JPS633206A - Optical thickness measuring instrument - Google Patents

Optical thickness measuring instrument

Info

Publication number
JPS633206A
JPS633206A JP14644686A JP14644686A JPS633206A JP S633206 A JPS633206 A JP S633206A JP 14644686 A JP14644686 A JP 14644686A JP 14644686 A JP14644686 A JP 14644686A JP S633206 A JPS633206 A JP S633206A
Authority
JP
Japan
Prior art keywords
optical axis
inspected
light
lens
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14644686A
Other languages
Japanese (ja)
Inventor
Masahiro Ono
大野 政博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP14644686A priority Critical patent/JPS633206A/en
Publication of JPS633206A publication Critical patent/JPS633206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To easily position a specific place on a surface to be inspected on the optical axis of an objective by providing an optical system which irradiates a body to be inspected with light in a direction different from the optical axis of an optical system for thickness measurement and observes the surface to be inspected in a direction symmetrical about the optical axis. CONSTITUTION:The body 5' to be inspected is irradiated with light from a light source 14 through a condenser lens 15 in the direction different from the optical axis of the light source of the optical system 13 to illuminate a position on the object surface to be positioned. Then, light reflected by the surface to be inspected symmetrically about the optical axis of the optical system 13 is guided to a television camera 17 by an image forming lens 16 and projected on a monitor 18, and an observer performs positioning operation according to a positioning index displayed on the monitor 18 previously. Here, an observation surface 17 is arranged slantingly to the optical axis of the lens 16 by an angle beta satisfying a specific expression. Consequently, even if the optical axis of the lens 16 slants by an angle alpha to the surface 5' to be inspected, the image of the object surface is put in focus sharply at a position except on the optical axis of the lens 16, so that the positioning accuracy of the surface to be inspected is improved.

Description

【発明の詳細な説明】 a、技術分野 本発明は、光学式厚み測定装置の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION a. Technical Field The present invention relates to an improvement in an optical thickness measuring device.

b、従来技術及びその問題点 薄板ガラスの肉厚を光学的測定する方法としては、本出
願人が昭和61年6月20日に特許出願した発明がある
。この方法は、第3図に示すように、十分小さな光源1
からの光を透明ないしは半透明な被検物5に開口数NA
oを持つ対物レンズ4で集光光束を投射し、集光光束に
よる集光点もしくは被検物を対物レンズの光軸方向に移
動し、被検物の表面及び裏面でのそれぞれの集光光束の
軸上中心強度最大の位置を測定し、演算により肉厚を求
めるものである。尚、第3図の詳細は後述する第1図の
実施例より明らかとなるので省略する。
b. Prior art and its problems As a method for optically measuring the wall thickness of thin glass, there is an invention for which the present applicant applied for a patent on June 20, 1988. This method uses a sufficiently small light source 1 as shown in Figure 3.
The numerical aperture NA of the light from the transparent or semi-transparent object 5
A condensed light beam is projected by the objective lens 4 having an o, and the convergence point of the condensed light beam or the object to be examined is moved in the optical axis direction of the objective lens, and the condensed light beams are projected on the front and back surfaces of the object. The position of the maximum axial center strength is measured and the wall thickness is determined by calculation. The details of FIG. 3 will be omitted since they will become clear from the embodiment shown in FIG. 1, which will be described later.

ところで、被検物の中には、被検面の特定の場所の肉厚
測定が必要となる場合があるが、従来装置では、次のよ
うな問題があった。即ち、第1に、−般に対物レンズの
開口数NA0が大きくなると、作動距離が非常に短くな
るため、被検面の特定の場所を対物レンズの光軸に合せ
る作業には著しい困難さが生ずることである。又、第2
に、作動距離を大きく取って位置合せを行う場合は、対
物レンズのピント位置でなくなるため、集光点はぼけて
しまい大きくなり1位置合せは困難となることである。
Incidentally, there are cases in which it is necessary to measure the wall thickness of a specific location on the surface of the test object, but conventional devices have the following problems. Firstly, as the numerical aperture NA0 of the objective lens increases, the working distance becomes extremely short, making it extremely difficult to align a specific location on the surface to be inspected with the optical axis of the objective lens. It is something that happens. Also, the second
In addition, when alignment is performed with a long working distance, the focus position of the objective lens is no longer in focus, and the focal point becomes blurred and large, making it difficult to achieve one alignment.

従って、従来装置で被検面の特定の場所の肉厚測定を行
うには改良の余地があった。
Therefore, there is room for improvement in measuring the wall thickness at a specific location on a surface to be inspected using the conventional device.

C1目的 そこで、本発明の目的は、肉厚測定を行うための第1の
光学系の光軸とは異なる方向から被検物に光を照射し、
さらに前記第1光学系の光軸と対称な方向に被検面を観
測するための光学系を配することにより、前記対物レン
ズと被検面との間の距離を大きく取った状態で、被検面
の特定な場所を対物レンズの光軸に容易に合せる(以下
、位置合せと呼ぶ)ことを可能とする装置を提供するこ
とにある。
C1 Purpose Therefore, the purpose of the present invention is to irradiate a test object with light from a direction different from the optical axis of the first optical system for measuring wall thickness,
Furthermore, by arranging an optical system for observing the surface to be measured in a direction symmetrical to the optical axis of the first optical system, it is possible to observe the surface to be measured while maintaining a large distance between the objective lens and the surface to be measured. It is an object of the present invention to provide a device that makes it possible to easily align a specific location on a surface to be inspected with the optical axis of an objective lens (hereinafter referred to as alignment).

d、実施例の構成及び作用 以下、本発明の一実施例を第1図に基づいて説明する。d. Structure and operation of the embodiment Hereinafter, one embodiment of the present invention will be described based on FIG.

第1の光学系13において、直線偏光レーザー1からの
光は、ビームエキスパンダー2により拡大され、174
波長板3を経て、円偏光となり、作動距離W1の対物レ
ンズ4によって、屈折率n、肉厚tを持つ被検物5に、
開口数NA、の集光光束として投射される。被検物5か
らの反射光は、レーザー発振光とは偏光方向が直交した
光となり、偏光ビームスプリッタ−6にて光電変換素子
7に導かれる。光電変換素子7の前には、反射光の軸上
中心強度を選択するための絞り8が設置されている。光
電変換素子7からのアナログ信号は、サンプルホールド
回路9.A/D変換回路10を経てデジタル信号となり
マイコン11に入力される。
In the first optical system 13, the light from the linearly polarized laser 1 is expanded by the beam expander 2 and 174
After passing through the wavelength plate 3, it becomes circularly polarized light, and is transmitted to the object 5 having a refractive index n and a wall thickness t by an objective lens 4 having a working distance W1.
It is projected as a condensed light beam with a numerical aperture of NA. The reflected light from the test object 5 becomes light whose polarization direction is perpendicular to that of the laser oscillation light, and is guided to the photoelectric conversion element 7 by the polarizing beam splitter 6. A diaphragm 8 is installed in front of the photoelectric conversion element 7 for selecting the axial center intensity of the reflected light. The analog signal from the photoelectric conversion element 7 is sent to a sample and hold circuit 9. The signal passes through the A/D conversion circuit 10, becomes a digital signal, and is input to the microcomputer 11.

一方、被検物5を対物レンズ4の光軸方向に図示してい
ない移動手段で動かすと、被検物5の表面及び裏面でピ
ントが合い、光電変換素子7上のイ3号1は最大となる
。この表面及び裏面でのピント位置の差Xを測長スケー
ル12で読み取り、その読み取り信号をマイコン11に
入力する。マイコン11は屈折率n、開ロ数NA、、ピ
ント位置の差Xなどの値から、被検物の肉厚tを計算し
て求める。
On the other hand, when the test object 5 is moved in the direction of the optical axis of the objective lens 4 by a moving means (not shown), the front and back surfaces of the test object 5 are brought into focus, and A3 No. 1 on the photoelectric conversion element 7 is at its maximum. becomes. The difference X between the focus positions on the front and back surfaces is read by the length measuring scale 12, and the read signal is input to the microcomputer 11. The microcomputer 11 calculates the wall thickness t of the object to be inspected from values such as the refractive index n, the numerical aperture NA, and the difference X between focus positions.

以上述べた光学式厚み8111定装置において、被検面
の特定の場所の肉厚測定が必要な場合は、その位置決め
を正確に行う必要がある。又、この位置決め作業は、作
業性を考慮すると、前記対物レンズ4の作動距雅W工に
比べ十分長い作動距離W2、即ち被検物を5′の位置と
して行う必要がある。
In the optical thickness 8111 determination device described above, when it is necessary to measure the thickness of a specific location on the surface to be inspected, it is necessary to accurately position it. Further, in consideration of workability, this positioning work needs to be performed at a working distance W2 which is sufficiently longer than the working distance W of the objective lens 4, that is, with the object to be examined at the position 5'.

そこで第1の光学系13の光源光軸とは異なる方向の第
2の光源14からの光をコンデンサーレンズ15により
被検物5′に照射し、被検物5′の被検面の位置決めす
べき点を照明する。そして、被検面より第1の光学系の
光軸に対して対称に反射された光は、倍率M(=b/a
)なる結像レンズ16により、観測面であるテレビカメ
ラ17に導かれ、モニター18に映し出される。観測者
は、あらかじめモニター18上に示されていた図示して
いない位置決め指椋に従い容易に位置決めが行える。
Therefore, light from the second light source 14 in a direction different from the light source optical axis of the first optical system 13 is irradiated onto the test object 5' using the condenser lens 15 to position the test surface of the test object 5'. Illuminate the desired point. The light reflected from the test surface symmetrically with respect to the optical axis of the first optical system has a magnification M (=b/a
) is guided to a television camera 17, which is an observation surface, and displayed on a monitor 18. The observer can easily perform positioning by following a positioning finger (not shown) shown in advance on the monitor 18.

ここで、第2図を用いて結像レンズ16の光軸に対し被
検面が傾いている場合について説明する。
Here, a case where the surface to be inspected is inclined with respect to the optical axis of the imaging lens 16 will be explained using FIG.

焦点距離fの結像レンズ16の光l1illIZと被検
面5′との交点をA、光軸Zと観測面17との交点をA
′、光軸Zに対する被検面5′の傾き角をα、光軸Zに
対するPiA測面17の傾き角をβ、光4i1ilZよ
り角O傾いた直線Yと光軸Zとの交点をO1直線Yと被
検面との交点をB、直線Yと観測面との交点をB′、点
B及びB′より光1fll Zに垂線を下した時の光軸
との交点をそれぞれB工、B□′とし、0A=a、OA
 ′=b、OB、=a  ’、OB、’=b′とすると
、 ゆえ、 a′b’   a    b    fである。この式
は、 tanβ/lanα= b / a =Mとも書ける。
The intersection of the light l1illIZ of the imaging lens 16 with the focal length f and the test surface 5' is A, and the intersection of the optical axis Z and the observation surface 17 is A.
', the inclination angle of the test surface 5' with respect to the optical axis Z is α, the inclination angle of the PiA measuring surface 17 with respect to the optical axis Z is β, the intersection of the optical axis Z and the straight line Y inclined by an angle O from the light 4i1ilZ is the O1 straight line The intersection between Y and the surface to be inspected is B, the intersection between straight line Y and the observation surface is B', and the intersections with the optical axis when a line perpendicular to Z is drawn from points B and B' are B and B, respectively. □′, 0A=a, OA
Let'=b, OB,=a', OB,'=b', Therefore, a'b' a b f. This equation can also be written as tanβ/lanα=b/a=M.

この結果、被検面5′に対し、結像レンズ16の光軸が
αだけ傾いていても、a測面17をtanβ/lanα
=Mなる式を満たすβだけ結像レンズの光軸に対して傾
けて配置すると、被検面の像は結像レンズの光軸以外の
点でも鮮鋭なピントが保たれ、被検面の位置合せが向上
する。
As a result, even if the optical axis of the imaging lens 16 is tilted by α with respect to the test surface 5', the a measurement surface 17 can be changed by tanβ/lanα.
If the image forming lens is tilted with respect to the optical axis of the imaging lens by β that satisfies the formula =M, the image of the surface to be measured will be kept in sharp focus even at points other than the optical axis of the imaging lens, and the position of the surface to be measured will be Improves alignment.

e、効果 以上説明したように、本発明の装置によれば、被検物の
特定の位置の肉厚測定を行う場合の位置合せが精度よく
容易に行えるという効果を生ずる。
e. Effects As explained above, the apparatus of the present invention has the effect that alignment can be easily performed with high accuracy when measuring the wall thickness at a specific position of an object to be inspected.

第11st

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に用いた装置の一実施例を示す説明図
、 第2図は、結像レンズの光軸に対し被検面が傾いている
場合、観測面に鮮鋭な像を結ばすための様子を示す図。 第3図は、従来の装置を示す図である。 1:レーザ   2:ビームエキスパンダー3 : 1
/4波長板   4:対物レンズ5 、5 J 、被検
物 6:偏光ビームスプリッタ− 7:光電変換素子   8:絞り 9:サンプルホールド回路 10 : A/D変換回路   11:マイコン12:
測長スケール 13:肉厚測定のための第1の光学系 14:光源   15:コンデンサーレンズ16:結像
レンズ   17:テレビカメラ18:モニター   
19:観測者 因
Fig. 1 is an explanatory diagram showing one embodiment of the device used in the present invention, and Fig. 2 shows how a sharp image is formed on the observation surface when the surface to be examined is tilted with respect to the optical axis of the imaging lens. FIG. FIG. 3 is a diagram showing a conventional device. 1: Laser 2: Beam expander 3: 1
/4 wavelength plate 4: Objective lens 5, 5 J, Test object 6: Polarizing beam splitter 7: Photoelectric conversion element 8: Aperture 9: Sample hold circuit 10: A/D conversion circuit 11: Microcomputer 12:
Length measurement scale 13: First optical system for wall thickness measurement 14: Light source 15: Condenser lens 16: Imaging lens 17: Television camera 18: Monitor
19: Observer factor

Claims (1)

【特許請求の範囲】 1 第1の光学系である十分小さな光源からの光を、透
明ないしは半透明な被検物に開口数NA_0を持つ対物
レンズで集光光束を投射し、集光光束による集光点もし
くは被検物を対物レンズの光軸方向に移動し、被検物の
表面及び裏面でのそれぞれの集光光束の軸上中心強度最
大位置を測定し、演算により被検物の肉厚を求める光学
式厚み測定装置において、前記第1の光学系の光源光軸
とは異なる方向から被検物に光を照射する第2の光源と
、該第2の光源から光を集光するためのコンデンサーレ
ンズと、前記第1の光学系の光軸に対してコンデンサー
レンズの光軸と対称な方向に被検物の被検面を結像させ
るための結像レンズと、該結像レンズの結像面に観測面
を有することを特徴とする光学式厚み測定装置。 2 結像レンズの光軸と被検面の法線とのなす角をα、
観測面の法線とのなす角をβ、結像レンズの結像倍率を
Mとする時、 M=tanβ/tanα なる関係を満たす様に被検物、結像レンズ、観測面各々
を配置することを特徴とする特許請求の範囲第1項記載
の光学式厚み測定装置。 3 観測面がテレビカメラであることを特徴とする特許
請求の範囲第1項記載の光学式厚み測定装置。
[Claims] 1. The light from a sufficiently small light source, which is the first optical system, is projected onto a transparent or semi-transparent object by an objective lens having a numerical aperture NA_0, and the condensed light beam is Move the condensing point or the object to be examined in the optical axis direction of the objective lens, measure the axial central intensity maximum position of the condensed beam on the front and back surfaces of the object, and calculate the position of the center intensity of the object. In an optical thickness measuring device for measuring thickness, a second light source irradiates a test object with light from a direction different from the light source optical axis of the first optical system, and a light source condenses light from the second light source. an imaging lens for forming an image of the surface of the object to be examined in a direction symmetrical to the optical axis of the condenser lens with respect to the optical axis of the first optical system, and the imaging lens An optical thickness measuring device characterized by having an observation surface on an imaging plane. 2 The angle between the optical axis of the imaging lens and the normal to the surface to be measured is α,
When the angle with the normal to the observation surface is β, and the imaging magnification of the imaging lens is M, the object to be inspected, the imaging lens, and the observation surface are arranged so as to satisfy the following relationship: M=tanβ/tanα An optical thickness measuring device according to claim 1, characterized in that: 3. The optical thickness measuring device according to claim 1, wherein the observation surface is a television camera.
JP14644686A 1986-06-23 1986-06-23 Optical thickness measuring instrument Pending JPS633206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14644686A JPS633206A (en) 1986-06-23 1986-06-23 Optical thickness measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14644686A JPS633206A (en) 1986-06-23 1986-06-23 Optical thickness measuring instrument

Publications (1)

Publication Number Publication Date
JPS633206A true JPS633206A (en) 1988-01-08

Family

ID=15407828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14644686A Pending JPS633206A (en) 1986-06-23 1986-06-23 Optical thickness measuring instrument

Country Status (1)

Country Link
JP (1) JPS633206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210039278A (en) 2019-10-01 2021-04-09 쥬가이로 고교 가부시키가이샤 Liquid fuel combustion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880505A (en) * 1981-10-23 1983-05-14 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Optical device
JPS60200108A (en) * 1984-03-23 1985-10-09 Daicel Chem Ind Ltd Optical type thickness measuring method and apparatus thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880505A (en) * 1981-10-23 1983-05-14 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Optical device
JPS60200108A (en) * 1984-03-23 1985-10-09 Daicel Chem Ind Ltd Optical type thickness measuring method and apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210039278A (en) 2019-10-01 2021-04-09 쥬가이로 고교 가부시키가이샤 Liquid fuel combustion device

Similar Documents

Publication Publication Date Title
US4758089A (en) Holographic interferometer
US3359849A (en) Optical micrometer
JP2000275027A (en) Slit confocal microscope and surface shape measuring apparatus using it
JPH10311779A (en) Equipment for measuring characteristics of lens
US4359282A (en) Optical measuring method and apparatus
CN110530821B (en) Measuring device and measuring method for refractive index of optical material
JPS633206A (en) Optical thickness measuring instrument
US3288021A (en) Microscope for measuring the size of an object
JP2521736B2 (en) Microscope adjustment inspection device
JP3750259B2 (en) Image inspection / measurement equipment
US3535042A (en) Optical gage
JPH0738807Y2 (en) Projection inspection machine
JP3118845B2 (en) Optical device having focus indicator
KR200372906Y1 (en) Apparatus for measuring lens focal length and eccentricity
JPS6052371B2 (en) Focal position measuring device
GB2059095A (en) Microscopes
JPS6110164Y2 (en)
SU1704038A1 (en) Device for measurement of refractive index gradient
Kolomiitsov Interference method for the examination of the surface waviness of balls
JPS6244608A (en) Method and device for setting hologram primary standard of holographic interferometer
WO1992021057A1 (en) Projection inspecting machine
CN117538291A (en) Rapid testing method and system for refractive index of optical material
RU1783293C (en) Two-coordinate optic measuring device
JP2004020212A (en) Surface characteristics measuring device
JPH0718689B2 (en) Optical thickness measuring method and device