved in water together with cellulose ether, coated and dried can be used as a counter electrode of ECD without being eluted into the electrolyte. In addition, as a cellulose-based binder, cellulose ester has similar properties and can be widely applied. In any case, the advantage of cellulose-based binders is that they are difficult to dissolve in organic solvents, and because they are fibrous, the coating film becomes porous. In particular, the latter's porous nature is thought to make a large contribution to the formation of the surface double layer of the counter electrode, similar to the aforementioned activated carbon and carbon black.

<実施例> 第3図の構成によるECDを作製した。即ち、
ネサ膜2を有するガラス1に酸化タングステン3
を真空蒸着し表示極とする。次に、凹みを有する
成形ガラス基板7の内面に黒鉛、活性炭、ベルリ
ンブルー、カルボキシメチルセルロースを2:
1:1:1の重量比で混合したものを水に溶かし
ハケ塗りし、温度100℃で20分間乾燥したものを
対向電極9に用いた。対向電極のリード端子は表
側基板のネサと接触させる事によつて外に取り出
した。セルの内部にはあらかじめ用意した多孔質
の白色セラミツク板4をセツトし、表ガラス基板
と裏ガラス基板をエポキシ接着剤によつて貼り合
せた。電解液8はプロピレンカーボネイト中に過
塩素酸リチウムを1M/溶かしたものを封入孔
より真空封入した。このようにして得た表示体の
特性は従来のプレス成形対向電極を用いたものと
変らないことが確認され、対極の溶出、剥離も生
じない事が証明された。
<Example> An ECD having the configuration shown in FIG. 3 was manufactured. That is,
Tungsten oxide 3 on glass 1 with Nesa film 2
is vacuum-deposited to form the display electrode. Next, 2 parts of graphite, activated carbon, Berlin blue, and carboxymethyl cellulose were applied to the inner surface of the molded glass substrate 7 having a recess.
A mixture at a weight ratio of 1:1:1 was dissolved in water, applied with a brush, dried at a temperature of 100° C. for 20 minutes, and used as the counter electrode 9. The lead terminal of the counter electrode was taken out by bringing it into contact with the wire on the front substrate. A porous white ceramic plate 4 prepared in advance was set inside the cell, and the front glass substrate and back glass substrate were bonded together using an epoxy adhesive. Electrolyte 8 was prepared by dissolving 1M lithium perchlorate in propylene carbonate and vacuum-sealing it through the sealing hole. It was confirmed that the characteristics of the display body obtained in this way were the same as those using a conventional press-molded counter electrode, and it was proved that no elution or peeling of the counter electrode occurred.

<他の実施例> 前実施例と同様の対極材料を調合し、水の量を
調整する事によつてスクリーン印刷を試みた所、
印刷性がよい事も確認された。また、基板側の塗
布面をあらかじめサンドブラスト処理し粗面とし
た後、その上に印刷法によつて対向電極を形成し
た所、結着材の粗面に対するアンカー効果が高ま
り、強い接着性を示した。従つて、この方法は特
にECDの実用性の面で信頼性の高い品質を保つ
事が可能である。他の実施例として網目状の芯材
を用い、これを水の量を増やした対極材料中に浸
漬し、引き上げ乾燥したものを第1図のプレス成
形電極の替りに用いたが、従来のものと変らぬ表
示特性を得た。
<Other Examples> Screen printing was attempted by preparing the same counter electrode material as in the previous example and adjusting the amount of water.
It was also confirmed that the printability was good. In addition, when the coating surface on the substrate side was sandblasted in advance to make it a rough surface, and a counter electrode was formed thereon by a printing method, the anchoring effect of the binding material on the rough surface was enhanced and strong adhesion was exhibited. Ta. Therefore, this method can maintain highly reliable quality, especially in terms of practicality of ECD. As another example, a mesh-shaped core material was used, which was immersed in a counter electrode material containing an increased amount of water, and then pulled up and dried, which was then used in place of the press-formed electrode shown in Figure 1. The same display characteristics were obtained.

以上述べた通り本発明は黒鉛と活性炭、あるい
は、カーボンブラツクの混合カーボン材料と、金
属錯体、それにセルロース系結着材を混合した水
溶性ペーストを塗布乾燥したものを対向電極とし
て使用するものである。その結果、従来にない安
定性の高いハケ塗り、印刷塗布、デイツピング等
による対向電極を提供する事が可能となつた。ま
た、水溶性である為、作業者に対する安全性も高
く、また、粘度調整が自由自在になるなどの点で
作業性にとむ対向電極の作製方法を実現した。さ
らには、対向電極が印刷塗布可能な為、その厚み
も0.1〜0.2mm程度に押えられ、プレス成形電極
(厚み1mm以上)では得られない薄形のECDが実
現できる。ちなみに総厚1.5mmの腕時計用EC表示
が試作され、その実用性が実証された。
As described above, the present invention uses a water-soluble paste prepared by mixing a mixed carbon material of graphite and activated carbon or carbon black, a metal complex, and a cellulose-based binder, coated and dried, as the counter electrode. . As a result, it has become possible to provide a counter electrode by brush coating, printing coating, dipping, etc. with unprecedented stability. In addition, since it is water-soluble, it is highly safe for workers, and the viscosity can be adjusted freely, making it possible to create a counter electrode manufacturing method that is highly workable. Furthermore, since the counter electrode can be printed and coated, its thickness can be kept to about 0.1 to 0.2 mm, making it possible to achieve a thin ECD that cannot be obtained with press-molded electrodes (thickness of 1 mm or more). By the way, a prototype EC display for wristwatches with a total thickness of 1.5 mm was produced, and its practicality was demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のECDの構成を示した図である。
第2図は本発明によるECDの1実施例を示した
図である。 図中の番号、1……ガラス基板、2……透明電
極、3……酸化タングステン薄膜、4……セラミ
ツク板、5……プレス成形対向電極、6……集電
体、7……成形ガラス基板、8……電解液、9…
…塗布対向電極。
FIG. 1 is a diagram showing the configuration of a conventional ECD.
FIG. 2 is a diagram showing one embodiment of the ECD according to the present invention. Numbers in the figure: 1... Glass substrate, 2... Transparent electrode, 3... Tungsten oxide thin film, 4... Ceramic plate, 5... Press-molded counter electrode, 6... Current collector, 7... Molded glass Substrate, 8... Electrolyte, 9...
...Coating counter electrode.

Claims (1)

【特許請求の範囲】 1 電気光学的に着消色が可能な表示材料と電解
液の組合せからなるエレクトロクロミツク表示体
において、対極が炭素材料、可逆酸化還元物質お
よびセルロース系の結着材からなる混合物を塗布
した芯材もしくは基板からなることを特徴とする
エレクトロクロミツク表示体。 2 前記炭素材料が黒鉛、活性炭、カーボンブラ
ツクのいずれか1種以上からなる特許請求の範囲
第1項に記載のエレクトロクロミツク表示体。 3 前記可逆酸化還元物質が金属錯体化合物であ
る特許請求の範囲第1項に記載のエレクトロクロ
ミツク表示体。 4 前記セルロース系の決着材がセルロースエー
テル類の1種以上からなる特許請求の範囲第1項
に記載のエレクトロクロミツク表示体。 5 前記基板表面の一部もしくは全面を粗面化し
た特許請求の範囲第1項に記載のエレクトロクロ
ミツク表示体。
[Scope of Claims] 1. An electrochromic display consisting of a combination of a display material that can be colored and erased electro-optically and an electrolyte, in which the counter electrode is made of a carbon material, a reversible redox substance, and a cellulose-based binder. An electrochromic display body comprising a core material or a substrate coated with a mixture of: 2. The electrochromic display according to claim 1, wherein the carbon material is one or more of graphite, activated carbon, and carbon black. 3. The electrochromic display according to claim 1, wherein the reversible redox substance is a metal complex compound. 4. The electrochromic display according to claim 1, wherein the cellulose-based binding material comprises one or more types of cellulose ethers. 5. The electrochromic display according to claim 1, wherein a part or the entire surface of the substrate is roughened.
JP7999980A 1980-06-13 1980-06-13 Electrochromic display body Granted JPS576826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7999980A JPS576826A (en) 1980-06-13 1980-06-13 Electrochromic display body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7999980A JPS576826A (en) 1980-06-13 1980-06-13 Electrochromic display body

Publications (2)

Publication Number Publication Date
JPS576826A JPS576826A (en) 1982-01-13
JPS6332170B2 true JPS6332170B2 (en) 1988-06-28

Family

ID=13705983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7999980A Granted JPS576826A (en) 1980-06-13 1980-06-13 Electrochromic display body

Country Status (1)

Country Link
JP (1) JPS576826A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3211637A1 (en) * 1982-03-30 1983-10-06 Bosch Gmbh Robert COUNTERELECTRODE FOR AN ELECTROCHROME DISPLAY DEVICE

Also Published As

Publication number Publication date
JPS576826A (en) 1982-01-13

Similar Documents

Publication Publication Date Title
GB2069168A (en) Electrochromic display cell
JPS58193527A (en) Electrochromic display and manufacture thereof
JPS6332170B2 (en)
GB2047421A (en) Electrochromic display device
US4236792A (en) Electrochromic display and method for making same
US4411497A (en) Electrochromic display element
JP4438299B2 (en) Electrodeposition type image display device
JPS61223724A (en) Electrochromic display element
JPS58115420A (en) Electrochromic display body
JPS6360887B2 (en)
JPH05503378A (en) Improved materials and cells and manufacturing methods for light modulation
JPS6360888B2 (en)
JPS6048023A (en) Electrochromic element
JPS58207027A (en) All solid-state type electrochromic display
JPS6361077A (en) Electrochromic display element
JPS6360368B2 (en)
JPS61223725A (en) Electrochromic display element
JP2006349751A (en) Electrochemical type display element and display
JP2730139B2 (en) Electrochromic device
JPS6063272A (en) Cell type electrochromic display element
JPS6078428A (en) Transmission type electrochromic element
JPH06242473A (en) Electrochromic element
JPS5840531A (en) Entirely solid type electrochromic display device
JPS589927B2 (en) electrochromic display device
JPS6355050B2 (en)