JPS63318492A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS63318492A
JPS63318492A JP15500187A JP15500187A JPS63318492A JP S63318492 A JPS63318492 A JP S63318492A JP 15500187 A JP15500187 A JP 15500187A JP 15500187 A JP15500187 A JP 15500187A JP S63318492 A JPS63318492 A JP S63318492A
Authority
JP
Japan
Prior art keywords
heat
air
temperature
heat exchange
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15500187A
Other languages
Japanese (ja)
Inventor
Hitoshi Inoue
均 井上
Kenji Kataoka
片岡 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15500187A priority Critical patent/JPS63318492A/en
Publication of JPS63318492A publication Critical patent/JPS63318492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Supply (AREA)

Abstract

PURPOSE:To obtain an economical heat exchanger by decreasing load at the time of exchanging of heat, by locating the heat absorbing side of a heat pipe unit on the upstream side, on one side of a heat exchanger unit, and the radiating side of a heat pipe unit on the downstream side, on the other side of a heat exchanger unit, as well as to provide a secondary heat exchanger unit on the upstream side. CONSTITUTION:The heat absorbing side 12a of a heat pipe unit 12 is located on the upstream side, on one side 11a of a heat exchanger unit 11, and the temperature in air is lowered down to the air temperature T1 from Tw, so that it is enough for heat exchangers 11 and 13 to cool the air down to the air temperature Tb from T1, and loading in exchanging of heat is divided between both heat exchangers. While the radiating side 12b of a heat pipe unit 12 is located on the downstream side, on the other side 11b of a heat exchanger unit 11, and the air is heated from the air temp. Tb up to T5, so that it is enough for a heater 10 to heat the air from the air temperature T5 up to Td. Accordingly loading by the heater 10 can remarkably be decreased; as a result, reduction of the capacity of a heater 10 can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は高温の蒸気密度の高い空気、例えば高温の水
蒸気密度、即ち、湿度の高い空気を熱交換ユニットによ
りu交換して低温の絶対湿度の低い空気とし、その空気
を昇温して乾いた空気を得る熱交換装置に関するもので
ある。
Detailed Description of the Invention [Industrial Application Field] This invention converts high-temperature high-temperature vapor density air, for example, high-temperature water vapor density, that is, high-humidity air, into low-temperature absolute humidity by U-exchanging it with a heat exchange unit. This relates to a heat exchange device that obtains dry air by raising the temperature of the air.

〔従来の技術〕[Conventional technology]

従来、例えば特公昭5g−81671号公報に示された
ような熱交換装置があり、これを応用したものとして第
8図に示すものがあった。第8図において、(1)は筐
体、(2)はこの筐体(1)内を第1室(3)と第2室
(4)に仕切る仕切板、(5)は一方側(5a)が第1
室(3)内に配設され、他方II(5b)が第2室(4
)内に配設され九哄交換ユニットであり、筐体(1)の
−内壁との間に第1室(3)と第2室(4)を熱交換ユ
ニット(5)を介して連通ずる第8室(6)を形成する
。(7)はクーラーユニットであう、熱交換ユニット(
5)の一方側(5a)の入口部、出口部と配管(8) 
、 (9)により接続され、これら(5) e (7)
〜(9)によシ冷媒循環回路が構成されている。 (1
0は第2室(4)内に配設された例えばヒーター等の加
温手段である。尚、図中、QWは第1室(3)内に導入
される高温の例えば湿度の高い空気、Qaは熱交換ユニ
ット(5)の一方側(5a)との間で熱交換されて低い
温度となって第8室(6)内に流入する空気、Qbは熱
交換ユニット(5)の他方側(5b)との間で熱交換さ
れてさらに低い温度となって第2室(4)内に流入する
絶対湿度の低い空気、Qdは加温手段αOによシ加温さ
れた高温の乾いた空気を示す・次に動作について説明す
る。熱交換ユニット(5)にはクーラーユニット(7)
から配管(8)を通じて低温の冷媒が供給され、熱交換
された後の冷媒は配管(9)を通じてクーラーユニット
(7)内に環流しその内部で再び低温の冷媒となって配
管(8)を通じて熱交換ユニット(5)に供給され、こ
のような冷媒循環動作が繰シ返し行われる。一方、第1
室(3)内に導入された高温の湿度の高い空気−は熱交
換ユニット(5)の一方側(5a)を通過するとき、そ
の一方側(5a)の配管内を流通する冷媒との間で熱交
換されて低い温度の空iQaとなって第8室(6)内に
流入し熱交換ユニット(5)の他方側(5b)に流れる
。そして、第8室(6)内の空気Qaは熱交換ユニット
(5)の他方側(5b)を通過するとき、その他方側(
5b)の配管内を流通する冷媒との間で熱交換されてさ
らに低い温度の絶対湿度の低い空気Qbとなって第2室
(4)内に流入する。第2室(4)内に流入した空気Q
bは加温手段αGにより加温されて高温の乾いた空気Q
dとなって導出される。この高温の乾いた空気Qdは高
温の乾いた空気が必要される機器(図示せず)に供給さ
れる。
Conventionally, there has been a heat exchange device as shown in, for example, Japanese Patent Publication No. 5G-81671, and an application of this is shown in FIG. 8. In Fig. 8, (1) is a housing, (2) is a partition plate that partitions the inside of this housing (1) into a first chamber (3) and a second chamber (4), and (5) is one side (5a ) is the first
The other II (5b) is located in the second chamber (4).
), which is a nine-layer exchange unit, and communicates the first chamber (3) and the second chamber (4) between the inner wall of the housing (1) via the heat exchange unit (5). Forming the eighth chamber (6). (7) is a heat exchange unit (which is a cooler unit)
5) One side (5a) inlet, outlet and piping (8)
, (9) and these (5) e (7)
~(9) A refrigerant circulation circuit is constructed. (1
0 is a heating means, such as a heater, disposed in the second chamber (4). In the figure, QW represents high temperature, for example, high humidity air introduced into the first chamber (3), and Qa represents low temperature air that is heat exchanged with one side (5a) of the heat exchange unit (5). The air Qb that flows into the eighth chamber (6) is heat exchanged with the other side (5b) of the heat exchange unit (5), becomes lower in temperature, and flows into the second chamber (4). Qd indicates high temperature dry air heated by the heating means αO.Next, the operation will be explained. The heat exchange unit (5) has a cooler unit (7)
A low-temperature refrigerant is supplied from the pipe (8), and after heat exchange, the refrigerant is circulated through the pipe (9) into the cooler unit (7), where it becomes a low-temperature refrigerant again, and then flows through the pipe (8). The refrigerant is supplied to the heat exchange unit (5), and such a refrigerant circulation operation is repeatedly performed. On the other hand, the first
When the high-temperature, high-humidity air introduced into the chamber (3) passes through one side (5a) of the heat exchange unit (5), there is a gap between it and the refrigerant flowing in the piping on that side (5a). The air iQa is heat-exchanged and becomes low-temperature air iQa, which flows into the eighth chamber (6) and flows to the other side (5b) of the heat exchange unit (5). When the air Qa in the eighth chamber (6) passes through the other side (5b) of the heat exchange unit (5), the air Qa in the eighth chamber (6) passes through the other side (5b) of the heat exchange unit (5).
It exchanges heat with the refrigerant flowing in the pipe 5b), becomes air Qb with a lower temperature and lower absolute humidity, and flows into the second chamber (4). Air Q flowing into the second chamber (4)
b is high-temperature dry air Q heated by heating means αG
It is derived as d. This high temperature dry air Qd is supplied to equipment (not shown) that requires high temperature dry air.

ところで、空気の熱交換プロセスにおける温度分布は第
4図に示すようになっている。即ち、A部における湿度
の高い空気−の温度はTwであり、熱交換ユニット(5
)の一方側(5a)での熱交換によりB部で温度Taの
低い温度の空気Qaとなる。さらに、熱交換ユニット(
5)の他方側(6b)での熱交換によ90部で絶対湿度
の低い温度nのさらに低温の空気Qbとなり、加温手段
CIOにより加温されてD部で高温の乾いた空気Qdと
なる。
By the way, the temperature distribution in the air heat exchange process is as shown in FIG. That is, the temperature of the humid air in part A is Tw, and the temperature of the humid air in part A is Tw.
) The heat exchange on one side (5a) results in air Qa having a lower temperature Ta in part B. In addition, a heat exchange unit (
By heat exchange on the other side (6b) of 5), the 90 part becomes a lower temperature air Qb with a lower temperature n and a lower absolute humidity, and is heated by the heating means CIO and becomes a high temperature dry air Qd in the D part. Become.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上述した従来装置では、熱交換ユニット(
5)における熱交換が温度Twから温度Thまで温度を
下げるため、即ち、急冷させるため、クーラーユニット
(7)の負荷が急増するので1クーラーユニツト(7)
が大形化していた。また、第2室(4)内において、温
度心から温度Tdまで温度を上げて乾いた空気を得るた
め、即ち、急温するため、加温手段αOの負荷が急増す
るので、加温手段QOが大容量化していた。
However, in the conventional device described above, the heat exchange unit (
Since the heat exchange in step 5) lowers the temperature from temperature Tw to temperature Th, that is, rapidly cools it, the load on the cooler unit (7) increases rapidly, so one cooler unit (7)
was becoming larger. In addition, in order to obtain dry air by raising the temperature from the temperature to the temperature Td in the second chamber (4), that is, to rapidly heat the air, the load on the heating means αO increases rapidly, so the heating means QO It had a large capacity.

この発明は上記のような問題点を解消するためになされ
たものであシ、熱交換における負荷を低減できると共に
経済的に優れた熱交換装置を提供することを目的とする
・ 〔問題点を解決するための手段〕 この発明に係る熱交換装置は、熱交換ユニットの一方側
上流にヒートパイプユニットの吸熱側を配設し、熱交換
ユニットの他方側下流にヒートパイプユニットの放熱側
を配設し且つ熱交換ユニットとヒートパイプユニットと
を一体化し、熱交換ユニットの一方側の下流に第2の熱
交換ユニットを配設したものである。
This invention was made in order to solve the above-mentioned problems, and it is an object of the present invention to provide an economically superior heat exchange device that can reduce the load in heat exchange. Means for Solving the Problem] The heat exchange device according to the present invention has the heat absorption side of the heat pipe unit disposed upstream on one side of the heat exchange unit, and the heat radiation side of the heat pipe unit disposed downstream on the other side of the heat exchange unit. The heat exchange unit and the heat pipe unit are integrated, and a second heat exchange unit is disposed downstream on one side of the heat exchange unit.

〔作用〕[Effect]

この発明における熱交換装置は、ヒートパイプユニット
の吸熱側で高温の蒸気密度の高い空気の熱分を吸収して
空気温度を下げて熱交換ユニットの一方側に導出すると
共に、熱交換ユニットの熱交換負荷を分割し、ヒートパ
イプユニットの吸熱側で吸収した熱分をヒートパイプユ
ニットの放勢側にそれぞれ熱輸送して熱交換ユニットの
他方側から導出する低温の蒸気密度の低い空気中に放出
しその空気を昇温する。
The heat exchange device according to the present invention absorbs the heat of high-temperature vapor-density air on the endothermic side of the heat pipe unit, lowers the air temperature, and directs it to one side of the heat exchange unit. The exchange load is divided, and the heat absorbed on the heat absorption side of the heat pipe unit is transported to the emission side of the heat pipe unit, and then released into the low temperature air with low vapor density led out from the other side of the heat exchange unit. Raise the temperature of the air.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1:図、第2図に基づい
て説明する。第1図、第2図において、(1)〜(4)
 、 (61〜(10は上述した従来装置のvt成と同
様である。0υは一方側(lla)が第1室(3)側に
配設され、他方側(ob)が第2室(4)側に配設され
た熱交換ユニット、(2)は吸熱側(12a)が第1室
(3)内で熱交換ユニットαυの一方側(lla)上流
に配設され、放熱側(12b)が第2室(4)内で熱交
換ユニット0υの他方側(llb)下流、即ち、他方側
(llb)と加温手段00との間に配設された且つ熱交
換ユニットaυと一体化されたヒートパイプユニットで
あり、ヒートバイブユニット(2)を構成する複数の管
体(12c)内にそれぞれフロン、アンモニア、水等の
作動液体が封入されている。尚、熱交換ユニット(ロ)
の冷媒入口、冷媒出口は配管(al t (9)によ#
)接続され、クーラーユニット(7)と共に冷媒循環回
路が構成されている。(13は熱交換ユニットα刀の一
方側(lla)の下流側に配設された第2の熱交換ユニ
ットであり、例えば一方側(1aa)が熱交換ユニット
0υの一方側(lla)の下流に位置し、他方側(18
b)が熱交換ユニット(ロ)の他方側(llb)の上流
に位置しておシ、第2の熱交換ユニット(至)の冷媒入
口、冷媒出口は配管α4 、 Ql9によ多接続され、
クーラーユニット(7)と共に冷媒循環回路が構成され
ている。又、図中、Qlはヒートパイプユニット@の吸
熱側(12a)で熱分が吸収されて空気温度T1まで降
温されてA、部に流出し熱交換ユニットαυの一方側(
lla)に流入する空気% Qtは熱交換ユニット(9
)の一方側(lla)との間で熱交換されて低い温度T
!となって88部に流出する空気、Qsは第2の熱交換
ユニット(至)の一方側(lflla)との間で熱交換
されてさらに低い温度T。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 and 2. In Figures 1 and 2, (1) to (4)
, (61 to (10 are the same as the vt configuration of the conventional device described above. 0υ is arranged on the first chamber (3) side on one side (lla) and on the second chamber (4) side on the other side (ob). ) side, the heat exchange unit (2) has a heat absorption side (12a) arranged upstream on one side (lla) of the heat exchange unit αυ in the first chamber (3), and a heat radiation side (12b) is disposed downstream of the other side (llb) of the heat exchange unit 0υ in the second chamber (4), that is, between the other side (llb) and the heating means 00, and is integrated with the heat exchange unit aυ. The heat exchange unit (b) is a heat pipe unit in which a working liquid such as fluorocarbon, ammonia, water, etc. is sealed in each of a plurality of tube bodies (12c) constituting the heat vibe unit (2).
The refrigerant inlet and refrigerant outlet are connected to piping (alt (9)).
) are connected together with the cooler unit (7) to form a refrigerant circulation circuit. (13 is the second heat exchange unit disposed downstream of one side (lla) of the heat exchange unit α. For example, one side (1aa) is downstream of the one side (lla) of the heat exchange unit 0υ. located on the other side (18
b) is located upstream of the other side (llb) of the heat exchange unit (b), and the refrigerant inlet and refrigerant outlet of the second heat exchange unit (to) are connected to pipes α4 and Ql9,
A refrigerant circulation circuit is configured together with the cooler unit (7). In addition, in the figure, Ql absorbs heat on the endothermic side (12a) of the heat pipe unit @, lowers the temperature to the air temperature T1, flows out to part A, and is transferred to one side (12a) of the heat exchange unit αυ.
% of air flowing into the heat exchange unit (9
) and one side (lla) of the lower temperature T.
! The air Qs flowing out to 88 parts is heat exchanged with one side (lflla) of the second heat exchange unit (to) to a lower temperature T.

となって第8室(6)内に流出する空気、Q4は第2の
熱交換ユニット(至)の他方側(18b)との間で熱交
換されて低い温度T4となって82部に流出する空気、
Qbは熱交換ユニットα刀の他方側(llb)との間で
熱交換されてさらに低い温度九となって6部に流出しヒ
ートバイプユニッ)Uの放熱側(12b)に流入する空
気、Q、はヒートパイプユニッ)(Llの放熱側(12
b)で加温されて空気温度T、まで昇温されてC1部に
流出し加温手段αOに流入する空気、Qdは加温手段G
Oによシ加温され温度Tdの乾いた空気である。
The air Q4 that flows out into the 8th chamber (6) is heat exchanged with the other side (18b) of the second heat exchange unit (to), becomes a low temperature T4, and flows out into the 82nd part. air,
Qb is the air that undergoes heat exchange with the other side (llb) of the heat exchange unit α, reaches an even lower temperature, flows out to part 6, and flows into the heat dissipation side (12b) of the heat vip unit (U), Q , is the heat pipe unit) (the heat radiation side of Ll (12
b), the air is heated to the air temperature T, flows out to the C1 section, and flows into the heating means αO; Qd is the heating means G;
It is dry air heated by O and at a temperature Td.

次に動乍について説明する。第1室(3)内に導入され
た温度Twの高温の湿度の高い空気Qwはヒートパイプ
ユニット■の吸熱部(12a)を流通することによりそ
の熱分が吸収される。即ち、ヒートパイプユニット@の
吸熱部(lza)を加熱し、この加熱によシその管体(
12c)内部に封入された作動液体も加熱され、空気軸
の熱分を蒸発潜熱として奪い蒸気化し、ヒートパイプユ
ニット(2)の放熱側(12b)へその管体(12c)
内部で移動する。ヒートパイプユニット(2)の放熱側
(12b)へ移動した作動液体の蒸気は熱交換ユニット
Qηの他方側(llb)から流出した低温の絶対湿度の
低い空気Qbが流通することによシ冷却される。このと
き作動液体の蒸気は凝縮して液化するが、凝縮潜熱を空
気Qb中に放熱しその空気Qbを昇温する。凝縮して液
化した作動液体はヒートパイプユニット(2)の吸熱側
(12a)へその管体(12c)内部で移動して戻る。
Next, the movement will be explained. The heat of the high-temperature, high-humidity air Qw at the temperature Tw introduced into the first chamber (3) is absorbed by flowing through the heat absorption part (12a) of the heat pipe unit (2). That is, the heat absorption part (lza) of the heat pipe unit @ is heated, and this heating causes the pipe body (lza) to heat up.
12c) The working liquid sealed inside is also heated, absorbs the heat from the air shaft as latent heat of vaporization, and vaporizes it to the heat radiation side (12b) of the heat pipe unit (2) and the pipe body (12c)
Move internally. The vapor of the working liquid that has moved to the heat radiation side (12b) of the heat pipe unit (2) is cooled by the flow of the low-temperature, low-absolute-humidity air Qb flowing out from the other side (llb) of the heat exchange unit Qη. Ru. At this time, the vapor of the working liquid is condensed and liquefied, but the latent heat of condensation is radiated into the air Qb, raising the temperature of the air Qb. The condensed and liquefied working liquid moves inside the tube body (12c) and returns to the endothermic side (12a) of the heat pipe unit (2).

このようにして、ヒートパイプユニット(2)の管体(
12c)内の作動液体の蒸気化、液化の繰シ返しによシ
、ヒートパイプユニット(2)の吸熱側(12a)を流
通する高温の湿度の高い空気Qwの熱分をヒートパイプ
ユニット(6)の放熱側(12a)からヒートパイプユ
ニット(2)の吸熱側(12b)へ熱輸送して低温の絶
対湿度の低い空気Qb中に放熱する・従って、高温の湿
度の高い空気Qwはヒートパイプユニット(2)の吸熱
側(12a)を流通することにより空気温度Twがら空
気温度T1まで降温された空気Q1となってA1部に流
出する。
In this way, the pipe body (
By repeatedly vaporizing and liquefying the working liquid in the heat pipe unit (12c), the heat of the high temperature and humid air Qw flowing through the heat absorption side (12a) of the heat pipe unit (2) is transferred to the heat pipe unit (6). ) from the heat radiation side (12a) of the heat pipe unit (2) to the heat absorption side (12b) of the heat pipe unit (2) and radiates the heat into the low temperature and low absolute humidity air Qb. Therefore, the high temperature and high humidity air Qw is transferred to the heat pipe. By flowing through the endothermic side (12a) of the unit (2), the air Q1 whose temperature has been lowered from the air temperature Tw to the air temperature T1 flows out to the A1 section.

A1部に流出した空気Q1は熱交換ユニット(ロ)の一
方側(lla)を流通することによシ熱交換されて空気
温度T、から空気温度T!まで降温された空気Q!とな
ってB1部に流出する。81部に流出した空気Q、は第
2の熱交換ユニット(至)の一方側(18a)を流通す
ることによって熱交換されて空気温度Ttから空気温度
T、まで降温された空気Q、となって第8室(6)内に
流出する。第8室(6)内に流出した空気Q3は第2の
熱交換ユニット(2)の他方側(18b)を流通するこ
とによシ熱交換されて空気温度Tsから空気温度T4ま
で降温された空気qとなって82部に流出する。当部に
流出した空気Q4は熱交換ユニット(ロ)の他方側(l
lb)を流通することにより熱交換されて空気温度T4
から空気温度Tbまで降温され低温の絶対湿度の低い空
気Qbとなって6部に流出する。6部に流出した空気価
はヒートパイプユニット(2)の放熱側(12b)を流
通することによ)加温されて空気温度nから空気温度T
、まで昇温された空気Q、となってC1部に流出する。
The air Q1 flowing out into the A1 section flows through one side (lla) of the heat exchange unit (b), where it undergoes heat exchange and changes from air temperature T to air temperature T! The air temperature has been lowered to Q! and flows out to part B1. The air Q flowing out to the 81st part is heat exchanged by flowing through one side (18a) of the second heat exchange unit (to) and becomes air Q whose temperature is lowered from the air temperature Tt to the air temperature T. and flows out into the eighth chamber (6). The air Q3 flowing out into the eighth chamber (6) was heat exchanged by flowing through the other side (18b) of the second heat exchange unit (2), and its temperature was lowered from the air temperature Ts to the air temperature T4. It becomes air q and flows out to 82 parts. The air Q4 flowing out to this part is transferred to the other side (l) of the heat exchange unit (b).
lb) through which heat is exchanged and the air temperature T4
The temperature is lowered from the temperature to the air temperature Tb, and the air Qb becomes low temperature and low absolute humidity, and flows out to the 6th part. The air flowing out into the 6th part is heated by flowing through the heat radiation side (12b) of the heat pipe unit (2), and the air temperature changes from the air temperature n to the air temperature T.
The air Q becomes heated to , and flows out to the C1 section.

C1部に流出した空気Q、は加温手段GOにより空気温
度T、から空気温度Tdまで加温され高温の乾いた空気
QdとなってD部に流出する。
The air Q, which has flowed out into the C1 section, is heated by the heating means GO from the air temperature T to the air temperature Td, and flows out into the D section as high-temperature dry air Qd.

以上のように、熱交換ユニットαηの一方側(lla)
の上流側にヒートパイプユニット(イ)の吸熱側(12
a )を配設して空気温度Twから空気温度T1まで降
温させるので、熱交換ユニット0υ、Q3での熱交換は
空気温度Tlがら空気温度Thまでとなシ且つ両者で熱
交換負荷を分担することとなシ、従来のものと比しクー
ラーユニット(7)の負荷を著しく低減することがテキ
、クーラーユニット(7)の小形化が可能となる。又、
熱交換ユニットαυの他方側(nb)の下流側にヒート
パイプユニット(2)の放熱側(L!b )を、配設し
て空気温度九から空気温度T、まで昇温させるので、加
温手段00での加温は空気温度T、から空気温度Tdま
でとなシ、従来のものと比し加温手段αGの負荷を著し
く低減することができ、加温手段00の小容量化が可能
となる。尚、ヒートパイプユニット@の放熱側(12b
)の昇温効果による空気温度T11の空気Q5でよい場
合は、加温手1aoは設ける必要はない、ところで、ヒ
ートパイプユニット(6)は管体(12c )内部に封
入した作動液体の蒸気化。
As described above, one side (lla) of the heat exchange unit αη
The heat absorption side (12
a) is installed to lower the temperature from the air temperature Tw to the air temperature T1, so the heat exchange in the heat exchange unit 0υ, Q3 is from the air temperature Tl to the air temperature Th, and the heat exchange load is shared between the two. In particular, since the load on the cooler unit (7) can be significantly reduced compared to the conventional one, it is possible to downsize the cooler unit (7). or,
The heat radiation side (L!b) of the heat pipe unit (2) is arranged downstream of the other side (nb) of the heat exchange unit αυ to raise the temperature from the air temperature 9 to the air temperature T. The heating by the means 00 is from the air temperature T to the air temperature Td, and compared to the conventional one, the load on the heating means αG can be significantly reduced, and the capacity of the heating means 00 can be reduced. becomes. In addition, the heat radiation side (12b) of the heat pipe unit @
) If the air Q5 at the air temperature T11 is sufficient due to the heating effect of .

液化の自然動作の繰シ返しによシ熱交換動作を行うもの
であり、別置駆動源は同等必要とせず、ノーメインテナ
ンヌであシ非常に経済的に優れたものである。
It performs a heat exchange operation by repeating the natural operation of liquefaction, does not require a separate driving source, and is maintenance-free and extremely economical.

尚、上記実施例では第2の熱交換ユニットが一方側と他
方側の両者で熱交換を行う場合について述べたが、何れ
か一方のみとし他方の能力を付加させるように構成して
もよい。
In the above embodiment, a case has been described in which the second heat exchange unit performs heat exchange on both one side and the other side, but the configuration may be such that only one side is used and the ability of the other side is added.

又、上記実施例では高温の湿度の高い空気の熱交換を行
う場合について述べたが、高温の例えば凝縮・蒸発性の
薬品などの水蒸気密度に相当する蒸気密度の高い空気の
熱交換を行う場合についても、この発明を適用し得るこ
とができ、上記実施例と同様の効果を奏する。
In addition, in the above embodiment, a case was described in which heat exchange is performed with high temperature and high humidity air, but when heat exchange is performed with high temperature air having a high vapor density corresponding to the water vapor density of condensing and evaporating chemicals, for example. The present invention can also be applied to this embodiment, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通シ、ヒートパイプユニットの
吸熱側で高温の蒸気密度の高い空気の熱分を吸収して空
気温度を下げて熱交換ユニットの一方側に導出すると共
に熱交換ユニットの一方側の下流に第2の熱交換ユニッ
トを配設し、ヒートパイプユニットの吸熱側で吸収した
熱分をヒートパイプユニットの放熱側に熱輸送して熱交
換ユニットの他方側から導出する低温の蒸気密度の低い
空気中に放出しその空気を昇温するようにしたので、熱
交換ユニットにおける熱交換特性を向上することができ
る熱交換装置を得ることができる。
This invention absorbs the heat of high-temperature vapor-density air on the endothermic side of the heat pipe unit as described above, lowers the air temperature, and directs it to one side of the heat exchange unit. A second heat exchange unit is installed downstream of the heat pipe unit, and the heat absorbed on the heat absorption side of the heat pipe unit is transferred to the heat radiation side of the heat pipe unit, and the low-temperature steam is drawn out from the other side of the heat exchange unit. Since the heat exchanger is discharged into low-density air and the temperature of the air is raised, it is possible to obtain a heat exchange device that can improve the heat exchange characteristics of the heat exchange unit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による熱交換装置を示す断
面図、第2図はこの発明に係る熱交換特性を示す特性図
、第8図は従来の熱交換装置を示す断面図、第4図は従
来の熱交換特性を示す特性図である。 図において、αυは熱交換ユニット、(lla)は一方
何、(llb)は他方側、(2)はヒートパイプユニッ
ト、(12a )は吸熱側、(12b)は放熱側、Q3
ハ第2の熱交換ユニットである。 尚、図中同一符号は同一、又は相肖部分を示す。
FIG. 1 is a cross-sectional view showing a heat exchange device according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing heat exchange characteristics according to the present invention, FIG. 8 is a cross-sectional view showing a conventional heat exchange device, and FIG. FIG. 4 is a characteristic diagram showing conventional heat exchange characteristics. In the figure, αυ is a heat exchange unit, (lla) is one side, (llb) is the other side, (2) is a heat pipe unit, (12a) is the heat absorption side, (12b) is the heat radiation side, and Q3
c) A second heat exchange unit. Note that the same reference numerals in the figures indicate the same or similar parts.

Claims (1)

【特許請求の範囲】[Claims] 熱交換ユニットの一方側に高温の蒸気密度の高い空気を
導入して熱交換し低い温度の空気とし、さらにその低い
温度の空気を上記熱交換ユニットの他方側に導入して熱
交換しさらに低温の蒸気密度の低い空気として導出し、
その蒸気密度の低い空気を昇温して乾いた空気を得る熱
交換装置において、吸熱側が上記熱交換ユニットの一方
側の上流側に配設され、放熱側が上記熱交換ユニットの
他方側の下流側に配設され且つ上記熱交換ユニットと一
体化されたヒートパイプユニットと、上記熱交換ユニッ
トの一方側の下流に配設された第2の熱交換ユニットと
を備えたことを特徴とする熱交換装置。
High-temperature air with high vapor density is introduced into one side of the heat exchange unit to exchange heat and become air at a lower temperature, and then that lower temperature air is introduced into the other side of the heat exchange unit to exchange heat and become even lower temperature. derived as air with low vapor density,
In a heat exchange device for heating air with low vapor density to obtain dry air, the heat absorption side is arranged upstream of one side of the heat exchange unit, and the heat radiation side is arranged downstream of the other side of the heat exchange unit. A heat exchanger comprising: a heat pipe unit disposed in and integrated with the heat exchange unit; and a second heat exchange unit disposed downstream on one side of the heat exchange unit. Device.
JP15500187A 1987-06-22 1987-06-22 Heat exchanger Pending JPS63318492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15500187A JPS63318492A (en) 1987-06-22 1987-06-22 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15500187A JPS63318492A (en) 1987-06-22 1987-06-22 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS63318492A true JPS63318492A (en) 1988-12-27

Family

ID=15596531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15500187A Pending JPS63318492A (en) 1987-06-22 1987-06-22 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS63318492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695004A (en) * 1992-07-10 1997-12-09 Beckwith; William R. Air conditioning waste heat/reheat method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695004A (en) * 1992-07-10 1997-12-09 Beckwith; William R. Air conditioning waste heat/reheat method and apparatus

Similar Documents

Publication Publication Date Title
TWI650522B (en) Refrigerant heat sink
US3623549A (en) Heat exchange methods and apparatus
CN106196755B (en) Shell and tube condenser and air-conditioning system
KR20130008864A (en) Evaporator with heatpipe for dehumidifiers
US6578629B1 (en) Application of heat pipe science to heating, refrigeration and air conditioning systems
JP3644845B2 (en) High-efficiency steam condenser in vacuum equipment.
JP3906830B2 (en) Natural circulation cooling device and heat exchange method using natural circulation cooling device
JPS63318492A (en) Heat exchanger
JPS63311086A (en) Heat exchanging apparatus
JPS63318491A (en) Heat exchanger
JPS63318490A (en) Heat exchanger
JPH01263491A (en) Heat exchanger using heat pipe
JPH0631698B2 (en) Heat exchange device and manufacturing method thereof
JPS63311089A (en) Heat exchanging apparatus
JPS63311087A (en) Heat exchanging apparatus
KR100305081B1 (en) Indoor Cooling System
JP3437302B2 (en) Vertical shell and tube heat exchanger
JP2580335B2 (en) Cooling system
JPS59158507A (en) Heat-exchanging equipment of transformer
JPH0356878Y2 (en)
JPS5924134A (en) Calorimeter for air conditioner
JPH04340038A (en) Cold storage device
Currie et al. The performance of novel compact heat exchangers with highly extended surfaces
JPS58138990A (en) Heat exchanger having cold and hot air accumulating capacities
KR830000374A (en) High performance heat exchanger