JPS63318702A - Formation of protective coating layer of thermistor unit - Google Patents

Formation of protective coating layer of thermistor unit

Info

Publication number
JPS63318702A
JPS63318702A JP15513587A JP15513587A JPS63318702A JP S63318702 A JPS63318702 A JP S63318702A JP 15513587 A JP15513587 A JP 15513587A JP 15513587 A JP15513587 A JP 15513587A JP S63318702 A JPS63318702 A JP S63318702A
Authority
JP
Japan
Prior art keywords
layer
protective coating
thermistor
coating layer
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15513587A
Other languages
Japanese (ja)
Inventor
Akio Mitomo
三友 明夫
Teruo Abe
阿部 輝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Heating Appliances Co Ltd
Original Assignee
Hitachi Heating Appliances Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Heating Appliances Co Ltd filed Critical Hitachi Heating Appliances Co Ltd
Priority to JP15513587A priority Critical patent/JPS63318702A/en
Publication of JPS63318702A publication Critical patent/JPS63318702A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat resistance, corrosion resistance and electrolytic corrosion resistance of a thermistor unit by spray-coating the outer periphery of a thermistor element with a primer containing a fluorine compound, electrostatically coating the outer periphery with a powdered tetrafluoroethylene perfluoroalkoxyethylene copolymer resin and baking the thermistor element at a specific temperature. CONSTITUTION:A protective coating layer 9 is formed onto the outer periphery of a thermistor element 5 in which a heat sensitive element 1 is sealed with a pair of electrode bodies 2, 3 and a heat-resistant insulating package 4. In such a thermistor unit, a primer containing a fluorine compound is spray-coated to shape a foundation layer 10, the outer periphery of the foundation layer 10 is electrostatically coated with a powdered tetrafluoroethylene perfluoroalkoxyethylene copolymer resin to form an overcoating layer 11, and the foundation layer 10 and the overcoating layer 11 are baked at a temperature of 350-400 deg.C, thus shaping the protective coating layer 9. Accordingly, the foundation layer 10 is fast stuck to the surface of the thermistor element 5 and attached closely to the overcoating layer 11 in a melting manner, thus forming the protective coating layer 9 having reliability for a prolonged term.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気オーブン、電子レンジ等に使用するサーミ
スタユニットの保護被覆層形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming a protective coating layer on a thermistor unit used in electric ovens, microwave ovens, and the like.

従来の技術 一般に、電気オーブンや電子レンジ等に使用するサーミ
スタユニットは、オーブン庫内や排気口のフード内圧設
置され、常温から約300℃までの空気温度を検知する
為のものである。サーミスタユニットの構造は2例えば
、遷移金属の酸化物を焼成した後薄状ペレット化し、そ
の両面に導電性ペーストを塗布して電極を設けてなる感
熱素子をジュメット線からなる一対の電極体で挾み、こ
の感熱素子を一対の電極体とガラスからなる外囲体とで
封止してなるサーミスタ素子と、このサーミスタ素子の
一対の電極体を、オーブン壁等に収り付は易くする為に
設けた耐熱絶縁性のアルミナやステアタイト等の基体に
所定の間隔で平行直立させて設けたステンレスやコパー
ル等からなる一対の金属支柱にスポット溶接により固定
させたものである。サーミスタ素子は、温度によジ感熱
素子の抵抗値が変化する特性を有することから、この性
質を利用してサーミスタ素子の両端に電界全印加し、そ
の電圧の変化を制御回路で捉えて、オープン庫内を加熱
する発熱体の電力量をコントロールする為の温度検知手
段である。ま几、オープン庫内や排気口フードは、30
0℃近くの高温雰囲気になるだけでなく2食品から発生
した水分が結露したり2食品から飛散した油や塩分等の
汚れが付着し易いことから、非常に過酷な環境下になっ
ている。
2. Description of the Related Art In general, thermistor units used in electric ovens, microwave ovens, etc. are installed in the oven compartment or in the hood at the exhaust port to detect air temperatures from room temperature to about 300°C. The structure of the thermistor unit is 2. For example, a heat-sensitive element is made by baking a transition metal oxide, turning it into a thin pellet, applying conductive paste to both sides of the pellet, and providing electrodes thereon. A heat-sensitive element is sandwiched between a pair of electrode bodies made of Dumet wire. In order to easily fit the thermistor element, which is formed by sealing this heat-sensitive element with a pair of electrode bodies and an envelope made of glass, and the pair of electrode bodies of this thermistor element, on an oven wall, etc. It is fixed by spot welding to a pair of metal supports made of stainless steel, copal, etc., which are placed upright in parallel at a predetermined interval on a base made of heat-resistant insulating material such as alumina or steatite. The thermistor element has the characteristic that the resistance value of the heat-sensitive element changes depending on the temperature.Using this property, a full electric field is applied to both ends of the thermistor element, and the change in voltage is captured by the control circuit to open the This is a temperature detection means to control the amount of power of the heating element that heats the inside of the refrigerator. The open compartment and exhaust hood are 30cm long.
The environment is extremely harsh, not only because of the high-temperature atmosphere near 0°C, but also because moisture generated from the two foods condenses, and dirt such as oil and salt scattered from the two foods tends to adhere.

従来、この種の過酷な環境下で使用されるサーミスタユ
ニットでは、水分や塩分の付着によって生じる絶縁性の
低下による誤動作や腐食あるいは高温酸化を防止し、か
つ水分と直流電界の印加によって生じる電解腐食現象で
電極体が腐食断線するのを抑制させる為に、ポリイミド
、ポリアミドイミド、シリコーン等からなる溶剤を含有
する耐熱性のエナメル塗料をディップ法やスプレー法に
よりサーミスタユニットの表面に塗布した後、乾燥焼付
けをして保護被覆層を形成していた。
Conventionally, thermistor units used in this type of harsh environment have been designed to prevent malfunctions, corrosion, and high-temperature oxidation caused by deterioration of insulation caused by adhesion of moisture and salt, and to prevent electrolytic corrosion caused by moisture and the application of a DC electric field. In order to prevent the electrode body from corroding and disconnecting due to this phenomenon, heat-resistant enamel paint containing a solvent made of polyimide, polyamideimide, silicone, etc. is applied to the surface of the thermistor unit by dipping or spraying, and then dried. A protective coating layer was formed by baking.

発明が解決しようとする問題点 しかしながら、従来のサーミスタユニットの保護被覆層
形成方法では次に述べる理由により、保護被覆層の欠陥
や保護被覆層とサーミスタ素子との密着不良によって生
じる界面を形成してしまうことから絶縁低下を起こして
誤動作を起こすこと。
Problems to be Solved by the Invention However, in the conventional method for forming a protective coating layer of a thermistor unit, an interface is formed due to defects in the protective coating layer or poor adhesion between the protective coating layer and the thermistor element due to the following reasons. Due to storage, insulation may deteriorate and malfunction may occur.

耐高温酸化性に乏しくかつ電解腐食により電極体が断線
を起こし易いことから、長期間使用した際の耐久性が劣
ること、保護被覆層のコーティング作業性が悪く品質管
理が繁雑になる等の欠点があった0 (1)  サーミスタユニットの表面に保護被覆層をデ
ィップ法により形成すると1寸法の異なる部分にタマリ
が生じ易く、その部分が乾燥焼付は時にフクレを起こし
てピンホールを形成し、その部分から水分や塩分がサー
ミスタ素子に浸透してしまう。
Disadvantages include poor high-temperature oxidation resistance and the electrode body easily breaking due to electrolytic corrosion, resulting in poor durability during long-term use, poor coating workability of the protective coating layer, and complicated quality control. 0 (1) When a protective coating layer is formed on the surface of the thermistor unit by dipping, it is easy to form lumps in areas that differ in one dimension, and when those areas dry and bake, they sometimes blister and form pinholes. Moisture and salt can penetrate into the thermistor element.

(2)  サーミスタユニットの表面に保護被覆層をス
プレー法により形成すると、皮膜のスケや影の部分の膜
厚が薄くなり易いことから、耐水性と耐高温酸化性の皮
膜を得難い。
(2) When a protective coating layer is formed on the surface of the thermistor unit by a spraying method, the thickness of the film tends to become thinner in the areas of scratches and shadows, making it difficult to obtain a film that is water resistant and resistant to high temperature oxidation.

問題点を解決するための手段 本発明は、それらの欠点を解決する為に2次のような形
成方法・とじている。すなわち1本発明に係わるサーミ
スタユニットは、感熱素子を一対の電極体と耐熱絶縁性
の外囲体とで封止したサーミスタ素子の外周囲にフッ素
化合物含有のプライマーをスプレー塗布して下地層とな
し、該下地層の外周囲に粉体状の四フッ化エチレンパー
フロロアルコキシエチレン共重合樹脂を静電塗装して上
地作用 本発明のサーミスタユニットの保護被覆層の形成方法の
作用を下記する。
Means for Solving the Problems In order to solve these drawbacks, the present invention uses a secondary forming method and binding method. In other words, in the thermistor unit according to the present invention, a heat-sensitive element is sealed with a pair of electrode bodies and a heat-resistant insulating envelope, and a primer containing a fluorine compound is sprayed on the outer periphery of the thermistor element to form a base layer. The operation of the method for forming the protective coating layer of the thermistor unit of the present invention will be described below.

(1)  フッ素化合物含有のプライマーをスプレー塗
布して下地層となし、その上から四フッ化エチレンパー
フロロアルコキシエチレン共重合樹脂で300℃の高温
ストレノ下でも硬化し難く、かつクラックや剥離を起こ
さず長期間の信頼性の確保が計れる。  ゛ (2)  フッ素化合物含有の下地層の機能は、サーミ
スタ素子と上地層との密着性の確保であるから。
(1) A primer containing a fluorine compound is spray applied to form a base layer, and then a tetrafluoroethylene perfluoroalkoxyethylene copolymer resin is applied on top of the primer, which is hard to cure even under a high temperature strainer at 300°C and does not cause cracks or peeling. Therefore, long-term reliability can be ensured. (2) The function of the underlayer containing a fluorine compound is to ensure adhesion between the thermistor element and the overlayer.

フクレを起こし難い5〜20μの薄い皮膜厚みであり、
多少のスケが生じても密着性バラツキを起こさない。ま
た上地層は粉体状の樹脂を静電塗装で塗布され、膜厚管
理が静電電圧で正確に行なわれる。
It has a thin film thickness of 5 to 20μ that does not easily cause blisters.
Even if some scratches occur, there will be no variation in adhesion. The upper layer is coated with powdered resin using electrostatic coating, and the film thickness is precisely controlled using electrostatic voltage.

実施例 以下2本発明の一実施例を図面に従い詳述する。Example Hereinafter, two embodiments of the present invention will be described in detail with reference to the drawings.

第1図は1本発明のサーミスタユニットの一実施例を示
したものである。5はダイオードタイプのサーミスタ素
子の構造を示したものである。すなわち、iは鉄、ニッ
ケル、マンガン、コバルト等の遷移金属の酸化物を主成
分とする負の抵抗温度特性を有しかつ両面に導電性電極
を塗布してなる感熱素子、2および3は感熱素子1の両
面を挟着して設けたジュメット線から成る一対の電極体
FIG. 1 shows an embodiment of a thermistor unit according to the present invention. 5 shows the structure of a diode type thermistor element. That is, i is a heat-sensitive element which has negative resistance-temperature characteristics mainly composed of oxides of transition metals such as iron, nickel, manganese, and cobalt, and has conductive electrodes coated on both sides, and 2 and 3 are heat-sensitive elements. A pair of electrode bodies made of Dumet wire sandwiched between both sides of the element 1.

4は感熱素子1を一対の電極体2,3とで封止する為の
ガラスからなる外囲体である。また、6および7は、耐
熱耐食性金属例えばステンレス、コパール等からなり、
耐熱絶縁性のヌテアタイト。
Reference numeral 4 denotes an envelope made of glass for sealing the heat-sensitive element 1 with the pair of electrode bodies 2 and 3. Further, 6 and 7 are made of heat-resistant and corrosion-resistant metal such as stainless steel, copper, etc.
Nuteatite is a heat-resistant insulating material.

アルミナ等の基体8に所定の間隔で直立させて平行に設
けた一対の金属支柱、9はサーミスタ素子5、一対の金
属支柱6,7および基体8の表面に設けられた耐熱、耐
水、耐食および絶縁の特性を有する保護被覆層であり2
例えばポリイミド、ポリアミドイミド、ポリフェニレン
サルファイド等のいずれかとフッ素化合物とからなる下
地層10と。
A pair of metal supports 9 are provided upright and parallel to a base 8 made of alumina or the like at predetermined intervals. Reference numeral 9 denotes a thermistor element 5, a pair of metal supports 6 and 7, and heat-resistant, water-resistant, corrosion-resistant and It is a protective coating layer with insulating properties.
For example, a base layer 10 made of polyimide, polyamideimide, polyphenylene sulfide, etc. and a fluorine compound.

この下地層10の外周囲設けた四フッ化エチレンパーフ
ロロアルコキシエチレン共重合樹脂の上地層11とから
構成される。
The base layer 10 is composed of a top layer 11 of tetrafluoroethylene perfluoroalkoxyethylene copolymer resin provided around the outer periphery of the base layer 10.

第2図は、サーミスタ素子5と保護被覆層9の部分を詳
細に示したものである。すなわち、サーミスタ素子5の
外周囲に液状のフッ素化合物含有のプライマーをスプレ
ー法により5〜20μの厚さに塗布後、自然放置あるい
は50〜180℃の温度で乾燥して下地層10を設け2
次に下地層10の外周囲に20〜40μ大の四フッ化エ
チレンパーフロロアルコキシエチレン共重合樹脂を静電
塗装法により30〜80μの厚さになるよう塗布し、さ
らに350〜400℃の温度で20〜40分間焼成する
ことによって、下地層10がサーミスタ素子5の表面と
密着しかつ上地層11と溶融して密着することから、信
頼性のある保護被覆層9が形成される。
FIG. 2 shows the thermistor element 5 and the protective coating layer 9 in detail. That is, a primer containing a liquid fluorine compound is applied to the outer periphery of the thermistor element 5 to a thickness of 5 to 20 μm by a spray method, and then left to stand naturally or dried at a temperature of 50 to 180° C. to form the base layer 10.
Next, a 20 to 40 μ-sized polytetrafluoroethylene perfluoroalkoxyethylene copolymer resin is applied to the outer periphery of the base layer 10 to a thickness of 30 to 80 μ by electrostatic coating, and then heated at a temperature of 350 to 400°C. By baking for 20 to 40 minutes, the base layer 10 comes into close contact with the surface of the thermistor element 5 and melts and comes into close contact with the top layer 11, so that a reliable protective coating layer 9 is formed.

次に前記構成に於ける作用を説明する。Next, the operation of the above configuration will be explained.

本実施例の保護被覆層9は下地層10と上地層11との
2層からなるもので、下地層10は、サーミスタ素子5
と上地層11とを密着させる為に設けたものであるから
、その機能はサーミスタ素子5.金属支柱6,7及び基
体8と密着し、かつ上地層11と溶融密着していればよ
く、必ずしも完全なピンホールレスの皮膜である必要は
ない。下地層10をフッ素化合物含有のプライマー全ス
プレー塗布により、5〜20μの皮膜を設けられること
、上地層11の材質である四フッ化エチレンパーフロロ
アルコキシエチレン共重合樹脂と溶融密着すること、耐
熱安定性を有すること、上地層11にピンホールが発生
していてもサーミスタ素子5に水分や塩分を侵入させに
くい等の機能を発揮する。
The protective coating layer 9 of this embodiment consists of two layers, a base layer 10 and a top layer 11.
Since it is provided to bring the upper layer 11 into close contact with the thermistor element 5., its function is that of the thermistor element 5. It is sufficient that the film is in close contact with the metal struts 6 and 7 and the base 8 and in close contact with the upper layer 11 by melting, and does not necessarily have to be a completely pinhole-free film. The base layer 10 must be completely spray coated with a primer containing a fluorine compound to form a film of 5 to 20 μm, be melted and adhered to the tetrafluoroethylene perfluoroalkoxyethylene copolymer resin that is the material of the top layer 11, and be stable in heat resistance. Even if pinholes are generated in the upper layer 11, moisture and salt do not easily enter the thermistor element 5.

上地層11に粉体の四フッ化エチレンパーフロロアルコ
キシエチレン共重合樹脂を静電塗装によジ設ける理由は
次による。四フッ化エチレンパーフロロアルコキシエチ
レン共重合樹脂は、融点が302〜310℃であること
から、350〜400℃の温度により溶融してピンホー
ルレスの皮膜を形成し易いこと。
The reason why powdered tetrafluoroethylene perfluoroalkoxyethylene copolymer resin is applied to the upper layer 11 by electrostatic coating is as follows. Since the tetrafluoroethylene perfluoroalkoxyethylene copolymer resin has a melting point of 302 to 310°C, it is easy to melt at a temperature of 350 to 400°C and form a pinhole-free film.

300℃以下であれば熱老化し難いこと、静電塗装の原
理から明らかな如く、粉体の付着量が設定した静電電圧
に応じて薄い部分には着くが一定の厚みになっ念部分に
はそれ以上に付着しない性質があることから、フクレや
スケの発生もなく信頼性のある均一な皮膜が得られるこ
と、形成された皮膜が疎水性とはっ水性を有するので絶
縁低下を起こし難い等である。
It is clear from the principle of electrostatic painting that heat aging is difficult at temperatures below 300℃, and the amount of powder deposited depends on the electrostatic voltage set, so it will adhere to thin areas, but it will remain at a certain thickness and will reach the desired area. Since it has the property of not adhering any further, a reliable and uniform film can be obtained without causing blisters or scales, and the formed film is hydrophobic and water repellent, so it is difficult to cause insulation deterioration. etc.

下地層10と上地層11は、塗布した後に350〜40
0℃の温度で焼成することによって、お互いの層が溶融
密着して界面を形成しなくなることから水分や塩分が侵
入せず、かつ上地層11の四フッ化工チレンパーフロロ
アルコキシエテレン共重合樹脂ノはっ永住用のためにサ
ーミスタ素子5の表面の絶縁抵抗の確保が出来る。焼成
温度が350℃よりも低い場合、下地層10がサーミス
タ素子5および上地層11と密着し難くなること、上地
層11の皮膜が溶融不充分となジピンホールを形成し易
くなる等から好ましくない。また、焼成温度が400℃
を越ると、下地層10および上地層11の樹脂が熱劣化
を起こしたり2発泡してピンホールを形成することから
好ましくない。従って、焼成温度は350〜400℃が
好ましく、その時の時間は20〜60分、より好ましく
は30〜40分がよい。
The base layer 10 and the top layer 11 have a coating density of 350 to 40% after coating.
By firing at a temperature of 0°C, the layers melt and adhere to each other and do not form an interface, so moisture and salt do not enter, and the polytetrafluoroethylene perfluoroalkoxyethylene copolymer resin of the upper layer 11 It is possible to ensure insulation resistance on the surface of the thermistor element 5 for permanent use. If the firing temperature is lower than 350° C., it is not preferable because the base layer 10 becomes difficult to adhere to the thermistor element 5 and the upper layer 11, and the film of the upper layer 11 tends to form dipin holes due to insufficient melting. In addition, the firing temperature is 400℃
Exceeding this is not preferable because the resins of the base layer 10 and the top layer 11 may undergo thermal deterioration or foam to form pinholes. Therefore, the firing temperature is preferably 350 to 400°C, and the time is preferably 20 to 60 minutes, more preferably 30 to 40 minutes.

下地層10は5〜20μの厚みになるようスプレー塗布
で形成し、上地層11は粉体の静電塗装電圧により30
〜100μの厚みになるよう形成すればよい。
The base layer 10 is formed by spray coating to a thickness of 5 to 20 μm, and the top layer 11 is coated with a powder electrostatic coating voltage of 30 μm.
It may be formed to have a thickness of ~100μ.

下地層10は、厚みが5μ未満の場合には上地層11サ
ーミスタ素子5との密着強度が小さくなり、20μ以上
の厚みにすると皮膜が発泡したシタマリが発生して素地
との密着やピンホール発生の原因になる。従って、下地
層10の厚みは5〜20μより好ましくは8〜12μが
よい。一方、上地層11の厚みは20μ以下になるとピ
ンホールが発生し易<、100μ以上になるとサーミス
タ素子5の温度検知の感度が低下してしまう。従って、
上地層11の厚みは30〜100μより好ましくは40
〜60μがよく、下地層10の少なくとも2倍以上に設
定すればよい。
If the thickness of the base layer 10 is less than 5 μm, the adhesion strength between the upper layer 11 and the thermistor element 5 will be reduced, and if the thickness is greater than 20 μm, the film will foam and wrinkle, causing close contact with the base material and pinholes. It causes Therefore, the thickness of the base layer 10 is preferably 8 to 12 microns rather than 5 to 20 microns. On the other hand, if the thickness of the upper layer 11 is less than 20 μm, pinholes are likely to occur, and if it is more than 100 μm, the temperature detection sensitivity of the thermistor element 5 will be reduced. Therefore,
The thickness of the upper layer 11 is 30 to 100 μm, preferably 40 μm.
It is preferable to set the thickness to be at least twice that of the base layer 10.

このように下地層10はスプレー塗布により10μを目
安に設け、上地層11は静電塗装法で一定の厚みに四フ
ッ化エチレンパーフロロアルコキシエチレン共重合樹脂
を付着させることができ、さらに350〜400℃の焼
成でピンホールレスの保護被覆層9が得られることから
1作業性の向上と品質の安定化が計れる。
In this way, the base layer 10 can be provided with a thickness of 10μ as a guide by spray coating, and the top layer 11 can be coated with tetrafluoroethylene perfluoroalkoxyethylene copolymer resin to a certain thickness using an electrostatic coating method. Since a pinhole-free protective coating layer 9 can be obtained by firing at 400° C., it is possible to improve workability and stabilize quality.

発明の効果 以上詳述した如く1本発明のサーミスタユニットの保護
被覆層形成方法によれば1次の効果が期待できるので、
その産業上の効果は大なるものがある。
Effects of the Invention As detailed above, according to the method for forming a protective coating layer of a thermistor unit of the present invention, the following effects can be expected.
Its industrial effects are significant.

(1)  サーミスタ素子表面の絶縁性が確保できるの
で、誤動作が防止できる。
(1) Malfunctions can be prevented because insulation on the surface of the thermistor element can be ensured.

(2)  サーミスタ素子の耐熱性、耐食性およ゛び耐
電解腐食性が著しく向上できるので、苛酷な環境下でも
長期間の使用に耐える。
(2) Since the heat resistance, corrosion resistance, and electrolytic corrosion resistance of the thermistor element can be significantly improved, it can withstand long-term use even in harsh environments.

(3)  コーティング作業性が優れ、ピンホール、フ
クレ、スケ等の欠陥を引き起こし難いので品質管理がや
り易い。
(3) The coating has excellent workability and does not easily cause defects such as pinholes, blisters, and scratches, making quality control easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の一部を切り欠いて示すサー
ミスタユニットの正面図、第2図は第1図の要部拡大断
面図を示す。 1・・・感熱素子、2,3・・・電極体。 4・・・外囲体、     5・・・サーミスタ素子。 9・・・保護被覆層、10・・・下地層。 11・・・上地層。
FIG. 1 is a partially cutaway front view of a thermistor unit according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of the main part of FIG. 1. 1... Heat-sensitive element, 2, 3... Electrode body. 4... Enclosure, 5... Thermistor element. 9...Protective coating layer, 10... Base layer. 11... Upper layer.

Claims (1)

【特許請求の範囲】[Claims] 感熱素子(1)を一対の電極体(2)、(3)と耐熱絶
縁性の外囲体(4)とで封止したサーミスタ素子(5)
の外周囲に保護被覆層(9)を設けてなるサーミスタユ
ニットにおいて、フッ素化合物含有のプライマーをスプ
レー塗布して下地層(10)となし、該下地層(10)
の外周囲に粉体状の四フッ化エチレンパーフロロアルコ
キシエチレン共重合樹脂を静電塗装して上地層(11)
となし、かつ350〜400℃の温度で下地層(10)
と上地層(11)とを焼成させて保護被覆層(9)を形
成したことを特徴とするサーミスタユニットの保護被覆
層形成方法。
A thermistor element (5) in which a heat-sensitive element (1) is sealed with a pair of electrode bodies (2), (3) and a heat-resistant insulating envelope (4).
In a thermistor unit comprising a protective coating layer (9) provided around the outer periphery of the thermistor unit, a primer containing a fluorine compound is spray applied to form a base layer (10), and the base layer (10)
Electrostatically coat powdered tetrafluoroethylene perfluoroalkoxyethylene copolymer resin around the outer periphery of the upper layer (11).
Base layer (10) at a temperature of 350-400℃
A method for forming a protective coating layer for a thermistor unit, characterized in that a protective coating layer (9) is formed by firing a top layer (11) and a top layer (11).
JP15513587A 1987-06-22 1987-06-22 Formation of protective coating layer of thermistor unit Pending JPS63318702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15513587A JPS63318702A (en) 1987-06-22 1987-06-22 Formation of protective coating layer of thermistor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15513587A JPS63318702A (en) 1987-06-22 1987-06-22 Formation of protective coating layer of thermistor unit

Publications (1)

Publication Number Publication Date
JPS63318702A true JPS63318702A (en) 1988-12-27

Family

ID=15599318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15513587A Pending JPS63318702A (en) 1987-06-22 1987-06-22 Formation of protective coating layer of thermistor unit

Country Status (1)

Country Link
JP (1) JPS63318702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033482A3 (en) * 2010-09-07 2013-02-28 Utc Fire & Security Corporation Detector assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824174A (en) * 1981-08-05 1983-02-14 Sumitomo Electric Ind Ltd Manufacture of fixing roller
JPS61259508A (en) * 1985-05-14 1986-11-17 Matsushita Electric Ind Co Ltd Thermistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824174A (en) * 1981-08-05 1983-02-14 Sumitomo Electric Ind Ltd Manufacture of fixing roller
JPS61259508A (en) * 1985-05-14 1986-11-17 Matsushita Electric Ind Co Ltd Thermistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033482A3 (en) * 2010-09-07 2013-02-28 Utc Fire & Security Corporation Detector assembly
CN103392195A (en) * 2010-09-07 2013-11-13 Utc消防及保安公司 Detector assembly
US9157808B2 (en) 2010-09-07 2015-10-13 Utc Fire & Security Corporation Detector assembly

Similar Documents

Publication Publication Date Title
JP3037446B2 (en) Enamel temperature sensor for electronic oven
JPS63318702A (en) Formation of protective coating layer of thermistor unit
JPS63317730A (en) Thermistor unit
US10539471B2 (en) Thermal sensor
US3952116A (en) Process for forming electrical resistance heaters
JPH0631391Y2 (en) Thermistor unit
JPH01146303A (en) Thermistor unit
US3430336A (en) Method of making a thermistor
GB794848A (en) Electrical resistor and method of making same
US6728479B2 (en) Panel-type heating element and method for the manufacture thereof
JPH01302702A (en) Formation of protective film or thermistor
JPH0378762B2 (en)
JPH03240202A (en) Thermistor
JP3152352B2 (en) Thermistor element
JPS6038243Y2 (en) ceramic electronic components
JPH0850062A (en) Temperature detector
FR2461252A1 (en) SOLID ELECTROLYTE OXYGEN DETECTOR AND METHOD FOR MANUFACTURING THE DETECTOR
JPH05240820A (en) Carbon monoxide gas sensor
JP2984455B2 (en) Resistance element
JPS5832244Y2 (en) Thick film element with excellent moisture resistance
JPS5933844B2 (en) temperature sensing element
JPH02304320A (en) Thermistor unit
JPS6344704A (en) Sensor
JP2543174B2 (en) Thin film thermistor
JP2503096B2 (en) Thin film resistor element