JPS6332144A - Air quantity detecting device for internal combustion engine - Google Patents

Air quantity detecting device for internal combustion engine

Info

Publication number
JPS6332144A
JPS6332144A JP17467586A JP17467586A JPS6332144A JP S6332144 A JPS6332144 A JP S6332144A JP 17467586 A JP17467586 A JP 17467586A JP 17467586 A JP17467586 A JP 17467586A JP S6332144 A JPS6332144 A JP S6332144A
Authority
JP
Japan
Prior art keywords
air flow
flow rate
air
throttle valve
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17467586A
Other languages
Japanese (ja)
Other versions
JPH0681921B2 (en
Inventor
Toshio Takahata
敏夫 高畑
Hiromasa Kubo
博雅 久保
Hatsuo Nagaishi
初雄 永石
Hiromichi Miwa
博通 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP17467586A priority Critical patent/JPH0681921B2/en
Priority to US07/069,038 priority patent/US4951209A/en
Priority to DE3721910A priority patent/DE3721910C2/en
Publication of JPS6332144A publication Critical patent/JPS6332144A/en
Publication of JPH0681921B2 publication Critical patent/JPH0681921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To enhance transient responsiveness by correcting the air flow rate at a steady state, which has been calculated by the opening of a throttle valve and the engine speed, by means of a delay factor corresponding to the operating condition, and adding a prescribed adding value to the air flow rate to a cylin der to detect the passing air quantity at a fuel injection part. CONSTITUTION:From a throttle valve opening alpha and an engine speed N, an air flow rate QH is accurately detected without being influenced by an intake pulsation. In addition, by adding a correction to this air flow rate QH by means of a delay factor K based on the throttle valve opening alpha and the engine speed N, the air flow rate Qc to a cylinder is accurately detected without worsening responsiveness even in the course of transient. And by adding a prescribed adding quantity CM (corresponding to the air flow rate Qc and the volume of the intake manifold) to the air flow rate QH, the passing air quantity at a fuel injection part can be accurately detected.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、内燃機関の空う(量検出装置に関する。[Detailed description of the invention] (Industrial application field) TECHNICAL FIELD This invention relates to an empty space detection device for an internal combustion engine.

(従来の技術) 燃料噴射式内燃機関にあっては、機関に吸入される空気
量を的確に検出することが重要であり、その検出装置と
しては空気量を熱線式等のti、量センサにより直接的
に検出するものや、圧力センサにより測定される吸気管
内圧力と機関回転速度とから間接的に検出するらのがあ
る。また、圧力センサのほかに絞り弁開ノ文センサを設
け、空気量を絞り弁開度と吸気管内圧力とから検出する
ものがある(特公昭61−4981号公報等参照)。
(Prior art) In a fuel injection type internal combustion engine, it is important to accurately detect the amount of air taken into the engine. There are methods that detect it directly and methods that indirectly detect it from the intake pipe internal pressure and engine rotation speed measured by a pressure sensor. In addition to the pressure sensor, there is also a throttle valve opening sensor that detects the amount of air based on the throttle valve opening and the pressure in the intake pipe (see Japanese Patent Publication No. 61-4981, etc.).

(発明が解決しようとする問題点) しかしながら、このように流量センサや圧力センサを用
いた検出装置では、吸気脈動による検出値の変動が大き
く、これをもとに制御される燃料噴射弁の噴射量が変動
するため、エンノンのトルク変動が大きくなってしまう
(Problems to be Solved by the Invention) However, in the detection device using a flow rate sensor or a pressure sensor, the detected value fluctuates greatly due to intake pulsation, and the injection of the fuel injector is controlled based on this. Since the amount fluctuates, the torque fluctuation of Ennon becomes large.

また、流量センサや圧力センサはそれほど応答性が良く
ないことから、過渡時の検出誤差が大きく、さらにはコ
ストが商いという問題がある。
Further, since the responsiveness of flow rate sensors and pressure sensors is not so good, there are problems in that detection errors during transient periods are large and costs are high.

この一方、これらの検出装置では、センサ位置での空気
流量を検出することになるため、過渡時には検出値とシ
リンダに流入する空気量とが一致せず、また、燃料噴射
弁の位置によっては燃料噴射部を通過する空気量と一致
せず、このため加速時や減速時(こ空燃比がリッチ化し
たり、リーン化するという問題がある。
On the other hand, since these detection devices detect the air flow rate at the sensor position, the detected value and the amount of air flowing into the cylinder may not match during transient periods, and depending on the position of the fuel injector, the fuel This does not match the amount of air passing through the injection section, which causes a problem in which the air-fuel ratio becomes rich or lean during acceleration or deceleration.

この発明は、このような問題点を解決し、過渡応答性の
よい空気量検出装置を提供することを目的としている。
It is an object of the present invention to solve these problems and provide an air amount detection device with good transient response.

(問題点を解決するための手段) この発明は、第1図に示すように絞り弁開度を検出する
手段1と、機関回転速度を検出する手段2と、両横出値
から定常での空気流量を演算する定常空気流量演算手段
3と、同じく両横出値から空気流れの遅れ係数を演算す
る遅れ係数演算手段4と、定常空気流量と遅れ係数とか
らシリンダに流入する空気流量を演算する遅延補正手段
5と、遅延補正手段5の演算値から所定の加算量を演算
する加算量演算手段6と、定常空気流量演算手段3と加
算量演算手段6の両演算値から燃料噴射部の通過空気流
量を演算する空気流量加算手段7とからなる。
(Means for Solving the Problems) As shown in FIG. 1, the present invention includes a means 1 for detecting the opening of the throttle valve, a means 2 for detecting the engine rotational speed, and a means for detecting the steady state from both side output values. Steady air flow rate calculation means 3 for calculating the air flow rate; delay coefficient calculation means 4 for calculating the air flow delay coefficient from both side output values; and calculation means for calculating the air flow rate flowing into the cylinder from the steady air flow rate and the delay coefficient. a delay correction means 5 for calculating a predetermined addition amount from the calculation value of the delay correction means 5; and an addition amount calculation means 6 for calculating a predetermined addition amount from the calculation value of the delay correction means 5; and an air flow rate addition means 7 for calculating the flow rate of passing air.

(作用) したがって、絞り弁開度aとの機関回転速度Nとから、
吸気脈動による影響を受けることなく、空気流fi Q
 11が正確に検出されると共に、この空気流量Ql+
に絞り弁開度αと機関回転速度Nとに基づく遅れ係数K
により補正を加えることで、過渡r+であっても応答性
が悪化することなく、シリンダへの空気流量Qcが正確
に検出される。そして、空気流量(Qllに所定の加算
量△CM(空気流量Qcと吸気マニホールドのボリュー
ムに対応する)を加算することで、燃料噴射部の通過空
気流量ら的確に検出される。
(Function) Therefore, from the throttle valve opening a and the engine rotation speed N,
Airflow fiQ without being affected by intake pulsation
11 is accurately detected, and this air flow rate Ql+
Delay coefficient K based on throttle valve opening α and engine speed N
By applying the correction, the air flow rate Qc to the cylinder can be accurately detected without deteriorating the responsiveness even in the case of a transient r+. Then, by adding a predetermined addition amount ΔCM (corresponding to the air flow rate Qc and the volume of the intake manifold) to the air flow rate (Qll), the air flow rate passing through the fuel injection section can be accurately detected.

(実施例) 第2図は本発明を絞り弁10の上流の吸気通路11に1
個の燃料噴射弁12を設置したシングルポイントインノ
エクション方式のエンノンに適用した実施例の機械的慴
成を表わしている。
(Embodiment) FIG. 2 shows the present invention installed in the intake passage 11 upstream of the throttle valve 10.
This figure shows the mechanical construction of an embodiment applied to a single-point innoction type ennon equipped with two fuel injection valves 12.

14は絞り弁10の開度αを検出する絞り弁開度センサ
、15はエンジン回転速度Nを検出するクランク角セン
サで、これらの検出信号はエンノン冷却水温を検出する
水温センサ161、吸入空気の温度を検出する吸気温セ
ンサ(図示しない)、空燃比を検出する空燃比センサ1
7等からの信号と共に、コントロールユニット18に入
力される。
14 is a throttle valve opening sensor that detects the opening degree α of the throttle valve 10, and 15 is a crank angle sensor that detects the engine rotation speed N. These detection signals are sent to a water temperature sensor 161 that detects the Ennon cooling water temperature, and a water temperature sensor 161 that detects the intake air temperature. An intake temperature sensor (not shown) that detects temperature, and an air-fuel ratio sensor 1 that detects air-fuel ratio
The signal is input to the control unit 18 along with the signals from 7 and the like.

また、19は絞り弁10をバイパスする通路、20はバ
イパス通路19の開口面積A IJを可変とするアイド
ル制御弁である。
Further, 19 is a passage that bypasses the throttle valve 10, and 20 is an idle control valve that makes the opening area A IJ of the bypass passage 19 variable.

コントロールユニット18は、CPU、RAM。The control unit 18 includes a CPU and a RAM.

l(○M、I10装置等からなるマイクロコンピュータ
で構成され、第1図に示した各手段1〜7の全機能を有
し、空気流量を検出すると共1こ、燃料噴射弁12の燃
料噴射制御を行う。また、コントロールユニット18は
例えばアイドル時に所定のエンノン回転速度を保つよう
にアイドル制御弁2()を駆動制御する。
It is composed of a microcomputer consisting of 1 (○M, I10 devices, etc.), has all the functions of each means 1 to 7 shown in FIG. The control unit 18 also drives and controls the idle control valve 2 ( ) so as to maintain a predetermined engine rotation speed during idle, for example.

次にコントロールユニット18内にて実行される内容を
第3図〜第5図の70−チャートに基づいて説明する。
Next, the contents executed in the control unit 18 will be explained based on charts 70 of FIGS. 3 to 5.

第3図はシリンダに流入する空気流量Qcの計算ルーチ
ンを示すもので、まずステップ10では絞り弁開度セン
サ14の信号aからテーブル検索により絞り弁開口面積
Aαが求められる。第6図にそのテーブル内容を表す特
性線図を示Vが、開口面積Aaは絞り弁開度aに比例し
て変化する。
FIG. 3 shows a calculation routine for the air flow rate Qc flowing into the cylinder. First, in step 10, the throttle valve opening area Aα is determined from the signal a of the throttle valve opening sensor 14 by table search. FIG. 6 shows a characteristic diagram representing the contents of the table.The opening area Aa changes in proportion to the throttle valve opening a.

ステップ11′cはアイドル制御弁20に指令する駆動
制御4H号(デユーティ信号)ISCDからテーブル検
索1こより絞り弁10をバイパスする通路19の開口!
面積A IJが求められる。第7図にそのテーブル内容
を表゛を特性線図を示す。アイドル制御弁20はデユー
ティ値が大きくなるほど開度が増大し、これに応じて開
口面積Abも大きくなる。
Step 11'c is the opening of the passage 19 that bypasses the throttle valve 10 from the table search 1 from the drive control number 4H (duty signal) ISCD which commands the idle control valve 20!
The area A IJ is calculated. FIG. 7 shows a characteristic diagram representing the contents of the table. The opening degree of the idle control valve 20 increases as the duty value increases, and the opening area Ab increases accordingly.

そして、ステップ12にて絞り弁開1」面積Aαとバイ
パス通路開口面積A bとの和がら総流路面槙Aが搾出
される。
Then, in step 12, the total flow path area A is squeezed out from the sum of the throttle valve opening area Aα and the bypass passage opening area Ab.

次に、ステップ13では総流路面積Aに対する定常での
空気流量Ql+を求めるが、この場合空気流量Qllは
総流路面積Aをクランク角センサ15からのエンノン回
転速度Nで除体した値A/Nと;ンノン回転速度N !
:対して割付けた3次元テープルから求められる。第8
図はそのテーブル内容を表す特性線図で、等空気流fi
t#ilは略々A/Nに応じて増大する特性を持つ。こ
れは、仮に回転数Nが一定であるとすると、A/Nは絞
り弁開度αに応じて変化し、αが大きくなるほど空気流
量が増加するためである。
Next, in step 13, the steady state air flow rate Ql+ for the total flow path area A is determined. /N and ;non rotation speed N!
: Obtained from the 3D table allocated to . 8th
The figure is a characteristic diagram showing the contents of the table.
t#il has a characteristic that increases approximately according to A/N. This is because, assuming that the rotational speed N is constant, the A/N changes depending on the throttle valve opening degree α, and the larger α becomes, the more the air flow rate increases.

ステップ14では、絞り弁10付近を通過した空気がシ
リンダに流入するまでの遅れを考慮した遅れ係数K(K
<1)が、総流路面積Aとエンジン回転速度Nとからテ
ーブル検索により求められる。
In step 14, a delay coefficient K (K
<1) is determined from the total flow path area A and the engine rotational speed N by table search.

この検索は3次元テーブルにより行なわれ、PtIJ9
図にそのテーブル内容を表す特性線図を示す。なお、遅
れ係数には総流路面積Aにほぼ応じて変化する。
This search is performed using a three-dimensional table, and PtIJ9
The figure shows a characteristic diagram representing the contents of the table. Note that the delay coefficient changes approximately depending on the total flow path area A.

そして、ステップ15にてシリンダへの空気流量Qcが
、空気流量Q11と遅れ係数にとから、Q c= Q 
co + K (Q If  Q co)の式により算
出される。Q eQは前回算出した空気流量Qcで、定
常状態ではQc、=Qtlである。
Then, in step 15, the air flow rate Qc to the cylinder is determined by the air flow rate Q11 and the delay coefficient, so that Q c=Q
It is calculated by the formula co + K (Q If Q co). Q eQ is the previously calculated air flow rate Qc, and in a steady state, Qc = Qtl.

第4図は燃料噴射弁12の部分の吸気通路11を通過す
る空気流if Q lIの計り、ルーチンを示すもので
、まずステップ20では第3図の計1.ルーチンで求め
た空気流mQcの差分値ΔQc(=Qc−Qco)と定
数KNとから加WfitΔCMが求められる。
FIG. 4 shows a routine for measuring the air flow if QlI passing through the intake passage 11 of the fuel injection valve 12. First, in step 20, the total 1 of FIG. The addition WfitΔCM is determined from the difference value ΔQc (=Qc−Qco) of the airflow mQc determined in the routine and the constant KN.

空気流量Q cの差分値ΔQ cっまり空気流量Q c
の増減量に応じて吸気マニホールド21内の圧力が変化
するが、その圧力を変化させる空気量を吸気マニホール
ド21のボリュームに相関の強い定数KNにて乗算する
ことで加算量ΔCMを算出する。
Difference value of air flow rate Q c Difference value ΔQ c Air flow rate Q c
The pressure inside the intake manifold 21 changes according to the increase or decrease in the amount of pressure, and the additional amount ΔCM is calculated by multiplying the volume of the intake manifold 21 by the amount of air that changes the pressure by a constant KN that has a strong correlation with the volume of the intake manifold 21.

そして、ステップ21にて空気流m Q IIに加露量
ΔCMが加えられ、空気流量QalJtf’l出される
Then, in step 21, the exposure amount ΔCM is added to the air flow m Q II, and the air flow rate QalJtf'l is output.

空気流量Qllと空気流量Qcの増減量をもとに燃料噴
射部を通過する空気流量Qaを逆算するのであり、空気
流量Qaは空気流量Q11に吸気マニホールド21内の
圧力の増減分に対応する空気量ΔCMを加算したものに
相当する。
The air flow rate Qa passing through the fuel injection section is calculated backward based on the increase/decrease in the air flow rate Qll and the air flow rate Qc, and the air flow rate Qa is calculated based on the increase/decrease in the pressure in the intake manifold 21 in the air flow rate Q11. This corresponds to the sum of the amount ΔCM.

ステップ22では空気流量QcをQcoとして次回の計
算に備える。なお定常状態ではもちろんΔCM ” 0
 、 Q u = Q c = Q IIとなる。
In step 22, the air flow rate Qc is set as Qco in preparation for the next calculation. Note that in steady state, of course ΔCM ” 0
, Q u = Q c = Q II.

第5図は燃料噴射弁12の燃料噴射量Tiの計算ルーチ
ンを示すもので、第2図のようにシングルボイントイン
ノエクション方式の場合は、ステップ30から31に行
き、基本燃料噴射it ’l’ pが+Mf記空気tI
L量Qaに大気圧補正係数Kp、吸気温補正係数KL及
び定数Kaを末算して求められる。
FIG. 5 shows a calculation routine for the fuel injection amount Ti of the fuel injection valve 12. In the case of the single point-in-no-ejection method as shown in FIG. ' p is + Mf air tI
It is obtained by subtracting the atmospheric pressure correction coefficient Kp, the intake temperature correction coefficient KL, and the constant Ka to the L amount Qa.

また、例えば各吸気ボートにそれぞれ燃料噴射弁を設置
したマルチポイントインジェクション方式に適用する場
合は、ステップ30がら32に行き、基本噴射量′I″
pが前記空気流m Q cに大気圧補正係数Kl′J+
吸気温、?lll止係数Kt及び定数Kaを末算して求
められる。
For example, when applying to a multi-point injection system in which a fuel injection valve is installed in each intake boat, go to steps 30 to 32, and the basic injection amount 'I''
p is the air flow m Q c with an atmospheric pressure correction coefficient Kl'J+
Intake temperature? It is obtained by subtracting the stop coefficient Kt and the constant Ka.

そして、ステップ33にて各基本噴射量′rpに従米か
C)用いられる各種補正係数C0EF、空燃比センサ1
7からのフィードバック補正係数LAを末算し、さらに
無効パルス幅(電圧補正分)i’sを加え゛C燃料噴射
1t’l” iが求められる。
Then, in step 33, each basic injection amount 'rp is determined according to C) the various correction coefficients C0EF used, and the air-fuel ratio sensor 1.
By calculating the feedback correction coefficient LA from 7 and further adding the invalid pulse width (voltage correction amount) i's, "C fuel injection 1t'l"i is obtained.

なお、各ルーチンは所定時間毎にあるいはエンジン回転
に同期して実行される。
Note that each routine is executed at predetermined time intervals or in synchronization with engine rotation.

このように、紋り弁10の開度a(及び絞り弁10のバ
イパス通路19の開度)とエンジン回転速度Nとをもと
に空気流fft Q IIを演算するので、熱線式の流
量センサや圧力センサを用いたときのように吸気脈動に
よる影taを受けることはなく、また、エンジンの運転
条件が変化する過渡時の良好の応答性を保つことができ
、空気流量Q 11の正確な検出値が得られる。
In this way, since the air flow fft Q II is calculated based on the opening degree a of the throttle valve 10 (and the opening degree of the bypass passage 19 of the throttle valve 10) and the engine rotational speed N, the hot wire type flow rate sensor It is not affected by intake pulsation like when a pressure sensor is used, and good responsiveness can be maintained during transients when engine operating conditions change, allowing accurate air flow rate Q11 to be maintained. Detection value is obtained.

一方、空気流l Q 11は、定常状態以外は空気流れ
の遅れにより、シリンダに流入する空気流ff1QCと
一致しないが、空気流れの遅れは絞り弁開度αやエンジ
ン回転速度Nに対応することから、そのaとNとに基づ
く遅れ係数Kにより、空気流量Q 11に補正を加える
ことで、過渡時におけるシリンダへの空気流量Qcが的
確に求められる。
On the other hand, the air flow l Q 11 does not match the air flow ff1QC flowing into the cylinder due to the air flow delay except in steady state, but the air flow delay corresponds to the throttle valve opening α and the engine speed N. By correcting the air flow rate Q11 using the delay coefficient K based on a and N, the air flow rate Qc to the cylinder during the transient period can be accurately determined.

したがって、マルチポイントインジェクション方式の場
合には空気流1i1 Q cをもとに燃料噴射量を演算
することにより、的確な燃料噴射制御が可能となり、こ
れにより加速時や減速IL?に燃料噴射量]゛iが過剰
となったり、不足するようなことがなく、定常1時と同
様、適正空燃比を保つことができる。
Therefore, in the case of the multi-point injection method, accurate fuel injection control is possible by calculating the fuel injection amount based on the airflow 1i1Qc, and this allows for accurate fuel injection control during acceleration and deceleration IL? There is no excess or shortage of the fuel injection amount]i, and an appropriate air-fuel ratio can be maintained as in the steady state 1 o'clock.

110図に加速)1.′fの作動特性を示すと、絞りf
Ploの急開に空気流量Qllが対応rるのに灯してシ
リンダ・\の空気iIt +i(ンCが徐7)に増加す
ることになり、このとき空気1光量Q 11に応じて吸
気ボートに燃料を噴射すると空へ比が大きくり7チ化す
る(従来例と同様となる)が、空気流量Q cに応じて
燃料を噴射することで、はぼ一定の空燃比が得C)れる
のである。
Acceleration to figure 110) 1. The operating characteristics of ′f are as follows: aperture f
As the air flow rate Qll corresponds to the sudden opening of Plo, the air in the cylinder increases to iIt+i (C gradually increases to 7), and at this time, the intake boat If fuel is injected into the air, the air-to-air ratio will increase to 7 (same as in the conventional example), but by injecting fuel according to the air flow rate Qc, a more or less constant air-fuel ratio can be obtained. It is.

これ1こ灯して、シングルポイントインノエクンシン方
式の場合には燃料噴射弁12の部分を通過する空気流量
Qaをらとに燃料1t11射量を演算して、燃料噴射制
御を行うが、この空気流量Q uは前記空気流量Ql+
に吸気マニホールド21内の圧力の増減分に対応する加
t7:蛍ΔCMを加算することで求められる。
In light of this, in the case of the single point injection system, the fuel injection amount is calculated based on the air flow rate Qa passing through the fuel injection valve 12, and fuel injection control is performed. This air flow rate Q u is the air flow rate Ql+
It is obtained by adding t7: ΔCM corresponding to the increase/decrease in the pressure in the intake manifold 21 to .

ここで、空気流量Q a、 Q Il、 Q cの定常
状態でのlie JILをQ uo、 Q IIo、Q
 coとして(Q uo= Q IIo= Q co)
、絞り弁10の開作動によりQlloがQHになると、
第11図に示rようにシリンダに流入するQcはQ c
oから次第に増加し−CQ IIに平衡し、燃料噴射部
のQ al、t Q uoから瞬間的に増加した後、次
第に減少してQllに平衡するが、このときQaとQ 
11との差に応じてQcが増加するのであり、このため
Qcの増加分ΔQcからπ出した加算量ΔCM ’;−
Qllに上乗せすることで、Quが求まることとなる。
Here, lie JIL in steady state of air flow rate Q a, Q Il, Q c is Q uo, Q IIo, Q
as co (Q uo= Q IIo= Q co)
, when Qllo becomes QH due to the opening operation of the throttle valve 10,
As shown in FIG. 11, Qc flowing into the cylinder is Q c
It gradually increases from o and reaches equilibrium at -CQ II, and after momentarily increases from Q al, t Q uo of the fuel injection section, it gradually decreases and reaches equilibrium at Qll, but at this time Qa and Q
Qc increases according to the difference from 11, and therefore the addition amount ΔCM ';-
Qu can be found by adding it to Qll.

このように検出した空気流量Q、は真値流量と14ば一
致することを′A襞により確認している4なお、この場
合QcにΔQcを所定倍したものを加tLi−ることで
Qaを算出することもできるが、Q IlにΔCMを加
算する上述のほうが、Q IIをJI!;準とするため
、誤差の少ない値が得られる。
It is confirmed by 'A fold that the air flow rate Q, detected in this way, coincides with the true value flow rate4. In this case, by adding ΔQc multiplied by a predetermined value to Qc, Qa can be calculated. Although it is possible to calculate it, the above method of adding ΔCM to Q Il is better than converting Q II to JI! ; Since it is based on the standard, values with less error can be obtained.

したがって、シングルポイントインノエクション方式の
場合ら的確な燃料噴射制御が可能となり、定常1時、加
速時、減速時等、常に空気流+IQ、に応じて適正空燃
比を保つことができる。
Therefore, in the case of the single-point inno-ection system, accurate fuel injection control is possible, and an appropriate air-fuel ratio can be maintained at all times according to the air flow + IQ, such as during steady state, acceleration, deceleration, etc.

第12図にその加速時の作動特性を示すと、絞り弁10
の急開に対して絞り弁10の上流の燃料噴射部を通過す
る空気流fiLQ、は一時的に増加し、その後減少する
が、このとき例えば絞り弁1oの開度αに応じた量の燃
料を噴射すると空燃比が犬きくリーン化する(従来例)
が、空気流量Quに応じて燃も[を噴射することで、1
1ぼ一定空燃比の混合気をシリンダに吸入させろことが
できる。
Fig. 12 shows the operating characteristics during acceleration.
In response to the sudden opening of the throttle valve 1o, the air flow fiLQ passing through the fuel injection section upstream of the throttle valve 10 temporarily increases and then decreases. When injected, the air-fuel ratio becomes extremely lean (conventional example)
However, by injecting fuel according to the air flow rate Qu, 1
It is possible to inhale a mixture with a constant air-fuel ratio of approximately 1 into the cylinder.

なお、第10図、第12図にすSいて、空燃比はいくら
かリーン!1111になるが、これは吸気管内の付若燃
t[が加速中;こ増んることiこよる1浜差である。
Furthermore, as shown in Figures 10 and 12, the air-fuel ratio is somewhat lean! It becomes 1111, but this is a difference of one beach due to the fact that the fuel in the intake pipe is accelerating;

(発明の効果) 以上のように本発明によれば、絞り弁開ノ文と磯関同’
IIA速度とから演算した定°古?での空気流量を運転
状態;こ応じた遅it係数″c補正することで、過渡1
時のシリンダへの空気流量が正確に検出でき、またシリ
ンダ・\の空気流星)こ所定の加算量を加えることで、
燃料噴射部での通過゛空気流量が正確に検出でき、した
がってマルチボイントインノエク7gン方式及びシング
ルボイントインノエクンジンノj式1こ灯して過渡H,
fの正確な空へ北側りすが町1尼となる。
(Effects of the Invention) As described above, according to the present invention, the throttle valve opening pattern and the
Constant ° old calculated from IIA speed? By correcting the air flow rate at the operating state;
The air flow rate to the cylinder at the time can be detected accurately, and by adding a predetermined amount,
The flow rate of air passing through the fuel injection part can be detected accurately, so the multi-point injector type and the single-point injector type can detect transient H,
To the exact sky of f, the northern squirrel becomes Town 1-ni.

図面の簡+1iな1悦明 第1し1は本発明のび1我図、第2図は本発明の実施例
を示すF <成約構成L+71、第3図〜第5し1は各
前体内容を示すフローチャート、第6図〜第9図は演算
に用いる各テーブル内容を表す特性線図、第10図、第
12図は加速時の作動特性を示す説明図、第11図は加
速時の各空気流量の関係を示す説明図である。
The simple + 1i of the drawings, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 5, 5, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 5, , 5, and s- 1, respectively, are the contents of each preparatory body. 6 to 9 are characteristic diagrams showing the contents of each table used for calculations, FIGS. 10 and 12 are explanatory diagrams showing operating characteristics during acceleration, and FIG. 11 is a diagram showing each table content during acceleration. FIG. 3 is an explanatory diagram showing the relationship between air flow rates.

1・・・絞り弁開度検出手段、2・・・機関回転速度検
出手段、3・・・定常空気流量検出手段、・t・・・遅
れ係数演算手段、5・・・遅延補正手段、6・・・加算
、量演片手段、7・・・空気流)を加算手段。
DESCRIPTION OF SYMBOLS 1... Throttle valve opening detection means, 2... Engine rotational speed detection means, 3... Steady air flow rate detection means, t... Delay coefficient calculation means, 5... Delay correction means, 6 ... Addition, quantity element means, 7... Air flow) addition means.

第4図 第6図 第7図 l5CD  (%) 第8図 第9図 A (Cm2) 第10図  ′ 第11図Figure 4 Figure 6 Figure 7 l5CD (%) Figure 8 Figure 9 A (Cm2) Figure 10' Figure 11

Claims (1)

【特許請求の範囲】[Claims] 絞り弁開度を検出する手段と、機関回転速度を検出する
手段と、両検出値から定常での空気流量を演算する定常
空気流量演算手段と、同じく両検出値から空気流れの遅
れ係数を演算する遅れ係数演算手段と、定常空気流量と
遅れ係数とからシリンダに流入する空気流量を演算する
遅延補正手段と、遅延補正手段の演算値から所定の加算
量を演算する加算量演算手段と、定常空気流量演算手段
と加算量演算手段の両演算値から燃料噴射部の通過空気
流量を演算する空気流量加算手段とからなる内燃機関の
空気量検出装置。
A means for detecting the throttle valve opening, a means for detecting the engine rotation speed, a steady air flow rate calculation means for calculating the steady air flow rate from both detected values, and an air flow delay coefficient calculated from both detected values. delay coefficient calculation means for calculating the air flow rate flowing into the cylinder from the steady air flow rate and the delay coefficient; addition amount calculation means for calculating a predetermined addition amount from the calculation value of the delay correction means; An air amount detection device for an internal combustion engine, comprising an air flow amount calculation means and an air flow amount addition means for calculating a flow rate of air passing through a fuel injection section from the calculated values of both the air flow amount calculation means and the addition amount calculation means.
JP17467586A 1986-07-02 1986-07-24 Air amount detection device for internal combustion engine Expired - Lifetime JPH0681921B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP17467586A JPH0681921B2 (en) 1986-07-24 1986-07-24 Air amount detection device for internal combustion engine
US07/069,038 US4951209A (en) 1986-07-02 1987-07-01 Induction volume sensing arrangement for internal combustion engine or the like
DE3721910A DE3721910C2 (en) 1986-07-02 1987-07-02 Method for indirectly estimating the amount of air introduced into an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17467586A JPH0681921B2 (en) 1986-07-24 1986-07-24 Air amount detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6332144A true JPS6332144A (en) 1988-02-10
JPH0681921B2 JPH0681921B2 (en) 1994-10-19

Family

ID=15982727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17467586A Expired - Lifetime JPH0681921B2 (en) 1986-07-02 1986-07-24 Air amount detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0681921B2 (en)

Also Published As

Publication number Publication date
JPH0681921B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
JP2818805B2 (en) Engine fuel injection control device
JP2901613B2 (en) Fuel injection control device for automotive engine
JP2004143994A (en) Intake air flow prediction device of internal combustion engine
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
US4911128A (en) Fuel controller for an internal combustion engine
JPS59103930A (en) Control method of internal-combustion engine
JP2000320391A (en) Intake air flow detection device for internal combustion engine
JPS6332144A (en) Air quantity detecting device for internal combustion engine
JPH0681922B2 (en) Air amount detection device for internal combustion engine
JPS63167045A (en) Fuel control device for internal combustion engine
JPH05272374A (en) Electronic control device for internal combustion engine
JPH0523815Y2 (en)
JPH0670403B2 (en) Air amount detection device for internal combustion engine
JPH0742893B2 (en) Fuel system air amount estimation control method
JP2645278B2 (en) Engine intake air control system
JP2643394B2 (en) Intake air flow rate detection device for internal combustion engine
JP2999260B2 (en) Fuel metering system for internal combustion engine
JPH07685Y2 (en) Air amount detector for engine
JPH0681913B2 (en) Electronic control unit for internal combustion engine
JPH02271041A (en) Intake-air temperature detecting device of internal combustion engine
JPS6061638A (en) Measurement of inside pressure of suction pipe
JPH10339205A (en) Intake control device of engine
JPH0735753B2 (en) Air amount detection device for internal combustion engine
JP2002130041A (en) Suction air volume estimation device and suction pressure estimation device
JP2001115880A (en) Air-fuel ratio control device for internal combustion engine