JPS6331917B2 - - Google Patents

Info

Publication number
JPS6331917B2
JPS6331917B2 JP9542482A JP9542482A JPS6331917B2 JP S6331917 B2 JPS6331917 B2 JP S6331917B2 JP 9542482 A JP9542482 A JP 9542482A JP 9542482 A JP9542482 A JP 9542482A JP S6331917 B2 JPS6331917 B2 JP S6331917B2
Authority
JP
Japan
Prior art keywords
radio wave
heating chamber
branch
transmission line
branch path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9542482A
Other languages
Japanese (ja)
Other versions
JPS58212095A (en
Inventor
Tomotaka Nobue
Shigeru Kusuki
Takashi Kashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9542482A priority Critical patent/JPS58212095A/en
Publication of JPS58212095A publication Critical patent/JPS58212095A/en
Publication of JPS6331917B2 publication Critical patent/JPS6331917B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【発明の詳細な説明】 本発明は、電波シール手段に改良を施こした高
周波加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high frequency heating device with improved radio wave sealing means.

従来の高周波加熱装置の代表例である電子レン
ジは、加熱室と出入れ扉とがつくる間隙からの電
波漏洩を防止する手段として、導電性ガスケツト
を用いた接触方式、電波吸収材を用いた方式、電
波共振を利用したチヨーク方式などが提案され、
実用化されている。
A microwave oven, which is a typical example of a conventional high-frequency heating device, uses a contact method using a conductive gasket and a method using a radio wave absorbing material to prevent radio wave leakage from the gap created between the heating chamber and the door. , a chiyoke method using radio wave resonance, etc. has been proposed,
It has been put into practical use.

これら諸方式は夫々長所を有するものであり、
一般に重畳して装置に実装されている。このよう
な電波シール手段を構成する上で難題の1つに高
調波対策がある。
Each of these methods has its own advantages.
Generally, they are mounted on a device in a superimposed manner. One of the difficult issues in constructing such a radio wave sealing means is countermeasures against harmonics.

上記接触方式は、この高周波に対してもその性
能は原理上十分なものであるが、接触精度を保持
させる製造上の精度が必要である。また、被加熱
物の破片が接触面に付着するとこの接触方式は性
能が著しく低下するため信頼性に乏しい。
Although the above-mentioned contact method has sufficient performance in principle even at this high frequency, manufacturing precision is required to maintain contact precision. Further, if fragments of the object to be heated adhere to the contact surface, the performance of this contact method will be significantly reduced, resulting in poor reliability.

一方、電波吸収材は、所定の帯域内でその性能
が十二分に発揮されるものがほとんどであり、基
本波及びその高調波いずれにも十分な性能を発揮
するものではない。
On the other hand, most radio wave absorbing materials exhibit sufficient performance within a predetermined band, and do not exhibit sufficient performance for both the fundamental wave and its harmonics.

また共振を利用したチヨーク方式は、共振を利
用するが故に、必然的に基本波の波長に関与した
構造寸法が必要である。従来のチヨーク方式構成
を以下に述べる。
Furthermore, since the Chi-Yoke method that uses resonance uses resonance, it necessarily requires structural dimensions that are related to the wavelength of the fundamental wave. The conventional Chi-Yoke system configuration will be described below.

第1図に従来の代表的なチヨーク方式の電波シ
ール機構を示す。aは構成図で、bはその等価回
路である。
Fig. 1 shows a typical conventional radio wave sealing mechanism of the chiyoke type. A is a configuration diagram, and b is its equivalent circuit.

従来のチヨーク方式の電波シール機構は、加熱
室開口フランジ1と出入れ扉2とがつくる電波通
路3の入り口Aから漏洩電波基本波長の1/4なる
長さの所Bから始まるチヨーク空胴4を配した構
成となつており、Z方向の寸法は少なくとも漏洩
電波基本波長の1/4は必要でありコンパクト化が
難しいのが第1の欠点。
The conventional chi-yoke type radio wave sealing mechanism has a chi-yoke cavity 4 starting from a point B at a length of 1/4 of the fundamental wavelength of the leaked radio wave from the entrance A of the radio wave passage 3 created by the heating chamber opening flange 1 and the access door 2. The first disadvantage is that the dimension in the Z direction must be at least 1/4 of the fundamental wavelength of the leakage radio wave, making it difficult to make it compact.

またチヨーク空胴4をその入力端Bより見たイ
ンピーダンスZBは、基本波に対しては理想的には
無限大になる様に構成されているため、第二高調
波に対しては零になる。さらに、この電波シール
機構の終端Cから外空間を見たインピーダンスを
ZLとすると、この電波シール機構の等価回路はb
図のように表わすことができ、端子A−A′から
見た電波シール機構のインピーダンスZAは、 ZA(ZL+ZB)+jtanβl/1+j(ZL+ZB)tanβl;
β=2π/λgi ここでλgiは漏洩電波波長、lは電波通路長で
与えられる。但し各インピーダンスは正規化して
いる。
In addition, the impedance ZB of the chiyoke cavity 4 viewed from its input end B is ideally configured to be infinite for the fundamental wave, so it becomes zero for the second harmonic. Become. Furthermore, the impedance when looking at the outside space from the terminal C of this radio wave seal mechanism is
If Z L , the equivalent circuit of this radio wave seal mechanism is b
It can be expressed as shown in the figure, and the impedance Z A of the radio wave seal mechanism seen from terminal A-A' is Z A (Z L + Z B ) + jtanβl/1+j (Z L + Z B ) tanβl;
β=2π/λ gi where λ gi is given by the leakage radio wave wavelength and l is given by the radio wave path length. However, each impedance is normalized.

高周波加熱熱源の代表例であるマグネトロンは
その発振周波数が被加熱物である負荷に応じて、
最大2450±50MHzの変動を生じるため、電波通路
長lは等価的に漏洩電波基本波長λg1に対して l=λg1/4±△λ1とみなされ、第二高調波に対し ては、 l=λg2/2±△λ2とみなされる。
A magnetron, which is a typical example of a high-frequency heating heat source, has an oscillation frequency that varies depending on the load being heated.
Since fluctuations of up to 2450±50MHz occur, the radio wave path length l is equivalently considered to be l=λ g1 /4±△λ 1 for the leakage radio wave fundamental wavelength λ g1 , and for the second harmonic, It is assumed that l=λ g2 /2±△λ 2 .

よつて基本波に対してはZB=Joo、tanβloc
よりZAOとなり、第二高調波に対しては、ZB
O、tanβl=OよりZAZLとなる。
Therefore, for the fundamental wave, Z B = Joo, tanβloc
Therefore, Z A O, and for the second harmonic, Z B
O, tanβl=O, so Z A Z L.

基本波においては、ZLの変化すなわち加熱室フ
ランジ部1と出入れ扉2との組立によつて生ずる
C端子の隙間の変化を十分吸収できるが、第二高
調波に対しては、その余裕度が少ないのが第2の
欠点である。
For the fundamental wave, the change in Z L , that is, the change in the gap between the C terminals caused by the assembly of the heating chamber flange 1 and the access door 2, can be sufficiently absorbed, but for the second harmonic, the The second drawback is that it has little strength.

本発明はこのような事情に鑑み、電波の伝送に
用いられる平行伝送線路を電波漏洩防止機構に導
入し、その伝送線路の一部に分岐線路を結合しこ
の分岐路の分岐長を相互に異ならしめた伝送線路
を周期配列した新規でコンパクトな電波シール機
構を提供し電波シール性能を向上させることを主
目的とするものである。
In view of these circumstances, the present invention introduces a parallel transmission line used for radio wave transmission into a radio wave leakage prevention mechanism, connects a branch line to a part of the transmission line, and sets the branch lengths of the branch lines to be different from each other. The main purpose of this invention is to provide a new and compact radio wave sealing mechanism with periodic arrays of closed transmission lines, and to improve radio wave sealing performance.

以下本発明を図面を参照して説明する。 The present invention will be explained below with reference to the drawings.

第2図は、本発明の電波シール機構であり、a
が構成図、bがその等価回路である。
FIG. 2 shows the radio wave sealing mechanism of the present invention, a
is a block diagram, and b is its equivalent circuit.

図中第1図と照合するところは同一番号で示
す。加熱室開口フランジ1に対向して近接する伝
送線路とSなるすきま間隔にて配列された幅Wな
る伝送線路6群が形成されている。この伝送線路
6は電波通路3の入力端Aからl1なる長さのとこ
ろBに短絡面5を終端とする分岐路7を有し、そ
の深さは漏洩電波波長λgの約1/4である。このよ
うな伝送線路の等価回路はマイクロ波工学におい
て周知のようにb図のように表わされる。
The parts in the figure that are compared with FIG. 1 are indicated by the same numbers. A group of 6 transmission lines having a width W and arranged with a gap S between adjacent transmission lines facing the heating chamber opening flange 1 are formed. This transmission line 6 has a branch line 7 terminating at the short-circuit surface 5 at a length B at a length l1 from the input end A of the radio wave path 3, and its depth is approximately 1/4 of the leakage radio wave wavelength λ g . It is. The equivalent circuit of such a transmission line is expressed as shown in diagram b, as is well known in microwave engineering.

ここで第1図との大きな差違は、伝送線路の幅
がWと制約されているので電波通路、分岐路は伝
送線路として位置づけることができるので分岐点
に誘導性、容量性のパラメータを介在させた等価
回路表現が可能となる。またこれらのパラメータ
値算出に当つては「Waveguide Hand book」
M.I.T.Radiation Laboratory P.337に詳しく説
明してある。点Aから電波シール装置側を見たイ
ンピーダンスZAは等価回路の各パラメータを用
いて関係づけられる。これにより得られたインピ
ーダンスZAをZA=R+jXとし、点Aより加熱室
側を見たインピーダンスをZ0Vとすると電波シー
ル装置の入射するマイクロ波パワーPioに対して
点Cより本体外へ漏洩するマイクロ波パワーPL
は次式で関係づけられることを本発明者らは実験
的に確認している。
Here, the big difference from Figure 1 is that the width of the transmission line is restricted to W, so the radio wave path and branch path can be positioned as a transmission line, so inductive and capacitive parameters can be interposed at the branch point. It becomes possible to express an equivalent circuit. For calculating these parameter values, please refer to the "Waveguide Hand book".
MITRadiation Laboratory P.337 provides a detailed explanation. The impedance ZA seen from point A toward the radio wave sealing device is related using each parameter of the equivalent circuit. If the impedance Z A obtained in this way is Z A = R + jX, and the impedance looking toward the heating chamber from point A is Z 0V , then the microwave power P io incident on the radio wave sealing device is transmitted from point C to the outside of the main body. Leaked microwave power P L
The present inventors have experimentally confirmed that the relationship is expressed by the following equation.

PL∝R・Z0V/(Z0V+R)2+X2・Pio 実験により裏づけられたこの関係式を用いて、
Pio一定の条件下でシミユレーシヨンを行なつた
結果l1が小さいほど漏洩するマイクロ波パワーPL
が少ない結果を得た。これを実証すべくl1寸法30
mm、12mmに対する電波シール装置の減衰特性を実
測したところl1=12mmの方がl1=30mmに比して1/2
〜1/3低い電波漏洩量となる結果を得た。l1寸法
が小さくても漏洩量が小さくなることは、上記関
係式よりXの値を大きく設計することであること
が推察できる。なお実測時の主要構成寸法は以下
のとおりである。
P L ∝R・Z 0V / (Z 0V +R) 2 +X 2・P io Using this relational expression supported by experiment,
As a result of simulation under certain conditions, the smaller P 1 is, the more leaked microwave power P L
obtained fewer results. To demonstrate this l 1 dimension 30
When we actually measured the attenuation characteristics of the radio wave seal device for mm and 12 mm, the value for l 1 = 12 mm was 1/2 compared to that for l 1 = 30 mm.
The result was a ~1/3 lower amount of radio wave leakage. It can be inferred from the above relational expression that the leakage amount can be reduced even if the l1 dimension is small by designing the value of X to be large. The main structural dimensions at the time of actual measurement are as follows.

加熱室開口フランジと電波シール装置とのすき
ま寸法1mmおよび4mm、分岐路の対向寸法8mm、
分岐路の深さl2=32mm、l1=12mmのときl3=10mm、
l1=30mmの時l3=12mm、伝送線路の幅W=10mm、
すきまS=10mm。
The gap between the heating chamber opening flange and the radio wave seal device is 1 mm and 4 mm, and the opposing dimension of the branch path is 8 mm.
Depth of branch path l 2 = 32 mm, when l 1 = 12 mm, l 3 = 10 mm,
When l 1 = 30 mm, l 3 = 12 mm, transmission line width W = 10 mm,
Gap S = 10mm.

計算上l1寸法は小さいほどよい結果を得ている
が電波シール装置のZ方向に対して角度θで入射
する電波のθ方向伝送を阻止するためにl1寸法は
加熱室開口フランジと対向するための少なからず
の寸法を設けるべきである。従つて実構成上l1
12mmはl1のほぼ最小寸法に値すると考えられる。
この結果従来周知の事実として、用いられていた
チヨーク方式における電波通路入り口からチヨー
ク空胴に至る寸法を1/4波長とする事実が、本発
明に示すようにすきまSを介在させた分岐路を有
する伝送線路を周期的に配列した電波シール機構
を用いることによりその分岐点に至るまでの長さ
l1を1/4波長よりも十分小さい寸法にすることが
できるためZ方向の電波シール機構寸法を従来の
チヨーク方式に比してもよりコンパクトに構成す
ることができる特長が示された。
Calculatedly, the smaller the l1 dimension, the better the result, but in order to prevent the θ-direction transmission of radio waves incident at an angle θ to the Z direction of the radio wave sealing device, the l1 dimension faces the heating chamber opening flange. Considerable dimensions should be provided for this purpose. Therefore, in the real configuration l 1 =
12 mm is considered to be approximately the minimum dimension of l 1 .
As a result, it is a well-known fact that the dimension from the entrance of the radio wave path to the chiyork cavity in the chiyoke system used is 1/4 wavelength, and as shown in the present invention, a branch path with a gap S is formed. By using a radio wave seal mechanism in which transmission lines are periodically arranged, the length up to the branching point can be
Since l 1 can be made sufficiently smaller than 1/4 wavelength, it has been shown that the radio wave sealing mechanism in the Z direction can be configured more compactly than the conventional chi-yoke method.

そしてこの電波シール機構は、分岐路の深さを
漏洩電波波長のほぼ1/4にとればよいことから基
本波、高調波に対する対策が分岐路長を異ならし
めるだけでよいことを示唆している。
In this radio wave sealing mechanism, the depth of the branch path can be set to approximately 1/4 of the leakage radio wave wavelength, which suggests that countermeasures against fundamental waves and harmonics can be achieved by simply changing the length of the branch path. .

第3図は本発明一実施例を示す高周波加熱装置
の構成図である。
FIG. 3 is a configuration diagram of a high frequency heating device showing an embodiment of the present invention.

a図は装置全体構成図、b図は電波シール機構
の拡大構成図、c図はb図の各断面図である。
Figure A is an overall configuration diagram of the device, Figure B is an enlarged configuration diagram of the radio wave seal mechanism, and Figure C is a sectional view of Figure B.

被加熱物(図示していない)を収容する加熱室
8の開口部をおおう被加熱物を出入れする出入れ
扉9と加熱室開口フランジ1とがつくる電波通路
3の出入れ扉側に本発明の電波シール機構10,
11が構成装備されている。
A book is installed on the entrance/exit door side of the radio wave path 3 formed by the heating chamber opening flange 1 and the entrance/exit door 9 that covers the opening of the heating chamber 8 that accommodates the object to be heated (not shown). Radio wave seal mechanism 10 of the invention,
It is equipped with 11 components.

この電波シール機構をb図、c図に基づいて以
下説明する。
This radio wave sealing mechanism will be explained below based on figures b and c.

本発明の電波シール機構の特長は第2図を用い
て説明したように終端が短絡された分岐路を有す
る伝送線路をすきまを介して周期配列する構成に
おいて、この分岐路長を相互に異ならしめ、電波
通路3を通過せしめんとする漏洩電波の基本波、
高調波に対して高性能な電波シール機能を持たせ
るものであり、b図に示すように基本波に対する
伝送線路10と高調波の中で特にそのパワー量が
多い第二高調波に対する伝送線路11とを2〜3
mmの間隙部12をはさんで出入れ扉9の加熱室開
口フランジ1と対向する部分に周期配列してい
る。
As explained using FIG. 2, the feature of the radio wave sealing mechanism of the present invention is that in a configuration in which transmission lines having branch paths whose terminal ends are short-circuited are periodically arranged with gaps in between, the lengths of the branch paths are made to be different from each other. , the fundamental wave of the leaked radio wave that is to be passed through the radio wave path 3,
It has a high-performance radio wave sealing function against harmonics, and as shown in Figure b, there is a transmission line 10 for the fundamental wave and a transmission line 11 for the second harmonic, which has a particularly large amount of power among the harmonics. and 2-3
They are periodically arranged in a portion of the access door 9 facing the heating chamber opening flange 1 across a gap 12 of mm.

基本波、第二高調波に対する伝送線路の各断面
図をc図に示している。
Each cross-sectional view of the transmission line for the fundamental wave and the second harmonic is shown in Figure c.

電波通路3の入力端Aから10〜15mmのところに
所定の分岐路長l1,l2を有する分岐路13,14
が設けられている。
Branch paths 13 and 14 having predetermined branch path lengths l 1 and l 2 located 10 to 15 mm from the input end A of the radio wave path 3
is provided.

基本波に対する伝送線路10は、2枚の金属板
15,16から構成されており、17が分岐路1
3の短絡面である。またこの分岐路13は、コの
字形状にて構成することにより出入れ扉の厚みを
薄くしている。またこのコの字形状分岐路長を第
2図に示したような折り曲げのない分岐路から容
易に構成変形をとるべく分岐路のコーナー部は、
略45度のコーナー切り18,19をし、コーナー
部に生ずる容量を減少させて、分岐路長l1を図に
示すような寸法測定にて基本波の略1/4波長に相
当する様に構成している。
The transmission line 10 for the fundamental wave is composed of two metal plates 15 and 16, and 17 is a branch path 1.
This is the short circuit surface of 3. Moreover, this branch path 13 is configured in a U-shape to reduce the thickness of the entrance/exit door. In addition, in order to easily change the length of this U-shaped branch road from a branch road with no bends as shown in Fig. 2, the corner portion of the branch road is
Cut the corners 18 and 19 at approximately 45 degrees to reduce the capacitance generated at the corners, and make the branch path length l1 correspond to approximately 1/4 wavelength of the fundamental wave by measuring the dimensions as shown in the figure. It consists of

一方、第2高調波に対する伝送線路11は、分
岐路長l2が基本波に対する分岐路長l1の1/2でよい
ことから短絡面20を有する分岐路14は図に示
すように折り曲げのない構成とし一枚金属板で構
成している。
On the other hand, in the transmission line 11 for the second harmonic, the branch path length l 2 may be 1/2 of the branch path length l 1 for the fundamental wave, so the branch path 14 having the shorting surface 20 is bent as shown in the figure. It is constructed from a single metal plate.

以上の構成を採ることにより、間隙部12の効
果にて、漏洩電波は積極的に各伝送線路に導かれ
るが、漏洩電波基本波は加熱室開口周辺に分布構
成された伝送線路10の影響を受けて漏洩量が抑
圧され、一方第二高調波に対しては、伝送線路1
1の影響を受けて漏洩量が抑圧される。
By adopting the above configuration, leakage radio waves are actively guided to each transmission line due to the effect of the gap 12, but the leakage radio fundamental wave is not influenced by the transmission line 10 distributed around the opening of the heating chamber. On the other hand, for the second harmonic, the transmission line 1
1, the amount of leakage is suppressed.

また原理上第三高調波は伝送線路10にて漏洩
量が抑圧される。
Further, in principle, the amount of third harmonic leakage is suppressed in the transmission line 10.

なお分岐路の形成は本発明一実施例に限定され
るものではなく、たとえば、加熱室開口フランジ
に本発明の電波シール機構を設けて各分岐路を折
り曲げなしで構成したり、出入れ扉に装着する場
合に基本波に対する分岐路をL字形状としたりし
ても構わない。
Note that the formation of the branch paths is not limited to the one embodiment of the present invention; for example, the radio wave sealing mechanism of the present invention may be provided on the heating chamber opening flange to configure each branch path without bending, or the formation of branch paths may be formed on the entrance/exit door. When installed, the branch path for the fundamental wave may be L-shaped.

以上本発明は、分岐路終端が短絡された互いに
異なる分岐路長を有する伝送線路を加熱室開口周
辺の出入れ扉または加熱室開口フランジに相互に
周期配列構成とした新規な電波シール手段を有す
る高周波加熱装置を提供するものであり、 (1) 分岐路長を異ならしめるだけで漏洩電波の基
本波、高調波に対してすぐれた電波シール性能
を有する。
As described above, the present invention has a novel radio wave sealing means in which transmission lines having different branch path lengths with short-circuited branch path ends are arranged in a periodic manner on the access door around the heating chamber opening or on the heating chamber opening flange. The present invention provides a high-frequency heating device that (1) has excellent radio wave sealing performance against the fundamental wave and harmonics of leakage radio waves simply by varying the branch path lengths.

(2) 従来のチヨーク方式に比べてコンパクトな電
波シール構成が可能となる。
(2) A more compact radio wave seal configuration is possible compared to the conventional chiyoke system.

等の効果を奏する。It has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のチヨーク方式の電波シール機構
を示し、aは構成図、bはその等価回路図、第2
図は、本発明の電波シール機構で、aは構成図、
bはその等価回路図、第3図は本発明一実施例を
示す高周波加熱装置の構成図で、aは全体構成
図、bは電波シール機構の拡大構成図、cはb図
の各断面図である。 2,9……出入れ扉、3……電波通路、6,1
0,11……伝送線路(周期配列された伝送線
路)、7,13,14……分岐路、8……加熱室、
5,17,20……短絡面、l1,l2……分岐路長。
Figure 1 shows a conventional radio wave sealing mechanism of the Chiyoke method, where a is a configuration diagram, b is its equivalent circuit diagram, and the second
The figure shows the radio wave seal mechanism of the present invention, a is a configuration diagram,
b is an equivalent circuit diagram thereof, FIG. 3 is a block diagram of a high-frequency heating device showing an embodiment of the present invention, a is an overall block diagram, b is an enlarged block diagram of a radio wave seal mechanism, and c is each cross-sectional view of figure B. It is. 2,9... Entrance/exit door, 3...Radio wave passage, 6,1
0, 11... Transmission line (periodically arranged transmission line), 7, 13, 14... Branch path, 8... Heating chamber,
5, 17, 20...short circuit surface, l1 , l2 ...branch path length.

Claims (1)

【特許請求の範囲】[Claims] 1 被加熱物を収容する加熱室と、前記加熱室に
前記被加熱物を出入れする出入れ扉と、前記加熱
室と前記出入れ扉とが作る電波通路に設けられた
電波シール手段とを具備し、前記電波シール手段
は、分岐路終端が短絡された互いに異なる分岐路
長を有する伝送線路を相互に周期配列構成とした
高周波加熱装置。
1. A heating chamber for accommodating an object to be heated, an access door for taking the object into and out of the heating chamber, and a radio wave sealing means provided in a radio wave passage formed by the heating chamber and the access door. A high-frequency heating device, wherein the radio wave sealing means has a periodic arrangement of transmission lines having mutually different branch path lengths and short-circuited ends of the branch paths.
JP9542482A 1982-06-03 1982-06-03 High frequency heater Granted JPS58212095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9542482A JPS58212095A (en) 1982-06-03 1982-06-03 High frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9542482A JPS58212095A (en) 1982-06-03 1982-06-03 High frequency heater

Publications (2)

Publication Number Publication Date
JPS58212095A JPS58212095A (en) 1983-12-09
JPS6331917B2 true JPS6331917B2 (en) 1988-06-27

Family

ID=14137307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9542482A Granted JPS58212095A (en) 1982-06-03 1982-06-03 High frequency heater

Country Status (1)

Country Link
JP (1) JPS58212095A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230018664A (en) * 2021-07-30 2023-02-07 한국산업기술시험원 Accelerated elution characteristics evaluating equipment for materials, components and devices of ultrapure water production facility, and elution characteristics evaluating method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004839A (en) * 2001-06-21 2003-01-08 Furuno Electric Co Ltd Radar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230018664A (en) * 2021-07-30 2023-02-07 한국산업기술시험원 Accelerated elution characteristics evaluating equipment for materials, components and devices of ultrapure water production facility, and elution characteristics evaluating method thereof

Also Published As

Publication number Publication date
JPS58212095A (en) 1983-12-09

Similar Documents

Publication Publication Date Title
USRE33657E (en) Electromagnetic wave energy seal arrangement
KR950000247B1 (en) Apparatus for shielding microwave for electronic range
US5600740A (en) Narrowband waveguide filter
KR20030065728A (en) Mwo door having attenuating filter
US2479673A (en) Directional microwave transmission system having dielectric lens
KR890004507B1 (en) Device for preventing electromagnetic wave in microwaves range
US4054851A (en) Acoustic surface-wave filter
JPS6331917B2 (en)
USRE32664E (en) Energy seal for high frequency energy apparatus
KR950008085Y1 (en) High-frequency leakage shelter device of range
Mongia et al. Accurate conductor Q-factor of dielectric resonator placed in an MIC environment
JPS6331916B2 (en)
JPS61131391A (en) Riod sealer
JP4647549B2 (en) High frequency heating device
KR100230774B1 (en) Microwave leakage shielding apparatus for microwave oven
CN1047057C (en) Device for shielding leakage of high frequency waves in microwave oven
KR100393809B1 (en) Choke for isolating microwave
JPH06260279A (en) Radio wave seal device
JPH01173902A (en) Dielectric filter
Rud Resonance absorption in nonsymmetrical lossy dielectric inserts in rectangular waveguides
JPH0135480B2 (en)
JPS6298591A (en) Radio frequency heater
JPS6235233B2 (en)
JPS6325478B2 (en)
JPS6180790A (en) High frequency heater