JPS63319242A - High-dielectric constant ceramic composition - Google Patents

High-dielectric constant ceramic composition

Info

Publication number
JPS63319242A
JPS63319242A JP62154357A JP15435787A JPS63319242A JP S63319242 A JPS63319242 A JP S63319242A JP 62154357 A JP62154357 A JP 62154357A JP 15435787 A JP15435787 A JP 15435787A JP S63319242 A JPS63319242 A JP S63319242A
Authority
JP
Japan
Prior art keywords
dielectric constant
ceramic composition
composition
value
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62154357A
Other languages
Japanese (ja)
Other versions
JPH07110787B2 (en
Inventor
Osamu Furukawa
修 古川
Motomasa Imai
今井 基真
Mitsuo Harada
光雄 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62154357A priority Critical patent/JPH07110787B2/en
Publication of JPS63319242A publication Critical patent/JPS63319242A/en
Publication of JPH07110787B2 publication Critical patent/JPH07110787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain the title ceramic composition having high dielectric constant and insulation resistance and capable of being sintered at low temp. by substituting a part of the Pb having the composition within the region obtained by connecting the specified points in a ternary phase diagram with the apexes corresponding to the respective components in a specified ceramic composition for Ca. CONSTITUTION:A part of the Pb having the composition within the region obtained by connecting the following points in the ternary phase diagram with the apexes corresponding to the respective components in the ceramic composition shown by the formula is substituted for 2-30mol.% Ca to obtain a ceramic composition. The points are shown by (a) (x=0.60, y=0.39, and z=0.01), (b) (x=0.60, y=0.05, and z=0.35), (c) (x=0.45, y=0.05, and z=0.50), (d) (x=0.01, y=0.49, and z=0.50), (e) (x=0.01, y=0.85, and z=0.14), and (f) (x=0.14, y=0.85, and z=0.01). In addition, <=1.0mol.% of at least one kind, expressed in terms of Mn, Co, NiO, and Cr2O3, can be incorporated, as required.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高調゛電率系磁器組成物に係り、特に積層セ
ラミックコンデンサ等に好適な低温焼結可能で絶縁抵抗
が高い等の電気的緒特性に優れた高誘電率系磁器組成物
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a high-temperature ceramic composition, which can be sintered at low temperature and has a high insulation resistance, which is particularly suitable for multilayer ceramic capacitors. The present invention relates to a high dielectric constant ceramic composition that has excellent electrical properties such as high electrical properties.

(従来の技術) 誘電体材料として要求される電気的特性としては、誘電
率、誘電率温度係数(T、C,C) 、誘電損失、誘電
率バイアス電界依存性、容量抵抗積等があげられる。
(Prior art) Electrical properties required for dielectric materials include dielectric constant, temperature coefficient of dielectric constant (T, C, C), dielectric loss, dielectric bias electric field dependence, capacitance-resistance product, etc. .

特に容量抵抗積(CR値)は、十分高い値を取る必要が
あり、EIAJ(日本電子機械工業会)の電子機器用積
層磁器コンデンサ(チップ型)規格RC−3698Bに
常温で500MΩ・μF以上と規定されている。さらに
より厳しい条件でも使用できるように、高温(例えば米
国防省規格MIL−C−55681Bでは125℃での
CR値が定められている。)でも高いCR値を維持する
ことが要求される。
In particular, the capacitance-resistance product (CR value) must be sufficiently high, and must be 500MΩ・μF or more at room temperature according to EIAJ (Electronic Industries Association of Japan) standard RC-3698B for multilayer ceramic capacitors (chip type) for electronic equipment. stipulated. Furthermore, it is required to maintain a high CR value even at high temperatures (for example, the U.S. Department of Defense standard MIL-C-55681B stipulates a CR value at 125° C.) so that it can be used under even more severe conditions.

さらに積層タイプの素子を考えた場合、電極層と誘電体
層とは一体的1こ一焼成されるため、電極材料としては
誘電体材料の現性温度でも安定なものを用いる必要があ
る。従って誘電体材料の焼成温度が高いと白金(Pt 
) 、パラジウム(Pd )等の高価な材料を用いなけ
ればならず、銀(Ag )等の安価な材料を使用できる
ように、1100℃以下程度の低温での焼成が可能であ
ることが要求される。
Furthermore, when considering a laminated type element, since the electrode layer and the dielectric layer are fired as one unit, it is necessary to use an electrode material that is stable even at the current temperature of the dielectric material. Therefore, if the firing temperature of the dielectric material is high, platinum (Pt
), expensive materials such as palladium (Pd) must be used, and in order to be able to use inexpensive materials such as silver (Ag), firing at a low temperature of about 1100°C or less is required. Ru.

従来から知られている高誘電率磁器組成物としてチタン
酸バリウムをベースとして、これに錫酸鉛、ジルコン酸
鉛、チタン酸鉛等を固溶したものがある。確かに誘電率
の高いものを得ることはできるが、誘電率が高くなると
T、C,C0が大きくなり、また、バイアス電界依存性
も大きくなってしまうという問題が生ずる。さらに、チ
タン酸バリウム系の材料の焼成温度は1300〜140
0℃程度と高温であり、電極材料として必然的に白金、
パラジウム等の高温で耐えうる高価な材料を用いなけれ
ばならず、コスト高の原因となる。
Conventionally known high dielectric constant ceramic compositions include those based on barium titanate, in which lead stannate, lead zirconate, lead titanate, etc. are dissolved. Although it is certainly possible to obtain a material with a high dielectric constant, problems arise in that as the dielectric constant increases, T, C, and C0 become larger, and the bias electric field dependence also becomes larger. Furthermore, the firing temperature of barium titanate-based materials is 1300 to 140
Due to the high temperature of around 0℃, platinum,
An expensive material such as palladium that can withstand high temperatures must be used, which causes high costs.

このチタン酸バリウム系の問題点を解消すべく、各種組
成物の研究がなされている。例えば鉄ニオブ酸鉛を主体
としたもの(特開昭57−57204号)、マグネシウ
ム・ニオブ酸鉛を主体としたもの(特開昭55−517
58号)、マグネシウム・タングステン酸鉛を主体とし
たもの(特開昭52−2LH9号)等がある。鉄ニオブ
酸鉛を主体としたものは、CR値の焼成温度による変化
が大きく、特に高温におけるCR値の低下が大きいとい
う問題点がある。マグネシウム・ニオブ酸鉛を主体とし
たものは焼成温度が比較的高く、また、マグネシウム・
タングステン酸鉛を主体としたものは、CR値が大きい
と誘電率が小さく、誘電率が大きいとCR値が小さいと
いう問題点が有った。さらにこれらの材料のT、C,C
,はチタン酸バリウム系より優れてはいるものの十分で
はない。
In order to solve the problems of barium titanate, various compositions have been studied. For example, those based mainly on iron lead niobate (Japanese Patent Application Laid-Open No. 57-57204), those based mainly on magnesium lead niobate (Japanese Patent Application Laid-Open No. 55-517)
No. 58), and one mainly composed of magnesium and lead tungstate (Japanese Patent Application Laid-open No. 52-2LH9). Those containing lead iron niobate as a main component have a problem in that the CR value changes greatly depending on the firing temperature, and the CR value decreases particularly at high temperatures. Products mainly composed of magnesium and lead niobate have a relatively high firing temperature, and also contain magnesium and lead niobate.
A material mainly composed of lead tungstate has the problem that when the CR value is large, the dielectric constant is small, and when the dielectric constant is large, the CR value is small. Furthermore, T, C, C of these materials
, is superior to the barium titanate system, but is not sufficient.

さらに、マグネシウム・ニオブ酸鉛とチタン酸鉛との固
溶体で必要に応じ鉛の一部をバリウム、ストロンチウム
、カルシウムで置換した材料についても研究されている
(特開昭55−121959号)。
Furthermore, research has also been conducted on materials in which a solid solution of magnesium/lead niobate and lead titanate is used, in which part of the lead is replaced with barium, strontium, or calcium as necessary (Japanese Patent Laid-Open No. 121959/1983).

しかしながらこの材料のT、C,C,は−25℃〜85
℃で最良のものでも−59,8%であり、十分とは言え
ない。さらに、上記公報においてはコンデンサ材料とし
て最も重要なCR値については述べられておらず、コン
デンサ材・料としての有用性は明らかではない。
However, the T, C, C, of this material ranges from -25°C to 85°C.
Even the best one at °C is -59.8%, which is not sufficient. Furthermore, the above publication does not mention the CR value, which is the most important value for capacitor materials, and its usefulness as a capacitor material is not clear.

また、特開昭57−25807号にはマグネシウム・ニ
オブ酸鉛と亜鉛ニオブ酸鉛との固溶体の材料についても
研究されている。しかしながらCR値、およびT、C,
C,については述べられておらず、コンデンサ材料とし
ての有用性は明らかではない。
Further, in Japanese Patent Application Laid-Open No. 57-25807, solid solution materials of magnesium lead niobate and zinc lead niobate are also studied. However, the CR value and T, C,
No mention is made of C, and its usefulness as a capacitor material is unclear.

さらに、亜鉛ニオブ酸鉛とニッケル・ニオブ酸鉛との固
溶体であって、必要に応じ、鉛の一部をバリウム、スト
ロンチウム、カルシウムで置換した材料についても研究
されている(特開昭58−214201号)。しかしな
がらCR値については述べられておらず、コンデンサ材
料としての有用性は明らかではない。さらにまた、特開
昭59−105208号には、マグネシウムニオブ酸鉛
、亜鉛ニオブ酸鉛、およびニッケルニオブ酸鉛の固溶体
からなるものが開示されている。しかしながら、これも
またCR値については述べられておらず、コンデンサ材
料としての有用性は明らかではない。
Furthermore, materials that are solid solutions of zinc lead niobate and nickel lead niobate, in which part of the lead is replaced with barium, strontium, or calcium, are also being researched (Japanese Patent Laid-Open No. 58-214201 issue). However, there is no mention of CR value, and its usefulness as a capacitor material is unclear. Furthermore, JP-A-59-105208 discloses a solid solution of lead magnesium niobate, lead zinc niobate, and lead nickel niobate. However, there is no mention of CR value, and its usefulness as a capacitor material is unclear.

(発明が解決しようとする問題点)一 本発明は以上の点を考慮してなされたもので、従来技術
の問題点すなわち ■ 焼成温度が高い ■ 誘電率が大きいときにはCR値が小さい■ 高温で
のCR値(絶縁抵抗)が小さい等を解決し、誘電率およ
び絶縁抵抗が高く、低温で焼結することができる電気的
緒特性の優れた高誘電率系磁器組成物を提供することを
目的とする。
(Problems to be Solved by the Invention) The present invention has been made in consideration of the above points, and addresses the problems of the prior art, namely: ■ High firing temperature ■ CR value is small when dielectric constant is high ■ At high temperature The purpose is to provide a high dielectric constant ceramic composition that solves the problem of low CR value (insulation resistance), etc., has high dielectric constant and insulation resistance, and has excellent electrical properties that can be sintered at low temperatures. shall be.

[発明の構成] (問題点を解決するための手段) 本発明は、実質的に亜鉛ニオブ酸鉛(Pb(Znl13
Nb213)03)、マグネシウムニオブ酸鉛(Pb 
 (Mgl13Nb213) 03 ) 、ジルコン酸
鉛(Pb Zr 03 )の三元素のpbの一部をCa
で置換した磁器組成物であり、一般式 %式% で表わしたとき、それぞれの成分を頂点とする三元図の a (x −0,BO、y= 0.39 、z” 0.
OL )b (x’ −0,BO、Y= 0.05 、
z= 0.35 )c (x=  0.45 、y= 
0.05 、z −0,50)d (x −0,OL 
、Y= 0.49 、z= 0.50 )e (x= 
0.01 、y= 0.85 、z= 0.14 )f
 (x=  0.14 、Y= 0.85 、z= 0
.OL )で示される各点を結ぶ線内の組成のPbの一
部を2〜30moJ%のCaで置換したことを特徴とす
る高誘電率磁器組成物である。
[Structure of the Invention] (Means for Solving the Problems) The present invention essentially provides lead zinc niobate (Pb (Znl13
Nb213)03), magnesium lead niobate (Pb
(Mgl13Nb213) 03 ), a part of the three elements pb of lead zirconate (Pb Zr 03 )
When expressed by the general formula % formula %, a of the ternary diagram with each component as the vertex is a (x −0, BO, y= 0.39, z” 0.
OL)b(x'-0,BO,Y=0.05,
z= 0.35)c (x= 0.45, y=
0.05, z -0,50)d (x -0,OL
, Y= 0.49, z= 0.50)e (x=
0.01, y=0.85, z=0.14)f
(x= 0.14, Y= 0.85, z= 0
.. This is a high dielectric constant ceramic composition characterized in that a part of Pb in the composition within the line connecting each point indicated by OL is replaced with 2 to 30 moJ% of Ca.

また、上述の組成範囲の高誘電率系磁器組成物において
、PbおよびCa元素をA s Z n s Mg 5
NbsZr、元素をBとし、これらの複合化合物の化学
式をABO3と表わすとき、そのA/Bのモル比が 1.00≦A / B <  1.10の範囲内である
高誘電率系磁器組成物である。
Furthermore, in the high dielectric constant ceramic composition having the above-mentioned composition range, Pb and Ca elements are replaced by As Z n s Mg 5
NbsZr, a high dielectric constant ceramic composition where the element is B and the chemical formula of these composite compounds is expressed as ABO3, the molar ratio of A/B is within the range of 1.00≦A/B<1.10 It is.

さらに、必要に応じ、マンガン、コバルト、ニッケル、
クロムをM n Os Co OSN i O%Cr2
O3に換算した場合に、少なくとも一つ以上を1.Om
oρ%以下に含有させた高誘電率系磁器組成物である。
In addition, manganese, cobalt, nickel,
Chromium M n Os Co OSN i O%Cr2
When converted to O3, at least one is 1. Om
This is a high dielectric constant ceramic composition in which the content is oρ% or less.

(作用) 以下に本発明における各手段が及ぼす作用と組成範囲の
限定理由について説明する。
(Function) The function of each means in the present invention and the reason for limiting the composition range will be explained below.

本発明で規定した磁器組成物は、 x −Pb  (Znl13Nb273) 03− y
 @Pb  (Mgl13Nb213)03−2−Pb
ZrO3三元図を示す第1図の斜線部内のもののpbの
一部をCaで2〜30moρ%置換したものである。な
お第1図中における各点は a (x −(1,BO、y −0,39、z−0,0
1)b (x −0,60、Y= 0.05 、z= 
0.35 )c (x −0,45、Y= 0.05 
、z = 0.50 )d (x= 0.01 、Y−
0,49、z= 0.50 )e (x−0,吋、y=
 0.85 、z= 0.14 )f (x −0,1
4、y= 0.85 、z= 0.01 )を表わした
ものである。
The porcelain composition defined in the present invention is x-Pb (Znl13Nb273) 03-y
@Pb (Mgl13Nb213)03-2-Pb
A part of pb in the shaded area of FIG. 1 showing the ZrO3 ternary diagram is replaced with 2 to 30 mo % of Ca. Note that each point in Figure 1 is a (x - (1, BO, y - 0, 39, z - 0, 0
1) b (x -0,60, Y= 0.05, z=
0.35 ) c (x −0,45, Y= 0.05
,z=0.50)d(x=0.01,Y-
0,49, z= 0.50 )e (x-0, 吋, y=
0.85,z=0.14)f(x-0,1
4, y=0.85, z=0.01).

a−b線よりPb  (ZnlI3Nb2.) 03の
多い領域(■)では、比誘電率が3000以下と小さく
、また絶縁抵抗も1010Ωcm(25℃)以下と小さ
くなってしまう。
In the region (■) where Pb (ZnlI3Nb2.) 03 is more abundant than the a-b line, the dielectric constant is as low as 3000 or less, and the insulation resistance is also as small as 1010 Ωcm (25° C.) or less.

b−e線よりPb  (Mgl13Nb213) Oa
の少ない領域(■)においては比誘電率が3000以下
と小さく、室温のCR値も1000Ω・F以下となって
しまう。
Pb (Mgl13Nb213) Oa from be-e line
In the region (■) where the resistance is small, the dielectric constant is as small as 3000 or less, and the CR value at room temperature is also 1000 Ω·F or less.

c−d線よりPb Zr 03の多い領域(■)では、
焼結体にボアが多く磁器として満足なものが得られず、
絶縁抵抗も1010Ωcm以下、CR値も極端に小さく
なってしまう。
In the region (■) where there is more Pb Zr 03 than the c-d line,
The sintered body had many bores, making it impossible to obtain a satisfactory porcelain product.
The insulation resistance is also less than 1010 Ωcm, and the CR value is also extremely small.

d−e線よりP b  (Z nL7aN b27g)
 03の少ない領域(■)では焼成温度が1100℃を
こえてしまい、絶縁抵抗も低くなってしまう。
P b (Z nL7aN b27g) from the de line
In the region (■) with less 03, the firing temperature exceeds 1100° C. and the insulation resistance becomes low.

e−f線よりP b  (Mg1laN b27a) 
03の多い領域(■)では、焼成温度が高くなり、また
CR値も1000ΩF以下となってしまう。
P b (Mg1laN b27a) from e-f line
In the region (■) with a large amount of 03, the firing temperature becomes high and the CR value also becomes 1000 ΩF or less.

また、b−(x=0.8、y−o、2、z−0,2)C
″ (x=0.3、y=0.2、z−0,5)としたと
きb−−c−線よりp l)  (M gt、I’J 
b2 /3) 03の多い領域がより好ましく、比誘電
率5000以上の磁器組成物が得られる。
Also, b-(x=0.8, yo, 2, z-0,2)C
'' (x=0.3, y=0.2, z-0,5), p l) (M gt, I'J
b2 /3) A region with a large amount of 03 is more preferable, and a ceramic composition having a dielectric constant of 5000 or more can be obtained.

さらに、e −(x = 0.01 % y −0,8
,2−0,19) 、f −(x= 0.5、y−o、
5、z−0)としたときe−−f−線よりP b  (
M gL73N b273)03の少ない領域がより好
ましく、高温でもCR値が1000ΩF以上の磁器組成
物が得られる。
Furthermore, e − (x = 0.01% y −0,8
,2-0,19),f-(x=0.5,yo-o,
5, z-0), P b (
A region with a small amount of M gL73N b273)03 is more preferable, and a ceramic composition having a CR value of 1000 ΩF or more can be obtained even at high temperatures.

また、誘電率の温度依存性はキュリ一温度(Tc)の位
置により大きく影響されるが、a−b−c−d−e−f
の領域内の組成物のpbの一部をCaで置換することに
より一30℃〜+85℃の範囲で室温値に対し+22%
〜−56%以内の変動におさまり、米国規格EIAY5
Uをみたす特性を得ることができる。
In addition, the temperature dependence of the dielectric constant is greatly influenced by the position of the Curie temperature (Tc), but a-b-c-d-e-f
+22% relative to room temperature value in the range of -30°C to +85°C by substituting a part of PB of the composition in the range of
Fluctuations within ~-56%, US standard EIAY5
Characteristics satisfying U can be obtained.

Caの置換量は2 mob%〜30mo42%が好まし
く、2 mob%未満であると焼性温度が1100 ”
Cをこえてしまい、CR値も1000ΩFを下回ってし
まう。また、30履oI1%をこえて置換した場合には
焼結体中にボアが多くなり、また絶縁抵抗も1010Ω
Qmを下まわり、CR値も極端に小さくなってしまう。
The substitution amount of Ca is preferably 2 mob% to 30mo42%, and when it is less than 2 mob%, the sintering temperature is 1100%.
C, and the CR value also falls below 1000ΩF. In addition, if the replacement exceeds 30 oI1%, there will be many bores in the sintered body, and the insulation resistance will also be 1010Ω.
It falls below Qm, and the CR value becomes extremely small.

したがって、Caの置換量は2〜30moJ%とする。Therefore, the amount of Ca substitution is set to 2 to 30 moJ%.

さらに、本発明の磁器組成物においては、pbおよびC
a元素をA SZ n SM g SN’ b SZ 
r元素をBとし、これらの複合化合物の化学式をABO
3と表わすとき、そのA/Bのモル比が1.00≦A/
B<  1.10の範囲にあることが好ましい。1.0
0より小さい場合には、比誘電率が低下し、誘電損失が
1.5%をこえてしまい、実用的ではない。
Furthermore, in the ceramic composition of the present invention, pb and C
A SZ n SM g SN' b SZ
Let the r element be B, and the chemical formula of these composite compounds is ABO.
3, the molar ratio of A/B is 1.00≦A/
It is preferable that B<1.10. 1.0
When it is smaller than 0, the dielectric constant decreases and the dielectric loss exceeds 1.5%, which is not practical.

また1、10をこえると絶縁抵抗が低下しはじめるので
、好ましくない。したがってA/Bの範囲は1.00 
≦A/B<  1.10とする。Ca置換でなくBaま
たはSrでpbを置換した場合には、A/Bが1.00
より大きいと、Ca置換の場合とは逆に比誘電率が低下
してしまう。このことは、pbのCal換はBa、Sr
置換と同様には取り扱えないことを示していると考えら
れるが、理由はまだ不明な点が残されている。
Moreover, if it exceeds 1.10, the insulation resistance begins to decrease, which is not preferable. Therefore, the range of A/B is 1.00
≦A/B<1.10. When pb is substituted with Ba or Sr instead of Ca substitution, A/B is 1.00.
If it is larger, the dielectric constant will decrease, contrary to the case of Ca substitution. This means that the Cal conversion of pb is Ba, Sr.
This is thought to indicate that it cannot be treated in the same way as substitution, but the reason remains unclear.

本発明は前記一般式で表わされるものを主体とするもの
である。この組成物を酸化物に換算すると P  b  O5’3.53 〜H,54w  t  
%Zn0       0.08 〜5.74    
 wt%M  g  0          0.19
 〜4.12      w  t  %N  b  
2 0  s      12.28 〜31J4  
    W  t  %Z  r  0 2     
   0.3e  〜21.58      w  t
  %CaOO,33〜 6.28      wt 
 %となる。
The present invention is mainly based on what is represented by the above general formula. When this composition is converted into oxide, P b O5'3.53 ~ H, 54w t
%Zn0 0.08 ~ 5.74
wt% M g 0 0.19
~4.12wt%Nb
20s 12.28 ~31J4
W t % Z r 0 2
0.3e ~21.58wt
%CaOO, 33-6.28 wt
%.

なお、本発明においては、多少比率がずれて前述の化学
式をみたさない場合でも同様の効果が得られる場合があ
る。
In addition, in the present invention, the same effect may be obtained even if the ratio is slightly deviated and does not satisfy the above-mentioned chemical formula.

また、本発明の効果を損なわない範囲での不純物、添加
物、置換物等の含有もかまわない。例えば(先にあげた
Mn0SCoo、N1pSCr203)の他のSb20
3、TiO2、La203等があげられる。これらの添
加物の含有量は多くてもlvt%程度である。
Further, impurities, additives, substitutes, etc. may be contained within a range that does not impair the effects of the present invention. For example, other Sb20 (Mn0SCoo, N1pSCr203 listed above)
3, TiO2, La203, etc. The content of these additives is about lvt% at most.

次に本発明組成物の製造方法について説明する。Next, a method for producing the composition of the present invention will be explained.

出発原料としてPbs Cas Zns Nbs Zr
5Mgの酸化物もしくは焼成により酸化物になる炭酸塩
、しゅう酸塩等の塩類、水酸化物、有機化合物等を所定
の割合で秤量し、十分混合した後に仮焼する。この仮焼
は700℃〜850℃程度で行う。
Pbs Cas Zns Nbs Zr as starting materials
5Mg oxide or salts such as carbonate and oxalate which become oxides by firing, hydroxide, organic compounds, etc. are weighed out in predetermined proportions, thoroughly mixed, and then calcined. This calcination is performed at about 700°C to 850°C.

余り仮焼温度が低いと焼結密度が低下し、また、余り高
いと、やはり焼結密度が低下し、絶縁抵抗が低下する。
If the calcination temperature is too low, the sintered density will decrease, and if it is too high, the sintered density will also decrease and the insulation resistance will decrease.

次いて仮焼物を粉砕し原料粉末を製造する。平均粒径は
0.5〜3μm程度が好ましく、余り大きいと焼結体中
にボアが増加し、小さいと成型性が低下する。この様な
原料粉末を用い所望の形状に成型した後、焼成すること
により、高誘電率セラミックを得る。本発明の組成物を
用いることにより焼成は1100℃以下、900〜l0
50℃程度と比較的低温で行うことができる。
Next, the calcined product is pulverized to produce a raw material powder. The average particle size is preferably about 0.5 to 3 μm; if it is too large, bores will increase in the sintered body, and if it is too small, moldability will deteriorate. A high dielectric constant ceramic is obtained by molding such raw material powder into a desired shape and firing it. By using the composition of the present invention, firing can be performed at 1100°C or less, 900 to 10
It can be carried out at a relatively low temperature of about 50°C.

積層タイプの素子を製造する場合は、前述の原料粉末に
バインダー、溶剤等を加えスラリー化して、グリーンシ
ートを形成しこのグリンシート上に内部電極を印刷した
後、所定の枚数を積層・圧着し、焼成することにより製
造する。この時、本発明の誘電体材料は低温で焼結がで
きるため、内部電極材料として例えばAg主体の安価な
材料を用いることができる。
When manufacturing a laminated type element, a binder, a solvent, etc. are added to the raw material powder mentioned above to form a slurry, a green sheet is formed, internal electrodes are printed on this green sheet, and a predetermined number of sheets are laminated and crimped. , manufactured by firing. At this time, since the dielectric material of the present invention can be sintered at a low temperature, an inexpensive material mainly composed of Ag, for example, can be used as the internal electrode material.

こ゛のように本発明の組成物は1100℃以下、900
〜1050℃という比較的低温で焼成可能であり、比誘
電率  2800   (25°C)    以上誘電
損失  2.0%         以下CR値  2
000  Ω・F(25℃)  以上〃500  Ω・
F (125℃)  以上絶縁抵抗  1012Ω・印
      以上(−30℃〜+85℃) と安定でかつ優れた電気的特性を有し、また直流バイア
ス依存性もIKV/mmで40%以内と優れ、また機械
的強度にも優れている。さらには900〜1050℃程
度の低温で焼結できるため、内部電極を積層して一体焼
結する積層コンデンサ用の材料として有効である。この
場合、内部電極としてはPd、Pt等に比べ比較的安価
なAg系、Cu系、Ni系、M系等の低融点金属を用い
ることができ、コスト低減に大きく貢献する。また、こ
の組成物を圧電・電歪効果を利用する微少変位素子に用
いても、特性の温度による変動が少なく有効である。
As shown, the composition of the present invention can be heated to 1100°C or less,
It can be fired at a relatively low temperature of ~1050°C, with a relative dielectric constant of 2800 (25°C) or higher, a dielectric loss of 2.0% or lower, and a CR value of 2.
000 Ω・F (25℃) or more 500 Ω・
It has stable and excellent electrical characteristics with an insulation resistance of 1012 Ω or more (-30°C to +85°C) at 125°C, and excellent DC bias dependence of less than 40% in IKV/mm. It also has excellent mechanical strength. Furthermore, since it can be sintered at a low temperature of about 900 to 1050°C, it is effective as a material for multilayer capacitors in which internal electrodes are stacked and integrally sintered. In this case, low melting point metals such as Ag-based, Cu-based, Ni-based, M-based, etc., which are relatively cheaper than Pd, Pt, etc., can be used for the internal electrodes, which greatly contributes to cost reduction. Further, even when this composition is used in a minute displacement element that utilizes piezoelectric/electrostrictive effects, it is effective because its characteristics do not fluctuate due to temperature.

また、このように低温で焼成が可能であることから、回
′iv1基板上等に印−刷・焼成する厚膜誘電体ペース
トの材料としても有効である。この場合に酸素分圧を低
下させても基本的な特性は低下しないので有用である。
Furthermore, since it can be fired at such a low temperature, it is also effective as a material for thick film dielectric pastes to be printed and fired on circuit boards, etc. In this case, even if the oxygen partial pressure is lowered, the basic characteristics will not deteriorate, which is useful.

このような組成物においてマンガン、コバルト、ニッケ
ル、クロムのいずれかを酸化物に換算して1moρ%以
下含有することにより誘電損失を低減し、焼結性を向上
させ、良好な特性を得ることができる。しかしながら1
1Iloρ%をこえて含有させると逆に絶縁抵抗が減少
し、誘電損失が増加してしまうため1 mob%以下の
含有量とする。
In such a composition, by containing 1 moρ% or less of manganese, cobalt, nickel, or chromium in terms of oxide, it is possible to reduce dielectric loss, improve sinterability, and obtain good properties. can. However, 1
If the content exceeds 1 Iloρ%, the insulation resistance will decrease and the dielectric loss will increase, so the content should be 1 mob% or less.

この様な本発明磁器組成物は、高誘電率かっ、その温度
特性が良好である。また、CR値も大きく、特に高温で
も十分な値を有し、高温での信頼性に優れている。
Such a ceramic composition of the present invention has a high dielectric constant and good temperature characteristics. In addition, the CR value is large, particularly sufficient even at high temperatures, and has excellent reliability at high temperatures.

(実施例) 以下に本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1〜11 出発原料としてP b 、、 Ca −Z n 1N 
b 1Z r sMgの酸化物等の出発原料をボールミ
ル等で混合シ、700〜850℃で仮焼する。次いでこ
の仮焼体をボールミル等で粉砕し乾燥の後、バインダー
を加え造粒し、プレスして直径17mII、厚さ約2 
mmの円板状素体を形成した。混合、粉砕用のボールは
、不純物の混入を防止するため、部分安定化ジルコニア
ボール等の硬度が大きく、かつ靭性の高いボールを用い
ることが好ましい。この素体を空気中900〜1050
℃、2時間の条件で焼結し、両生面に銀電極を焼付は各
特性を測定した。誘電損失、容量は、I KHz % 
I Vrms、 25℃の条件でのデジタルLCRメー
ターによる測定値であり、この値から誘電率を算出した
。また、絶縁抵抗は、100■の電圧を2分間印加した
後、絶縁抵抗計を用いて測定した値から算出した。なお
、容量温度変化率は、25℃の値を基準とし、−30℃
、85℃での変化率で表わした。容量抵抗積は、25℃
および125℃での(誘電率)×(絶縁抵抗)×(真空
の誘電率)から求めた。絶縁抵抗の測定は、空気中の湿
気の効果を除くためシリコーンオイル中で行った。その
結果を第1表に示す。
Examples 1 to 11 Pb, Ca-Zn 1N as starting materials
Starting materials such as an oxide of b 1Z r sMg are mixed in a ball mill or the like and calcined at 700 to 850°C. Next, this calcined body is crushed with a ball mill, etc., dried, and then a binder is added to granulate it, which is then pressed to give a diameter of 17 mII and a thickness of about 2 mm.
A disk-shaped element body of mm was formed. As balls for mixing and grinding, it is preferable to use balls with high hardness and high toughness, such as partially stabilized zirconia balls, in order to prevent contamination of impurities. This element is 900 to 1050 in the air.
It was sintered at ℃ for 2 hours, silver electrodes were baked on both sides, and various characteristics were measured. Dielectric loss, capacity is I KHz %
I Vrms is a value measured by a digital LCR meter at 25° C., and the dielectric constant was calculated from this value. Moreover, the insulation resistance was calculated from the value measured using an insulation resistance meter after applying a voltage of 100 μ for 2 minutes. In addition, the capacitance temperature change rate is based on the value of 25℃, and -30℃
, expressed as the rate of change at 85°C. The capacitance-resistance product is 25℃
It was determined from (permittivity) x (insulation resistance) x (vacuum permittivity) at 125°C. Insulation resistance measurements were performed in silicone oil to eliminate the effects of atmospheric moisture. The results are shown in Table 1.

(以下余白) 第1表から明らかなように、本発明磁器組成物は、比誘
電率が低いもので2800以上、高いものは3以上と高
く、誘電損失が2.0%以下と小さいものを1100℃
以下、900〜1050℃の低温で焼結できる。また、
絶縁抵抗が1012Ωc以上と大きく、高温に到っても
減少は極めて少ない。これはCR値が125℃で100
0〜9000Ω・Fと大きいことからもわかる。さらに
誘電率の温度特性も良好(−30〜+85℃で一56%
以内)である。
(Left below) As is clear from Table 1, the ceramic compositions of the present invention have a low dielectric constant of 2800 or more, a high dielectric constant of 3 or more, and a small dielectric loss of 2.0% or less. 1100℃
Hereinafter, sintering can be performed at a low temperature of 900 to 1050°C. Also,
The insulation resistance is as high as 1012 Ωc or more, and decreases are extremely small even at high temperatures. This means that the CR value is 100 at 125℃.
This can be seen from the fact that it is large, ranging from 0 to 9000 Ω·F. Furthermore, the temperature characteristics of the dielectric constant are also good (-56% at -30 to +85℃).
within).

比較のため参考例について説明する。A reference example will be explained for comparison.

参考例1は前述の領域■に属する比較例であるが、誘電
率が小さく実用的ではない。
Reference example 1 is a comparative example belonging to the above-mentioned region (3), but the dielectric constant is small and it is not practical.

参考例2は前述の領域■に属する比較例であるが、CR
値が小さくなり、また、900〜1050℃の焼結不十
分であり、機械的強度も弱くなる。
Reference example 2 is a comparative example belonging to the above-mentioned area (■), but CR
The value becomes small, and the sintering at 900 to 1050°C is insufficient, and the mechanical strength becomes weak.

参考例3は領域■に属する比較例であ・るが比誘電率、
CR値ともに小さくなってしまい実用的ではない。
Reference example 3 is a comparative example belonging to area ■, but the relative permittivity is
Both CR values become small, making it impractical.

実施例12〜13 次いで実施例1〜11と同様な方法でA/Bのモル比を
変えた例を第2表の実施例12〜13、参考例4に示し
た。また、Ca置換でなく、BaおよびSr置換を行っ
た場合の参考例を第2表の参考例5〜8に示した。
Examples 12 to 13 Next, Examples 12 to 13 and Reference Example 4 in Table 2 show examples in which the molar ratio of A/B was changed in the same manner as in Examples 1 to 11. Further, reference examples 5 to 8 in Table 2 show reference examples in which Ba and Sr substitution was performed instead of Ca substitution.

(以下余白) 第2表から明らかなようにA/Bのモル比を1.00≦
A/B<  1.lQとした場合に、特に比誘電率が高
く、絶縁抵抗も高い良好な結果が得られた。
(Left below) As is clear from Table 2, the molar ratio of A/B is 1.00≦
A/B<1. In the case of lQ, particularly good results were obtained in which the dielectric constant was high and the insulation resistance was also high.

参考例4はA/B−0,97とした場合であるが比誘電
率が低下し、誘電損失も増大してしまうことがわかる。
Reference example 4 is a case where A/B-0.97 is used, but it can be seen that the relative dielectric constant decreases and the dielectric loss also increases.

また、参考例5〜8はCaの代わりにBaおよびSrで
pbを置換した場合のA/Bを変えた例を示す。A/B
が1より大きくなると比誘電率が低下する。これはCa
置換とは逆の傾向であり、B a s S r s C
aを同列に取扱えないことを示唆している新しい知見で
ある。
Further, Reference Examples 5 to 8 show examples in which A/B was changed when pb was replaced with Ba and Sr instead of Ca. A/B
When is larger than 1, the dielectric constant decreases. This is Ca
The tendency is opposite to that of substitution, and B a s S r s C
This is a new finding that suggests that a cannot be treated in the same way.

実施例14〜25 実施例4にMn0SCoo、Ni01Cr203を添加
含有させた例を第3表の実施例15〜2Bに示した。
Examples 14 to 25 Examples 15 to 2B in Table 3 show examples in which Mn0SCoo and Ni01Cr203 were added to Example 4.

また、MnOを2mo1%添加含有させた例を第3表に
参考例9として示した。
Further, an example in which 2 mo1% of MnO was added is shown as Reference Example 9 in Table 3.

第3表から明らかなように、本発明磁器組成物の範囲に
、マンガン、コバルト、ニッケル、クロムのいずれかを
酸化物に換算して1moρ%以下、含有することにより
、誘電損失を低減し、焼結性を向上させ有効な特性を得
ることができる。しかし、1moρ%をこえると参考例
9にみられるように比誘電率の極端な減少、そして特に
高温における絶縁抵抗の低下をもたらすので好ましくな
いことがわかる。
As is clear from Table 3, by containing 1 moρ% or less of manganese, cobalt, nickel, or chromium in the range of the ceramic composition of the present invention in terms of oxide, dielectric loss is reduced. It is possible to improve sinterability and obtain effective properties. However, it can be seen that if it exceeds 1 moρ%, as seen in Reference Example 9, it causes an extreme decrease in the dielectric constant and a decrease in insulation resistance especially at high temperatures, which is not preferable.

実施例27 実施例1〜12と同様な方法でプレスした円板状素体(
直径17mm5厚さ約2mm)を形成した。この円板を
500℃で脱脂したあと、酸素分圧t、OX100−5
atの窒素雰囲気中で900℃30分の条件で焼成し、
両生面に金電極を蒸着した各特性を実施例1〜12と同
様な方法で測定した。
Example 27 A disc-shaped element (
A diameter of 17 mm and a thickness of about 2 mm was formed. After degreasing this disk at 500℃, the oxygen partial pressure t, OX100-5
Baked at 900°C for 30 minutes in a nitrogen atmosphere,
Each characteristic of gold electrodes deposited on the amphiboid surfaces was measured in the same manner as in Examples 1 to 12.

x=0.3、y=o、s、z=0.2、a 麿0.1%
A/B= 1.03でM n OをO,1moJ%添加
して組成に対し次の特性が得られた。
x=0.3, y=o, s, z=0.2, a Maro 0.1%
When A/B=1.03 and 1 moJ% of MnO was added, the following properties were obtained for the composition.

比誘電率  K−”0  8300 誘電損失       1.2% 絶縁抵抗  ρ ’C1,5X 10 ’Ω国CR値 
25℃  11000ΩF 容量温度変化率 −80℃  −44%+85℃  −
38% また、焼成時に、同時にCu粉末をアルミナ基板上にの
せて炉中に入れたが、焼成後もCu金属粉末の光沢を有
していた。
Relative permittivity K-”0 8300 Dielectric loss 1.2% Insulation resistance ρ 'C1,5X 10' Ω National CR value
25℃ 11000ΩF Capacitance temperature change rate -80℃ -44%+85℃ -
38% Also, during firing, Cu powder was placed on the alumina substrate and placed in the furnace, but it still had the luster of Cu metal powder after firing.

このように、本発明によれば酸素分圧の低い領域の雰囲
気中でも゛十分に焼結できる。
As described above, according to the present invention, sufficient sintering is possible even in an atmosphere with a low oxygen partial pressure.

[発明の効果] 以上説明したように本発明によれば、誘電率および絶縁
抵抗が高く、低温で焼結することができ、かつ電気的緒
特性の優れた高誘電率系磁器組成物を得ることができる
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a high dielectric constant ceramic composition that has a high dielectric constant and insulation resistance, can be sintered at low temperatures, and has excellent electrical properties. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の組成範囲を示す三元系組成図。 FIG. 1 is a ternary system composition diagram showing the composition range of the present invention.

Claims (1)

【特許請求の範囲】 (1)一般式 x・Pb(Zn_1_/3Nb_2_/_3)O_3−
y・Pb(Mg_1_/_3Nb_2_/_3)O_3
−z・PbZrO_3で表わしたとき、それぞれの成分
を頂点とする三元図のa(x=0.60、y=0.39
、z=0.01)b(x=0.60、y=0.05、z
=0.35)c(x=0.45、y=0.05、z=0
.50)d(x=0.01、y=0.49、z=0.5
0)e(x=0.01、y=0.85、z=0.14)
f(x=0.14、y=0.85、z=0.01)で示
される各点を結ぶ線内の組成のPbの一部を2〜30m
ol%のCaで置換したことを特徴とする高誘電率系磁
器組成物。 (2)PbおよびCa元素をA、Zn、Mg、Nb、Z
r元素をBとし、これらの複合化合物の化学式をABO
_3と表わすとき、そのA/Bのモル比が 1.00≦A/B<1.10 の範囲内にあることを特徴とする特許請求の範囲第1項
記載の高誘電率磁器組成物。 (3)マンガン、コバルト、ニッケルおよびクロムの少
なくとも一種をMnO、CoO、NiO、Cr_2O_
3に換算して1.0mol%以下含有したことを特徴と
する特許請求の範囲第1項および第2項記載の高誘電率
系磁器組成物。
[Claims] (1) General formula x・Pb(Zn_1_/3Nb_2_/_3)O_3-
y・Pb(Mg_1_/_3Nb_2_/_3)O_3
-z・PbZrO_3, a of the ternary diagram with each component as the vertex (x=0.60, y=0.39
, z=0.01) b(x=0.60, y=0.05, z
=0.35) c(x=0.45, y=0.05, z=0
.. 50) d(x=0.01, y=0.49, z=0.5
0) e(x=0.01, y=0.85, z=0.14)
A portion of Pb with a composition within the line connecting each point indicated by f (x = 0.14, y = 0.85, z = 0.01) is 2 to 30 m
A high dielectric constant ceramic composition characterized in that ol% of Ca is substituted. (2) Pb and Ca elements are replaced by A, Zn, Mg, Nb, Z
Let the r element be B, and the chemical formula of these composite compounds is ABO.
3. The high dielectric constant ceramic composition according to claim 1, wherein the molar ratio of A/B is within the range of 1.00≦A/B<1.10. (3) MnO, CoO, NiO, Cr_2O_ at least one of manganese, cobalt, nickel and chromium
The high dielectric constant ceramic composition according to claims 1 and 2, characterized in that the composition contains 1.0 mol% or less in terms of 3%.
JP62154357A 1987-06-23 1987-06-23 High dielectric constant porcelain composition Expired - Lifetime JPH07110787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154357A JPH07110787B2 (en) 1987-06-23 1987-06-23 High dielectric constant porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154357A JPH07110787B2 (en) 1987-06-23 1987-06-23 High dielectric constant porcelain composition

Publications (2)

Publication Number Publication Date
JPS63319242A true JPS63319242A (en) 1988-12-27
JPH07110787B2 JPH07110787B2 (en) 1995-11-29

Family

ID=15582390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154357A Expired - Lifetime JPH07110787B2 (en) 1987-06-23 1987-06-23 High dielectric constant porcelain composition

Country Status (1)

Country Link
JP (1) JPH07110787B2 (en)

Also Published As

Publication number Publication date
JPH07110787B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
KR100201201B1 (en) Monolithic ceramic capacitor
JPH05152158A (en) Ceramic capacitor
JP3389408B2 (en) Multilayer capacitors
CN108249915B (en) Dielectric composition and electronic component
JP2566995B2 (en) High dielectric constant porcelain composition and ceramic capacitor
US4818736A (en) High dielectric constant type ceramic composition
TWI796464B (en) Dielectric ceramic composition and ceramic electronic part
JP3368602B2 (en) Non-reducing dielectric porcelain composition
JPH0831232A (en) Nonreducing dielectric ceramic composition
TWI798412B (en) Dielectric ceramic composition and ceramic electronic part
JPH0825795B2 (en) Non-reducing dielectric ceramic composition
JPH0734327B2 (en) Non-reducing dielectric ceramic composition
JP2001114559A (en) Dielectric composition
JP2660010B2 (en) High dielectric constant porcelain composition and ceramic capacitor
JPS63319242A (en) High-dielectric constant ceramic composition
JP3438261B2 (en) Non-reducing dielectric porcelain composition
JPS61251563A (en) High permittivity ceramic composition
JP3600701B2 (en) Dielectric porcelain composition
JPH03112858A (en) Dielectric porcelain composition
JPH0460943B2 (en)
JP3834593B2 (en) Ceramic dielectric and capacitor using the same
JPH09148180A (en) Laminated capacitor
JPS6226705A (en) High permeability ceramic composition
JP3450134B2 (en) Dielectric porcelain composition
CN114853472A (en) Dielectric composition and electronic component