JPS63318025A - Manufacture of composite material of metal monooxide - Google Patents

Manufacture of composite material of metal monooxide

Info

Publication number
JPS63318025A
JPS63318025A JP62153474A JP15347487A JPS63318025A JP S63318025 A JPS63318025 A JP S63318025A JP 62153474 A JP62153474 A JP 62153474A JP 15347487 A JP15347487 A JP 15347487A JP S63318025 A JPS63318025 A JP S63318025A
Authority
JP
Japan
Prior art keywords
composite oxide
metal
oxide
heated
melted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62153474A
Other languages
Japanese (ja)
Inventor
Takashi Namikata
尚 南方
Hideaki Imai
秀秋 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62153474A priority Critical patent/JPS63318025A/en
Publication of JPS63318025A publication Critical patent/JPS63318025A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To increase the mechanical strength and processing easiness without dropping electrical and magnetical properties by forming a film or wire of composite oxide type obtained through quick cooling and solidification of a superconductive composite oxide heated and melted, covering this film or wire with a metal heated and melted, and by cooling it rapidly and solidifying. CONSTITUTION:A superconductive composite oxide adjusted into specific compo sition is heated and melted into a fluid 1, which is supplied from a die 2 onto rolls 5-a, 5-b, whose cooling surfaces are update moving at a high speed, continu ously to be quick cooled and solidified. While this quick cooled and solidified superconductive composite oxide 7 is supplied continuously, a fluid 3 of heated and melted metal of specific composition is continuously supplied from a double tube die 4 so as to cover the superconductive oxide, to provide a multi-layer construction 8, which is now is quick cooled and solidified on rolls 6-a, 6-b whose cooling surfaces are update moving at a high speed. This accomplishes a superconductive composite material of oxide and metal with excellence in mechanical strength and processing easiness.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超伝導性複合酸化物と金属から成る複合材料に
関するものであり、さらに強度が大きく加工性に優れた
超伝導性複合酸化物−金属複合材料に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a composite material consisting of a superconducting composite oxide and a metal, and further relates to a superconducting composite oxide that has high strength and excellent workability. It concerns metal composite materials.

[従来の技術] 従来超伝導性を示す物質は数多く知られており、合金系
においてはNb、+GeやNbNのようなNb系合金が
高い超伝導臨界温度(以下TCと記述する)を示し、N
b:+Geが23.6にというTCを有することが10
年程前に報告されていたが[Applied Phys
icsLetters、23480(1973)]最近
までそれ極上のTCを有する物質は知られていなかった
[Prior Art] Many substances that exhibit superconductivity have been known in the past, and among alloy systems, Nb-based alloys such as Nb, +Ge, and NbN exhibit a high superconducting critical temperature (hereinafter referred to as TC). N
b:+Ge has a TC of 23.6 10
Although it was reported about a year ago, [Applied Phys.
ics Letters, 23480 (1973)] Until recently, no substance with an extremely high TC was known.

一方複合酸化物系においてはL!T!04が13.7に
という王Cを有することが報告されているが[)lat
erials Re5earch Bulletin、
8777 (1973)] 、Tcが低く超伝導材料と
しての実用性は低い。
On the other hand, in complex oxide systems, L! T! It is reported that 04 has a king C of 13.7[)lat
erials Research Bulletin,
8777 (1973)], its Tc is low and its practicality as a superconducting material is low.

超伝導材料の応用範囲は広く、中でも開発の主体となっ
ているのは、磁石用途であり、超伝導磁石は電気抵抗が
ゼロであるため冷却に要するわずかな電力だけで強い磁
場を発生することが可能となる。従って、核融合、磁気
浮上列車、MHD発電、加速器、モーター等強い磁場空
間を必要とする分野での応用が期待できる。電力分野に
おいては、発電機、電力貯蔵や送電線への応用かあり、
エレクl〜ロ二りス分野に対しては、ロジックとかメモ
リーといったコンピューター素子(ジョセフソン素子)
、微弱な磁場を検出するセンサー(量子干渉デバイス)
やミリ波帯のミキサーや発信器に用いることができるマ
イクロ波素子への応用がある。
Superconducting materials have a wide range of applications, and the main area of development is in magnet applications.Superconducting magnets have zero electrical resistance, so they can generate a strong magnetic field with only a small amount of power required for cooling. becomes possible. Therefore, it can be expected to be applied to fields that require a strong magnetic field, such as nuclear fusion, magnetic levitation trains, MHD power generation, accelerators, and motors. In the power field, it can be applied to generators, power storage, and power transmission lines.
For the electronics field, computer elements such as logic and memory (Josephson elements)
, a sensor that detects weak magnetic fields (quantum interference device)
It has applications in microwave devices that can be used in millimeter-wave band mixers and oscillators.

このような用途に用いられる超伝導材料は、高いTCを
持つことが必要とされており、現在も材料の探索が続け
られている。高いTCを有する材料が開発されれば、冷
媒として高価で資源的に問題の多い液体ヘリウム(沸点
4.2K)ではなく、安価で資源的に豊富な液体窒素(
沸点77.3K)を用いることができるようになり、そ
の用途はざらに飛躍的に広がるものと思われる。
Superconducting materials used in such applications are required to have a high TC, and the search for materials is still ongoing. If a material with a high TC is developed, liquid nitrogen (boiling point 4.2K), which is cheap and abundant in resources, can be used as a refrigerant instead of liquid helium (boiling point 4.2K), which is expensive and problematic in terms of resources.
(boiling point 77.3K) can now be used, and its uses are expected to expand dramatically.

最近、Ba−La−Cu−0系の希土類複合酸化物が3
0にという高いTCを有することが報告され[Zeit
schrift fur Physik、 B 64゜
189 (19BB)] 、さらに高いTCを有する物
質としてY−Ba−Cu−0系希土類複合酸化物が90
にという高いTCを有することが報告されている[Ph
ysical Review Letters、589
0B(1987) ]。
Recently, rare earth composite oxides based on Ba-La-Cu-0 have been developed.
It has been reported to have a high TC of 0 [Zeit
Schrift fur Physik, B 64°189 (19BB)], Y-Ba-Cu-0-based rare earth composite oxide is a material with even higher TC.
It has been reported that it has a high TC of [Ph
ysical Review Letters, 589
0B (1987)].

[発明が解決しようとする問題点] 超伝導性複合酸化物は脆性を有するため、その成形体は
屈曲、ねじれに対する強度が低く、加工及び応用範囲が
限られている。
[Problems to be Solved by the Invention] Since superconducting composite oxides are brittle, molded products thereof have low strength against bending and twisting, and the range of processing and application thereof is limited.

また溶融した超伝導性複合酸化物を急冷処理して超伝導
性複合酸化物の膜、線材に加工することは可能であるが
、作成した膜の機械的強度や加工性は低い。溶融体の組
成を変更したり、添加物を加えることにより強度、加工
性を改良することも考えられるが溶融体の組成の変更や
添加物の添加により複合酸化物が有する電気的や磁気的
特性が希釈されてしまうという欠点につながり超伝導材
料として実用上問題である。
Furthermore, although it is possible to process a molten superconducting composite oxide into a superconducting composite oxide film or wire by rapidly cooling it, the mechanical strength and processability of the created film are low. It is possible to improve the strength and workability by changing the composition of the melt or adding additives, but changing the composition of the melt or adding additives can improve the electrical and magnetic properties of the composite oxide. This leads to the drawback that the superconducting material is diluted, which is a practical problem as a superconducting material.

[問題を解決するための手段] 本発明者らは前記問題点を解決すべく鋭意研究を重ねた
結果、加熱溶融した超伝導性複合酸化物を回転ロール上
で急冷凝固して複合酸化物膜あるいは線材とした後、加
熱溶融した金属で被覆して回転ロール上で急冷凝固する
ことにより超伝導性複合酸化物が有する電気的、磁気的
特性を低下させることなく、機械的強度、加工性にすぐ
れた金属−酸化物複合材料が製造されることを見いだし
本発明を完成するに至った。
[Means for Solving the Problem] As a result of intensive research in order to solve the above-mentioned problems, the present inventors have developed a composite oxide film by rapidly solidifying a heated and melted superconducting composite oxide on a rotating roll. Alternatively, after forming into a wire, the superconducting composite oxide is coated with heated molten metal and rapidly solidified on a rotating roll to improve mechanical strength and workability without reducing the electrical and magnetic properties of the superconducting composite oxide. It was discovered that an excellent metal-oxide composite material can be produced, and the present invention was completed.

すなわち、本発明の複合材料の製造方法は加熱溶融した
超伝導性複合酸化物を急冷凝固することにより複合酸化
物膜または線材とする工程と、急冷凝固した複合酸化物
膜または線材に加熱溶融した金属を被覆した後、急冷凝
固する過程からなる金属−酸化物複合材料の製造方法で
ある。
That is, the method for producing a composite material of the present invention includes a step of rapidly cooling and solidifying a heated and melted superconducting composite oxide to form a composite oxide film or wire; This is a method for manufacturing a metal-oxide composite material, which comprises a process of coating a metal and then rapidly solidifying it.

以下本発明の金属−酸化物複合材料の製造方法について
詳細に説明する。
The method for manufacturing the metal-oxide composite material of the present invention will be described in detail below.

本発明の金属−酸化物複合材料における酸化物は超伝導
性複合酸化物であることを特徴とするものである。
The oxide in the metal-oxide composite material of the present invention is characterized in that it is a superconducting composite oxide.

超伝導性複合酸化物として、1i−Ti−O系(TC1
3,7K) 、Ba −(Pb−B i )−〇系(T
C13K> 、Rb−W−0系(TC6,4K)、ある
いは銅系複合酸化物がある。
As a superconducting composite oxide, 1i-Ti-O system (TC1
3,7K), Ba-(Pb-B i )-〇 system (T
C13K>, Rb-W-0 type (TC6,4K), or copper-based composite oxide.

L r −T r−o系、Ba −(Pb−B i )
 −〇系、Rb−W−0系複合酸化物はTCが低いため
、高価であり、また資源的に乏しい液体ヘリウムを用い
ねばならず、実用上の用途が限られてしまう。一方銅系
複合酸化物は液体窒素以上にTOをもつものもあるため
冷却に低コストで資源的に豊富な液体窒素を用いること
かでき工業上より好ましいものとなる。
L r -T r -o system, Ba - (Pb-B i )
-○ series and Rb-W-0 series composite oxides have a low TC, so they are expensive and require the use of liquid helium, which is a scarce resource, which limits their practical use. On the other hand, since some copper-based composite oxides have more TO than liquid nitrogen, liquid nitrogen, which is a low-cost and abundant resource, can be used for cooling, making them more preferable from an industrial perspective.

超伝導性銅系複合酸化物は一般式 %式% ここでMlはCa、3rおよびBaから選ばレル少なく
とも一種、M2はSC,Y、La。
The superconducting copper-based composite oxide has the general formula %, where Ml is at least one selected from Ca, 3r, and Ba, and M2 is SC, Y, and La.

Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、D
y、)lo、Er、Tm、Yb、LLJから選ばれる少
なくとも一種である。さらに、a、b、xの組成比とし
ては、 0.5≦a≦3 1.0≦b≦4.0 0.02≦X≦0.9 であることが高いTCの超伝導性複合酸化物を作るので
好ましいものとなる。
Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
y, ) lo, Er, Tm, Yb, and LLJ. Furthermore, the composition ratios of a, b, and x are 0.5≦a≦3, 1.0≦b≦4.0, and 0.02≦X≦0.9. It is desirable because it creates things.

次に超伝導性複合酸化物の製造方法について説明する。Next, a method for producing a superconducting composite oxide will be explained.

本発明の超伝導性複合酸化物の製造方法は、例えば希土
類酸化物や希土類水酸化物等の希土類化合物、酸化バリ
ウム、炭酸バリウム、酸化ストロンチウム、炭酸ストロ
ンチウム等のアルカリ土類金属化合物、および酸化第2
銅や炭酸第2銅のような銅の化合物を所定量混合して加
熱して同相反応させる方法、希土類元素、ストロンチウ
ム、バリウムのようなアルカリ土類金属および銅の塩化
物や硝酸塩等の可溶性化合物の水溶液の混合物にシュウ
酸塩の水溶液を添加して共沈した後加熱して反応させる
方法がある。また、これらのうち2種の金属塩化合物混
合物を共沈法によって製造した後、他の金属化合物と混
合して所定の複合酸化物を得ることもできる。
The method for producing a superconducting composite oxide of the present invention includes, for example, rare earth compounds such as rare earth oxides and rare earth hydroxides, alkaline earth metal compounds such as barium oxide, barium carbonate, strontium oxide, and strontium carbonate; 2
A method of mixing a predetermined amount of copper or a copper compound such as cupric carbonate and heating it to cause an in-phase reaction, rare earth elements, alkaline earth metals such as strontium and barium, and soluble compounds such as copper chlorides and nitrates. There is a method in which an aqueous solution of oxalate is added to a mixture of aqueous solutions of oxalate, coprecipitated, and then heated to react. Furthermore, after producing a mixture of two of these metal salt compounds by a coprecipitation method, a predetermined composite oxide can also be obtained by mixing the mixture with other metal compounds.

加熱反応する条件は組成によって異なるが、600 ’
Cから900 °Cにおいて、0.5時間から24時間
所定の雰囲気中において行うことが好ましい。
The heating reaction conditions vary depending on the composition, but 600'
It is preferable to carry out the reaction at a temperature of 0.5 to 900°C in a predetermined atmosphere for 0.5 to 24 hours.

次に本発明の複合材料に用いる金属について説明する。Next, the metal used in the composite material of the present invention will be explained.

本発明に用いる金属は高電気伝導性高熱伝導性を有する
金属単体、合金、金属間化合物等であり、したがって本
発明の金属とは金属単体、合金、金属間化合物等を総称
して呼ぶ。本発明に用いる金属は例えばCu、AQ、A
USA+等の金属単体、CU−AQ合金、Aq−Ni合
金、AO−3r1合金、T1Cu2金属間化合物などを
用いることができる。特に複合材料を超伝導IEiコイ
ルとして用いる場合安定化や故障電流対策のため、金属
は電気伝導度が大きく非磁性であることが好ましい。
The metals used in the present invention are simple metals, alloys, intermetallic compounds, etc. that have high electrical conductivity and high thermal conductivity, and therefore, the metals of the present invention collectively refer to simple metals, alloys, intermetallic compounds, etc. Examples of metals used in the present invention include Cu, AQ, A
A single metal such as USA+, CU-AQ alloy, Aq-Ni alloy, AO-3r1 alloy, T1Cu2 intermetallic compound, etc. can be used. In particular, when a composite material is used as a superconducting IEi coil, it is preferable that the metal has high electrical conductivity and is non-magnetic for stabilization and countermeasures against fault current.

一方、金属が磁性を有する場合にも磁束のピニング効果
により安定化に寄与することもあり本発明に用いること
ができる。
On the other hand, even if the metal has magnetism, it may contribute to stabilization due to the pinning effect of the magnetic flux, so it can be used in the present invention.

次に本発明の金属−酸化物複合材料の製造方法について
その一例を第1図に示す。しかし本発明はこれに限定さ
れるものではない。
Next, an example of the method for manufacturing the metal-oxide composite material of the present invention is shown in FIG. However, the present invention is not limited thereto.

所定の組成に調整した超伝導性複合酸化物を加熱溶融し
て流動体1とした後、ダイス2から冷却面が高速で更新
移動するロール5−a、5−b上に連続供給し急冷凝固
させる。次に急冷凝固した超伝導性複合酸化物7を連続
供給しながら、所定組成の金属を加熱溶融した流動体3
を該超伝導性酸化物を被覆するように2重管ダイス4か
ら連続供給し多層構造体8とした後、当該多層構造体を
冷却面が高速で更新移動するロール6−a、6−b上で
急冷凝固する。
After heating and melting the superconducting composite oxide adjusted to a predetermined composition to form a fluid 1, it is continuously fed from a die 2 onto rolls 5-a and 5-b whose cooling surfaces move at high speed and are rapidly solidified. let Next, while continuously supplying rapidly solidified superconducting composite oxide 7, a fluid 3 made by heating and melting a metal of a predetermined composition.
is continuously supplied from the double-tube die 4 so as to cover the superconducting oxide to form a multilayer structure 8. After that, the multilayer structure is transferred to rolls 6-a and 6-b whose cooling surfaces move at high speed for renewal. Rapidly solidify on top.

溶融は抵抗加熱あるいは高周波加熱法により白金製のダ
イス内に投入した超伝導性複合酸化物または金属を加熱
溶融して流動体とすることができる。ダイス2および4
には溶融体吐出用ノズルと必要に応じて溶融体に圧力を
印加するための加圧ガス導入口10および11、超伝導
複合酸化物または金属供給口を設けることができる。
For melting, the superconducting composite oxide or metal placed in a platinum die can be heated and melted into a fluid by resistance heating or high frequency heating. dice 2 and 4
A nozzle for discharging the melt, pressurized gas inlets 10 and 11 for applying pressure to the melt as necessary, and a superconducting composite oxide or metal supply port can be provided in the nozzle.

次いで溶融して流動体状態のダイス内の超伝導性複合酸
化物または金属は、ダイスのガス導入口より導入した不
活性ガスで圧力を印加することにより、溶融体吐出口よ
り噴出される。噴出された溶融体または多層構造体は、
たとえばクロムメッキされた回転銅ロール上で冷却され
急冷凝固されるが、当冷却速度は冷却体移動速度および
溶融体噴出速度により変化でき、冷却速度は大きい方が
望ましい。
Next, the superconducting composite oxide or metal in the die in a molten and fluid state is ejected from the melt discharge port by applying pressure with an inert gas introduced from the gas inlet of the die. The ejected melt or multilayer structure is
For example, it is cooled and rapidly solidified on a chromium-plated rotating copper roll, and the cooling rate can be varied depending on the moving speed of the cooling body and the speed of ejecting the melt, and a higher cooling rate is desirable.

一般に非晶質体の作成に用いられる液体超急冷法では、
急冷速度が105から1107de/secとされてい
るが、本発明では必ずしも非晶質体の作成を目的とした
ものでなく、急冷凝固体中に結晶質体を含んでいても何
ら問題はなく、従って急冷速度は1102de/sec
以上あればよい。
In the liquid ultra-quenching method, which is generally used to create amorphous materials,
Although the quenching rate is said to be 105 to 1107 de/sec, the present invention is not necessarily intended to create an amorphous body, and there is no problem even if the quenched solidified body contains a crystalline body. Therefore, the quenching rate is 1102 de/sec.
More than that is fine.

次にロール冷却法について説明する。ロール冷却法とし
て回転する円筒の内側に溶融体を吹きつける遠心急冷法
、溶融体を2本のロールの間で圧延するような形で急冷
する双ロール法、回転するロールの外周面に溶融体を吹
きつけ急冷する単ロール法、遠心急冷法の円筒内部に水
あるいは油を満たし、水あるいは油に溶融体を吹き出す
ことにより線材をつくる回転液中紡糸法などを用いるこ
とができる。
Next, the roll cooling method will be explained. As a roll cooling method, the centrifugal quenching method involves blowing the molten material onto the inside of a rotating cylinder, the twin roll method, which quenches the molten material by rolling it between two rolls, and the molten material is sprayed onto the outer circumferential surface of the rotating roll. A single roll method in which the wire is quenched by spraying it with water, a centrifugal quenching method in which the inside of a cylinder is filled with water or oil, and the molten material is blown out into the water or oil to produce a wire rod can be used.

さらに急冷凝固体を得たのち、超伝導性複合酸化物の結
晶化や酸素含有量調整のため加熱する工程を加えること
ができる。このため、たとえば加熱温度400 ’Cか
ら1200’Cにおいて0.5時間から1週間、所定の
雰囲気中に保持して加熱し、所定の冷却速度で冷却する
Further, after obtaining the rapidly solidified product, a heating step can be added to crystallize the superconducting composite oxide and adjust the oxygen content. For this reason, for example, the material is heated by being held in a predetermined atmosphere for 0.5 hours to one week at a heating temperature of 400'C to 1200'C, and then cooled at a predetermined cooling rate.

[実施例] 以下実施例によりさらに詳細に説明する。[Example] The present invention will be explained in more detail with reference to Examples below.

実施例1 酸化イツトリウム22.6(J、硝酸バリウム104、
5g、酸化第2銅47.7gをボールミルで211一 時間混合後、900 ’Cの温度で酸素中12時間加熱
して複合酸化物を得た。
Example 1 Yttrium oxide 22.6 (J, barium nitrate 104,
5 g of cupric oxide and 47.7 g of cupric oxide were mixed in a ball mill for 211 hours and heated in oxygen at a temperature of 900'C for 12 hours to obtain a composite oxide.

得られた複合酸化物を白金ダイスに入れ、高周波加熱溶
融した後、双ロール法によって2個のクロムメッキした
銅の回転ロール間に噴射して急冷凝固体した。急冷凝固
した複合酸化物がロールを離れた直後に、二重管ダイス
中で高周波溶融したA”0.9 CuO,1合金の溶融
体を、該複合酸化物凝固体の表面上に噴射して被覆した
後、双ロール法によって2個のクロムメッキした銅の回
転ロール間で溶融金属−酸化物多層構造体を急冷した。
The obtained composite oxide was placed in a platinum die, melted by high-frequency heating, and then injected between two chromium-plated copper rotating rolls to form a rapidly solidified product. Immediately after the rapidly solidified composite oxide leaves the roll, a melt of A"0.9 CuO,1 alloy, which has been high-frequency melted in a double tube die, is injected onto the surface of the composite oxide solidified body. After coating, the molten metal-oxide multilayer structure was quenched between two rotating chromium-plated copper rolls using a twin-roll process.

得られた多層構造体を酸素雰囲気中、930°Cの温度
において12時間、580’Cの温度において12時間
加熱した後、−50’C/時間の冷却速度で冷却して複
合材料を得た。
The resulting multilayer structure was heated in an oxygen atmosphere at a temperature of 930 °C for 12 hours and at a temperature of 580 °C for 12 hours, and then cooled at a cooling rate of −50 °C/hour to obtain a composite material. .

得られた多層構造体はテープ状で複合酸化物層(300
μm)の両面より金属層(150μm)が積層した断面
構造であった。また、応力により曲げることが可能であ
り、長さ方向の引張り強度は55kMmm2であった。
The obtained multilayer structure was tape-shaped and had a composite oxide layer (300
It had a cross-sectional structure in which metal layers (150 μm) were laminated from both sides of the film. It was also possible to bend under stress, and the tensile strength in the longitudinal direction was 55 kmMmm2.

該複合材料のCuO,I Ag□、g合金被覆層の一部
を硝酸で除去して電極を付Cプ、四端子法によりクライ
オスタット中で電気伝導度を測定したところTc(抵抗
ゼロ温度)93kを有する超伝導体でおることがわかっ
た。
A part of the CuO, I Ag□, g alloy coating layer of the composite material was removed with nitric acid, an electrode was attached, and the electrical conductivity was measured in a cryostat using the four-terminal method. Tc (zero resistance temperature) was 93 k. It was found that it is a superconductor with .

実施例2 酸化ネオジウム33.7(J、硝酸バリウム104.5
g、酸化第2銅47.7(]をボールミルで2時間混合
後、920’Cの温度で酸素中2時間加熱して複合酸化
物を得た。
Example 2 Neodymium oxide 33.7 (J, barium nitrate 104.5
g, cupric oxide 47.7 (]) were mixed in a ball mill for 2 hours, and then heated in oxygen at a temperature of 920'C for 2 hours to obtain a composite oxide.

さらに金属として銀を用いる以外は実施例1と同様にし
て、金属−酸化物複合体を作成した。
Furthermore, a metal-oxide composite was created in the same manner as in Example 1 except that silver was used as the metal.

該複合体を酸素雰囲気中、930’C(7)温度におい
て12時間、580’Cの温度において12時間加熱し
た後、−50’C/時間の速度で冷却して多層構造体を
得た。
The composite was heated in an oxygen atmosphere at a temperature of 930'C(7) for 12 hours, at a temperature of 580'C for 12 hours, and then cooled at a rate of -50'C/hour to obtain a multilayer structure.

得られた多層構造体はテープ状で、複合酸化物層(30
0μm厚〉の両面より金属層(100μm厚)が積層し
た断面構造であった。
The obtained multilayer structure was tape-shaped and had a composite oxide layer (30
It had a cross-sectional structure in which metal layers (100 μm thick) were laminated from both sides of the metal layer (100 μm thick).

また、該多層構造体の引張り強度は35kMcm’であ
った。
Moreover, the tensile strength of the multilayer structure was 35 kmcm'.

多層構造体の銀被覆層の一部を硝酸で除去して電極を取
りつけ、クライオスタット中で電気伝導度を測定したと
ころTc(抵抗ゼロ温度)91kを有する超伝導体であ
ることがわかった。
A part of the silver coating layer of the multilayer structure was removed with nitric acid, an electrode was attached, and the electrical conductivity was measured in a cryostat, and it was found to be a superconductor having a Tc (zero resistance temperature) of 91k.

[発明の効果] 以上説明したように、本発明による金属−酸化物複合材
料の製造方法は機械的強度、加工性に優れた超伝導性複
合酸化物−金属複合材料を提供するものであり、これは
、超伝導材料として工業上極めて有用なものである。
[Effects of the Invention] As explained above, the method for producing a metal-oxide composite material according to the present invention provides a superconducting composite oxide-metal composite material with excellent mechanical strength and workability. This is extremely useful industrially as a superconducting material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は双ロール法による!&!造装置の一例の模式図
である。 1・・・複合酸化物流動体、2・・・ダイス、3・・・
金属溶融体、4・・・二重管ダイス、11!Q 、−−
−1,d   − 5−a、  5−bおよび6−a、  6−b・e回転
ロール、7・・・複合酸化物凝固体、 8.9・・・複合酸化物−金属多層構造体、10.11
・・・加圧ガス導入口。
Figure 1 is based on the twin roll method! &! 1 is a schematic diagram of an example of a manufacturing device. 1... Complex oxide fluid, 2... Dice, 3...
Metal melt, 4...Double pipe die, 11! Q, --
-1, d - 5-a, 5-b and 6-a, 6-b/e rotating roll, 7... Composite oxide solidified body, 8.9... Composite oxide-metal multilayer structure, 10.11
... Pressurized gas inlet.

Claims (1)

【特許請求の範囲】 加熱溶融した超伝導性複合酸化物を急冷凝 固することにより複合酸化物膜または線材とする工程と
、急冷凝固した複合酸化物膜または線材に加熱溶融した
金属を被覆した後急冷凝固する工程からなる金属−酸化
物複合材料の製造方法。
[Claims] A step of forming a composite oxide film or wire by rapidly cooling and solidifying a heated and melted superconducting composite oxide, and after coating the rapidly cooled and solidified composite oxide film or wire with a heated and molten metal. A method for producing a metal-oxide composite material comprising a step of rapid solidification.
JP62153474A 1987-06-22 1987-06-22 Manufacture of composite material of metal monooxide Pending JPS63318025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153474A JPS63318025A (en) 1987-06-22 1987-06-22 Manufacture of composite material of metal monooxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153474A JPS63318025A (en) 1987-06-22 1987-06-22 Manufacture of composite material of metal monooxide

Publications (1)

Publication Number Publication Date
JPS63318025A true JPS63318025A (en) 1988-12-26

Family

ID=15563363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153474A Pending JPS63318025A (en) 1987-06-22 1987-06-22 Manufacture of composite material of metal monooxide

Country Status (1)

Country Link
JP (1) JPS63318025A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238392A (en) * 1988-05-18 1990-02-07 Wacker Chemie Gmbh Heat-insulating molded product composed of compression molding microporous heat-insulating material coated with metal
US4970194A (en) * 1989-07-21 1990-11-13 Iowa State University Research Foundation Method of producing superconducting fibers of YBA2CU30X
US5053384A (en) * 1989-07-21 1991-10-01 Iowa State University Research Foundation, Inc. Method of producing superconducting fibers of bismuth strontium calcium copper oxide (Bi(2212) and Bi(2223))
US5217943A (en) * 1989-01-25 1993-06-08 The University Of Arkansas Process for making composite ceramic superconducting wires
US5304534A (en) * 1989-11-07 1994-04-19 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238392A (en) * 1988-05-18 1990-02-07 Wacker Chemie Gmbh Heat-insulating molded product composed of compression molding microporous heat-insulating material coated with metal
US5217943A (en) * 1989-01-25 1993-06-08 The University Of Arkansas Process for making composite ceramic superconducting wires
US4970194A (en) * 1989-07-21 1990-11-13 Iowa State University Research Foundation Method of producing superconducting fibers of YBA2CU30X
US5053384A (en) * 1989-07-21 1991-10-01 Iowa State University Research Foundation, Inc. Method of producing superconducting fibers of bismuth strontium calcium copper oxide (Bi(2212) and Bi(2223))
US5304534A (en) * 1989-11-07 1994-04-19 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

Similar Documents

Publication Publication Date Title
US4906609A (en) Fabrication of superconducting oxide wires by powder-in-tube method
JP2996340B2 (en) Method for producing composite oxide ceramic superconducting wire
US4861751A (en) Production of high temperature superconducting materials
JPS63318025A (en) Manufacture of composite material of metal monooxide
JPS63244527A (en) Manufacture of metal-oxide composite material
JPS63238228A (en) Production of metallic ceramics composite material
JP2651018B2 (en) High magnetic field magnet
JP3873304B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH0765823B2 (en) Freezing method
JPS63257125A (en) Manufacture of superconductive wire
JPH0577602B2 (en)
JP3758455B2 (en) Method for producing oxide superconducting wire
JPS63307622A (en) Manufacture of superconductive wire
JP2835069B2 (en) Superconducting coil
JPS63252310A (en) Manufacture of ceramics superconductive wire
JPH06243737A (en) Oxide superconductive coil
JP3450488B2 (en) Boron-containing metal oxide superconducting wire
JPS63250024A (en) Manufacture of metal superconductive ceramic composite material
JPS63240005A (en) Manufacture of superconducting material
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
JPH04138626A (en) Continuous manufacture of oxide superconducting wire
JPS63313430A (en) Manufacture of ceramic high-temperature superconductive material fine wire
JPH07192546A (en) Oxide superconductive wire material and manufacture thereof
JP2004296253A (en) Manufacturing method of bismuth based oxide superconducting wire rod
JPH0197324A (en) Manufacture of compound oxide superconductor