JPH0765823B2 - Freezing method - Google Patents

Freezing method

Info

Publication number
JPH0765823B2
JPH0765823B2 JP60214617A JP21461785A JPH0765823B2 JP H0765823 B2 JPH0765823 B2 JP H0765823B2 JP 60214617 A JP60214617 A JP 60214617A JP 21461785 A JP21461785 A JP 21461785A JP H0765823 B2 JPH0765823 B2 JP H0765823B2
Authority
JP
Japan
Prior art keywords
magnetic
alloy
powder
alloy powder
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60214617A
Other languages
Japanese (ja)
Other versions
JPS6277438A (en
Inventor
政司 佐橋
ひろみ 丹生
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60214617A priority Critical patent/JPH0765823B2/en
Priority to EP86113399A priority patent/EP0217347B1/en
Priority to DE8686113399T priority patent/DE3687680T2/en
Publication of JPS6277438A publication Critical patent/JPS6277438A/en
Priority to US07/248,286 priority patent/US4985072A/en
Publication of JPH0765823B2 publication Critical patent/JPH0765823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、磁気熱量効果を用いて冷却を行なう冷凍方法
に関し、更に詳しくは、広範囲の冷凍温度領域において
充分な冷却効果を奏することが可能であり、熱伝達性に
優れた冷凍方法に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a refrigerating method in which a magnetocaloric effect is used for cooling, and more specifically, it is possible to exert a sufficient cooling effect in a wide range of freezing temperature range. The present invention relates to a freezing method having excellent heat transferability.

[発明の技術的背景とその問題点] 近年の超電導技術の著しい発展に伴ない、産業用エレク
トロニクスは例えば情報産業、医療機器等の広範な分野
でその応用が考えられている。超電導技術を用いるため
には極低温環境を作り出す冷凍機の開発が不可欠であ
る。良く知られた冷凍方式に気体冷凍方法があるがしか
しその効率は極めて低くまた装置も大型となってしまう
ため、これに代わる新たな冷凍方式として磁性体の磁気
熱量効果を用いた磁気冷凍方式の研究が盛んに行なわれ
ている(Proceedings of ICEC9(1982,May);26−29,Ad
vances in Cryogenic Engineering,1984,Vol,29,581-58
7)[プローシーディングス・オブ・ICEC9(1982年5
月);26-29頁,アドバンシズ・イン・クライオジェニッ
クエンジニアリング(1984年29巻581〜587頁)]。
[Technical background of the invention and its problems] With the recent remarkable development of superconducting technology, industrial electronics are expected to be applied in a wide range of fields such as the information industry and medical equipment. In order to use superconductivity technology, it is essential to develop a refrigerator that creates a cryogenic environment. There is a gas refrigeration method as a well-known refrigeration method, but its efficiency is extremely low and the device becomes large. Therefore, as a new refrigeration method to replace this, there is a magnetic refrigeration method that uses the magnetocaloric effect of a magnetic material. Research is being actively conducted (Proceedings of ICEC9 (1982, May); 26-29, Ad
vances in Cryogenic Engineering, 1984, Vol, 29,581-58
7) [Proceedings of ICEC9 (May 1982
26-29, Advances in Cryogenic Engineering (1984, Vol. 29, pp. 581-587)].

この方式は、簡単にいえば、磁性体に磁場を加えたとき
のスピン配列状態と、磁場を解除したときのスピンの乱
雑な状態とのエントロピーの変化(ΔSM)による吸熱、
放熱反応を利用することを基本原理とするものである。
この磁性体のことを磁気作業物質という。このような磁
気作業物質として用いられる磁性体はそのΔSMが大きけ
れば大きいほどそれだけ大きな冷却効果を発揮すること
になる。
In short, this method is endothermic due to the change in entropy (ΔS M ) between the spin alignment state when a magnetic field is applied to a magnetic substance and the disordered state of spins when the magnetic field is released,
The basic principle is to utilize a heat release reaction.
This magnetic substance is called a magnetic working substance. The larger the ΔS M of the magnetic substance used as such a magnetic work substance, the greater the cooling effect.

第13図は磁性体のΔSMと温度との関係を表わす図である
が、図から明らかなように、磁性体は特定の温度(磁気
転移点)においてΔSMの極大値を示し、その前後の温度
ではΔSMが減少する。したがって、この磁性体は磁気転
移点近傍の微妙な温度範囲でしか充分な冷却効果が得ら
れない。
Fig. 13 is a diagram showing the relationship between ΔS M and temperature of a magnetic substance. As is clear from the figure, the magnetic substance shows a maximum value of ΔS M at a specific temperature (magnetic transition point), and before and after that. At the temperature of, ΔS M decreases. Therefore, this magnetic body can obtain a sufficient cooling effect only in a delicate temperature range near the magnetic transition point.

上記問題を解決するためには、異なった複数の磁気転移
点を有する磁性体を用いればよく、その結果比較的広範
囲の温度領域において充分な冷却効果が得られることに
なる。
In order to solve the above problem, a magnetic material having a plurality of different magnetic transition points may be used, and as a result, a sufficient cooling effect can be obtained in a relatively wide temperature range.

複数の磁気転移点を有する磁性体を形成可能な物質とし
ては、RAl2ラーベス型金属間化合物(Rは希土類元素)
等が知られている(Proceedings of ICEC(1982,May);
30-33等)[プロシーディングス・オブ・ICEC9(1982年
5月);30〜33頁等]。
As a substance capable of forming a magnetic substance having a plurality of magnetic transition points, RAl 2 Laves type intermetallic compound (R is a rare earth element)
Etc. are known (Proceedings of ICEC (1982, May);
30-33 etc.) [Proceedings of ICEC9 (May 1982); pages 30-33 etc.].

つまり、この化合物粉末を2種以上混合して焼結するこ
とにより、複数の磁気転移点を有する磁性体が得られる
と考えられる。しかしながら、上記方法により得られた
磁性体は焼結の過程において異種の化合物粉末間で相互
拡散が進行しその結果ΔSMの極大値が1つになってしま
う。
That is, it is considered that a magnetic substance having a plurality of magnetic transition points can be obtained by mixing two or more kinds of the compound powders and sintering the mixture. However, in the magnetic material obtained by the above method, mutual diffusion progresses between different compound powders during the sintering process, and as a result, the maximum value of ΔS M becomes one.

また、上記RAl2ラーベス型金属間化合物の他に、Gd3Ga5
O12,Dy3Al5O12に代表される希土類元素を含むガーネッ
ト系酸化物単結晶も知られているが、この物質は4K以下
の温度領域でしか充分な冷却効果を得ることができな
い。したがって、4K以上の広範な温度領域において充分
な冷却効果が得られる磁性体への要望に対しては有効で
はない。
In addition to the RAl 2 Laves-type intermetallic compound, Gd 3 Ga 5
Garnet-based oxide single crystals containing rare earth elements represented by O 12 and Dy 3 Al 5 O 12 are also known, but this substance can obtain a sufficient cooling effect only in a temperature range of 4 K or less. Therefore, it is not effective for the demand for a magnetic material that can obtain a sufficient cooling effect in a wide temperature range of 4K or higher.

更に、磁気作業物質用磁性体には吸収した熱を効率よく
外部に放散せしめることも要求されるので、熱伝達性に
も優れていなければならない。
Further, the magnetic substance for a magnetic working material is required to efficiently dissipate the absorbed heat to the outside, and therefore it must have excellent heat transfer properties.

まが、77K〜15K程度の温度領域を対象とした磁気冷凍で
は、格子エントロピーの寄与が大きいため、エリクソン
・サイクルのような蓄冷型サイクルが望ましい。このよ
うな蓄冷型冷凍機においては、磁気作業物質用磁性体と
蓄冷材との熱伝達が不可欠である。ここで77K以下の極
低温においては例えば鉛等の固体状の蓄冷材しかなく、
磁気作業物質と蓄冷材とは固体接触させるが、そのとき
Heガス膜等の狭ギャップを形成し熱交換を行なう必要が
ある。従って磁気作業物質用磁性体、蓄冷材ともに鏡面
仕上げ,複雑形状の加工等の高精度の加工が要求される
(低温工学会1984年11月)。したがって、磁気作業物質
用磁性体は高密度であるものが好ましい。
However, in magnetic refrigeration intended for a temperature range of about 77K to 15K, a regenerator type cycle such as the Ericsson cycle is desirable because of large contribution of lattice entropy. In such a cold storage type refrigerator, heat transfer between the magnetic substance for magnetic working material and the cold storage material is indispensable. At extremely low temperatures below 77K, there is only solid regenerator material such as lead,
The magnetic working substance and the regenerator material are brought into solid contact, but at that time
It is necessary to form a narrow gap such as a He gas film for heat exchange. Therefore, high-precision machining such as mirror finishing and complex shape machining is required for both magnetic materials for magnetic working materials and regenerator materials (Cryogenic Engineering Society, November 1984). Therefore, it is preferable that the magnetic substance for a magnetic working material has a high density.

[発明の目的] 本発明は、上記した要望に応えるためになされたもので
あり、広範囲の冷凍温度領域において充分な冷却効果を
得ることが可能であり、熱伝達性に優れた冷凍方法の提
供を目的とする。
[Object of the Invention] The present invention has been made in order to meet the above-mentioned demand, and provides a refrigeration method capable of obtaining a sufficient cooling effect in a wide range of refrigeration temperature range and having excellent heat transferability. With the goal.

[発明の概要] 本発明者らは、上記目的を達成すべく鋭意研究を重ねた
結果、後述する磁性合金粉末を後述する金属バインダで
被覆した被覆粉末を成形して得られた磁性体は熱伝達性
が優れており、しかも、複数種の希土類元素が含有され
た混合粉末からなる場合の磁性体は、異種の磁性合金粉
末間での相互拡散が起こらず、したがって複数の異なる
磁気転移点を有するものとなるとの事実を見出し本発明
を完成するに至った。
[Summary of the Invention] As a result of intensive studies to achieve the above object, the present inventors have found that a magnetic body obtained by molding a coating powder obtained by coating a magnetic alloy powder described below with a metal binder described below is a heat-resistant material. The magnetic substance, which has excellent transmissivity and is composed of a mixed powder containing plural kinds of rare earth elements, does not cause mutual diffusion between different kinds of magnetic alloy powders, and therefore has different magnetic transition points. The present invention has been completed by finding out the fact that the present invention has.

すなわち、本発明の冷凍方法は、Y,La,Ce,Pr,Nd,Pm,Sm,
Eu,Gd,Tb,Dy,Ho,Er,Tm,Ybの群から選ばれる少なくとも
1種の元素を含有し,残部金属が実質的に、Al,Ni,Coの
群から選ばれる少なくとも1種からなる磁性合金粉末と
金属バインダとからなり、かつ、該金属バインダの存在
割合が1〜80体積%である磁性体を用いる方法である。
That is, the refrigeration method of the present invention, Y, La, Ce, Pr, Nd, Pm, Sm,
It contains at least one element selected from the group of Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb, and the balance metal is substantially from at least one selected from the group of Al, Ni and Co. Is a magnetic alloy powder and a metal binder, and the magnetic binder is present in an amount of 1 to 80% by volume.

まず、本発明に用いられる磁性合金粉末は、例えばRA
l2,RNi2,RCo2で表わされるような希土類‐(Al,Co,Ni)
合金もしくはそれらの固溶体の磁性合金粉末である。こ
こで、Rは、Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Dy,Ho,Er,Tm,
Ybの群から選ばれる少なくとも1種の元素である。この
合金粉末においては、Rの含有量(Rが2種の場合には
両者の合計含有量)が下記の如き量であることが好まし
い。含有量が下記の下限値未満の場合には、室温以下の
いずれの温度においてもΔSMが大きくならず充分な冷却
効果が得られない。好ましくは、残部金属がAlの場合60
重量%以上,Niの場合20重量%以上,Coの場合40重量%以
上である。また、上記元素(R)の含有量の上限値は、
99重量%以下が好ましい。含有量が99重量%を超えると
Al,Ni,Coの含有量が少なくなって合金粉砕特性が著しく
劣化し、微粉末の製造が困難となり、事実上粉末成形体
ができにくくなるためである。上記含有量の条件を満足
する合金粉末は強磁性合金粉末となる。
First, the magnetic alloy powder used in the present invention is, for example, RA
l 2, RNi 2, rare earth as represented by RCo 2 - (Al, Co, Ni)
It is a magnetic alloy powder of an alloy or a solid solution thereof. Here, R is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm,
It is at least one element selected from the group of Yb. In this alloy powder, the content of R (the total content of both when R is two) is preferably as follows. When the content is less than the lower limit below, ΔS M does not increase at any temperature below room temperature, and a sufficient cooling effect cannot be obtained. Preferably, when the balance metal is Al 60
% By weight, 20% by weight or more for Ni, 40% by weight or more for Co. Further, the upper limit of the content of the element (R) is
It is preferably 99% by weight or less. When the content exceeds 99% by weight
This is because the content of Al, Ni, Co is reduced and the alloy crushing property is significantly deteriorated, making it difficult to produce a fine powder and making it difficult to form a powder compact. An alloy powder satisfying the above content conditions is a ferromagnetic alloy powder.

上記合金粉末は次のようにして製造することができる。
つまり、例えばRAl2,RNi2,RCo2合金をアーク溶融炉て溶
解して得る。次いで、得られた合金を粉砕して微細な粉
末とする。この粉末の粒径は、この粉末と後述するバイ
ンダとからなる混合体を成形する際の成形モールドへの
充填率に影響するので、1〜100μm好ましくは2〜30
μmの範囲内にあることが好ましい。粒径が100μmを
超えると充填率が低下し、また1μm未満の場合酸化し
やすく所望の冷却効果が得られない。
The above alloy powder can be manufactured as follows.
Thus, for example RAl 2, RNi 2, the RCo 2 alloy obtained by dissolving Te arc melting furnace. Then, the obtained alloy is pulverized into a fine powder. Since the particle size of this powder affects the filling rate in the molding mold when molding a mixture of this powder and a binder to be described later, it is preferably 1 to 100 μm, preferably 2 to 30 μm.
It is preferably in the range of μm. If the particle size exceeds 100 μm, the filling rate decreases, and if the particle size is less than 1 μm, oxidation tends to occur and the desired cooling effect cannot be obtained.

次に、上記した方法により得られた磁性合金粉末を用意
する。このとき、合金粉末1種類の場合には優れた熱伝
達性が得られるが、更に2種類以上の合金粉末を用意し
て成形すると複数の異なる磁気転移点を有する磁性体も
得られる。Rの元素が異なる2種以上の合金粉末を用意
した場合、各合金粉末における残部金属は同一種もしく
は異種のどちらでもよい。したがって、用意される粉末
は例えばDyAl2,ErAl2,HoAl2,DyHoAl2の組合せ;DyNi2,D
yCo2の組合せのようになる。このように2種以上の合金
粉末を用意して混合・成形することにより2つ以上の磁
気転移点を有する磁性体を得ることが可能となる。
Next, the magnetic alloy powder obtained by the above method is prepared. At this time, when one kind of alloy powder is used, an excellent heat transfer property is obtained, but when two or more kinds of alloy powders are prepared and molded, a magnetic material having a plurality of different magnetic transition points is also obtained. When two or more alloy powders having different R elements are prepared, the balance metal in each alloy powder may be the same or different. Therefore, the prepared powder is, for example, a combination of DyAl 2 , ErAl 2 , HoAl 2 and DyHoAl 2 ; DyNi 2 , D
It looks like a combination of yCo 2 . In this way, by preparing and mixing and molding two or more kinds of alloy powders, it becomes possible to obtain a magnetic body having two or more magnetic transition points.

本発明に用いられる磁性体は上記合金粉末と金属バイン
ダとからなる。このバインダは、後述する方法により得
られた成形体中において熱伝達性を向上させる働き及
び、上記した各種の混合粉末をそれぞれ分離独立せしめ
た状態で結着する働きを有する。その結果、粉末間にお
ける相互拡散が抑制され、複数の磁気転移点を有する焼
結体が得られる。
The magnetic material used in the present invention comprises the above alloy powder and a metal binder. This binder has the function of improving the heat transfer property in the molded body obtained by the method described below, and the function of binding the above-mentioned various mixed powders in a separated and independent state. As a result, mutual diffusion between powders is suppressed, and a sintered body having a plurality of magnetic transition points is obtained.

バインダに適用可能な金属としては、Au,Au,Cuなどの低
温での熱伝導特性に優れた金属もしくはこれらの合金が
あげられるが、4.2Kにおける熱伝導度が1W/k・cm以上の
金属であれば熱伝達性の向上に有効である。したがっ
て、バインダそれ自体が熱伝導性に優れた金属からなる
ため、得られた成形体の熱伝達性も著しく向上する。
As the metal applicable to the binder, there are metals such as Au, Au, and Cu that have excellent heat conduction characteristics at low temperature, or alloys thereof, but the metal whose thermal conductivity at 4.2K is 1 W / kcm or more. If so, it is effective in improving the heat transfer property. Therefore, since the binder itself is made of a metal having excellent thermal conductivity, the heat transfer property of the obtained molded product is significantly improved.

成形体中におけるバインダの存在割合は、1〜80体積%
好ましくは5〜30体積%である。存在割合が1体積%未
満の場合にはバインダの結着能力が小さく成形が困難で
あると同時に後述する焼結時には合金粉末間での相互拡
散が進行して目的達成が困難になる。また、80体積%を
超える場合には磁性合金粉末の割合が低下し、単位体積
当りの冷却効果が低下するほか、磁界制御時の渦電流損
失に起因する発熱により冷却効果が著しく低下してしま
う。
The binder content in the compact is 1 to 80% by volume.
It is preferably 5 to 30% by volume. If the existence ratio is less than 1% by volume, the binder binding ability is small and molding is difficult, and at the same time, at the time of sintering which will be described later, mutual diffusion between alloy powders progresses, and it becomes difficult to achieve the object. Further, if it exceeds 80% by volume, the ratio of the magnetic alloy powder decreases, the cooling effect per unit volume decreases, and the cooling effect remarkably decreases due to heat generation due to eddy current loss during magnetic field control. .

上記存在割合のバインダと合金粉末とからなる成形体
は、次のようにして製造することができる。
The molded body composed of the binder and the alloy powder having the above-mentioned abundance ratios can be manufactured as follows.

まず、上記合金粉末を上記金属(バインダ)でもって被
覆する。この被覆方法としては、メッキ法(例えば無電
解メッキ法)やスパッタリングなどの気相成長法があげ
られる。メッキ法を適用するに際しては、メッキ処理の
前に合金粉末に対してセンシタイザー処理やアクチベー
タ処理などによる前処理を施すとよい。
First, the alloy powder is coated with the metal (binder). Examples of this coating method include a plating method (for example, electroless plating method) and a vapor phase growth method such as sputtering. When applying the plating method, it is advisable to subject the alloy powder to a pretreatment such as a sensitizer treatment or an activator treatment before the plating treatment.

被覆に際しては、金属被覆膜の膜厚が、合金粉末の粒径
2〜30μmに対して0.1〜1μmとなるように、被覆金
属の使用量を調節するとよい。このように粒径と膜厚と
を所定の関係に設定することにより上記した成形体中の
バインダの存在割合を調節することが可能となる。
At the time of coating, the amount of the coating metal used may be adjusted so that the film thickness of the metal coating film is 0.1 to 1 μm with respect to the particle diameter of the alloy powder of 2 to 30 μm. By thus setting the particle size and the film thickness in a predetermined relationship, it becomes possible to adjust the abundance ratio of the binder in the molded body.

次に、金属で被覆された合金粉末をプレス成形した後焼
結する方法や衝撃加圧成形法により目的とする成形体に
する。
Next, the alloy powder coated with metal is press-molded and then sintered, or an impact pressure molding method is used to obtain a desired molded body.

焼結法による場合、プレス圧は500〜10,000kg/cm2好ま
しくは1,000〜10,000kg/cm2である。次いで得られた成
形体を非酸化性雰囲気中で焼結処理する。非酸化性雰囲
気としては、10-6Torr以下の真空,Ar,N2などの不活性ガ
スがあげられる。
If by sintering method, pressing pressure 500~10,000kg / cm 2 preferably 1,000~10,000kg / cm 2. Then, the obtained molded body is sintered in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a vacuum of 10 -6 Torr or less and an inert gas such as Ar or N 2 .

焼結温度は100〜1100℃好ましくは500〜900℃である。
焼結温度が100℃未満の場合には高い充填率が得られ
ず、また、1100℃を超えるとバインダ金属と合金粉末間
の相互拡散が進行して、広範囲の温度における充分な冷
却効果が得られない。
The sintering temperature is 100 to 1100 ° C, preferably 500 to 900 ° C.
If the sintering temperature is less than 100 ° C, a high filling rate cannot be obtained, and if it exceeds 1100 ° C, mutual diffusion between the binder metal and alloy powder proceeds, and a sufficient cooling effect over a wide range of temperatures is obtained. I can't.

衝撃加圧成形法の場合、金属被覆された磁性合金粉末を
カプセルに挿入し、衝撃加圧成形することにより高密度
成形体を得る方法である。例えば、レールガンによる10
0万〜1000万気圧の衝撃加圧,ライフルガンによる衝撃
加圧,火薬を用いた爆発成形等が有効である。また、10
万気圧の超高圧プレスによる高圧成形も有効である。
The impact pressure molding method is a method of obtaining a high-density molded body by inserting a metal-coated magnetic alloy powder into a capsule and performing impact pressure molding. For example, 10 with a railgun
Impact pressure of 0 to 10,000,000 atmospheres, impact pressure with a rifle gun, and explosive molding using explosives are effective. Also, 10
High-pressure molding with an ultra-high pressure press of 10,000 atm is also effective.

[発明の実施例] 実施例1 Dy75重量%,残部Alからなる合金(A)、Er75.6重量
%,残部Alからなる合金(B)を各々別々にアーク溶解
炉を用いて調製し、これら合金をそれぞれボールミル法
で粒径30μm程度の微粉末に粉砕した後、合金(A)粉
末と合金(B)粉末とを得、これを等モル比でミキサー
により混合し、混合粉を得た。
[Examples of the Invention] Example 1 An alloy (A) consisting of 75% by weight of Dy and the balance Al, and an alloy (B) consisting of 75.6% by weight of Er and the balance Al were prepared separately by using an arc melting furnace. Each alloy was pulverized by a ball mill method into fine powder having a particle size of about 30 μm, and then an alloy (A) powder and an alloy (B) powder were obtained, which were mixed with a mixer in an equimolar ratio to obtain a mixed powder.

得られれた混合粉にセンシタイザー処理(HCl酸性)と
アクチベーター処理(HCl酸性)を施したのち、TMP#500
A,Bにより銅メキ(NaOHアルカリ性)した(使用薬品,
奥野製薬工業製)。
The mixed powder obtained is subjected to sensitizer treatment (acidic HCl) and activator treatment (acidic HCl), and then TMP # 500
Copper plating (NaOH alkaline) by A and B (chemicals used,
Okuno Pharmaceutical Co., Ltd.).

銅メッキ時の合金粉末と銅メッキ量は重量比で3〜4:1
であり、メッキ処理により合金粉末表面に0.5〜1μm
の被膜が形成された。
The weight ratio of alloy powder and copper plating at the time of copper plating is 3 to 4: 1.
Is 0.5-1 μm on the surface of the alloy powder due to the plating treatment.
A film was formed.

銅メッキを施した上記合金粉末をプレス圧10t/cm2でプ
レス成形した後600℃にてArガス雰囲気中で焼結した。
The copper-plated alloy powder was press-molded at a pressing pressure of 10 t / cm 2 and then sintered at 600 ° C. in an Ar gas atmosphere.

得られた焼結体のX線回折の結果を第1図に示す。The result of X-ray diffraction of the obtained sintered body is shown in FIG.

また、比較例1として、上記合金(A)粉末と合金
(B)粉末との混合粉にメッキ処理することなく、プレ
ス成形して1100℃において焼結して得られた焼結体のX
線回折の結果を第2図に示す。
In addition, as Comparative Example 1, a mixed powder of the alloy (A) powder and the alloy (B) powder was press-molded without being plated, and was sintered at 1100 ° C. to obtain X of a sintered body.
The result of the line diffraction is shown in FIG.

実施例1の焼結体の(440)面におけるX線回折の結果
からErAl2の格子定数a=7.793,DyAl2の格子定数a=7.
827が得られた。それに対して比較例1の(440)面にお
けるX線回折結果はa=7.817であった。
From the result of X-ray diffraction on the (440) plane of the sintered body of Example 1, the lattice constant a of ErAl 2 was a = 7.793, and the lattice constant a of DyAl 2 was a = 7.
827 was obtained. On the other hand, the X-ray diffraction result on the (440) plane of Comparative Example 1 was a = 7.817.

第1図,第2図から明らかなように、本発明の磁性体は
X線的にErAl2とDyAl2がそれぞれ分離独立して存在して
いるのが確認されているが、比較例1ではピーク数の減
少にみられるように相互拡散の進行が認められる。
As is clear from FIG. 1 and FIG. 2, it was confirmed that ErAl 2 and DyAl 2 exist in the magnetic material of the present invention separately and independently in X-ray, but in Comparative Example 1, Progress of mutual diffusion is observed as seen in the decrease in the number of peaks.

また、実施例1,比較例1の2テスラの磁場中における70
K以下の超低温領域における磁化測定結果を第3図に示
す。図から明らかなように実施例1においては15K付近
にErAl2の磁気転移点,60K付近にDyAl2の磁気転移点が観
測されるが、比較例1では35K付近に両者が相互拡散し
た結果得られた物質の磁気転移点が観測されるのみであ
る。
Further, in the magnetic field of 2 Tesla of Example 1 and Comparative Example 1, 70
Fig. 3 shows the results of magnetization measurement in the ultra-low temperature region below K. Magnetic transition point of ERAL 2 around 15K in Example 1 As is apparent from the figure, although the magnetic transition point Dyal 2 around 60K are observed, the result both in the vicinity of Comparative Example 1, 35K is interdiffusion give Only the magnetic transition point of the obtained substance is observed.

また、実施例1の充填率は95%を超える高密度焼結体で
あり、熱伝導度は比較例1の200mW/cm・Kに対して一桁
大きい3W/cm・kであった。なお、焼結体中のバインダ
の存在割合は20〜25体積%であった。
In addition, the filling rate of Example 1 was a high-density sintered body exceeding 95%, and the thermal conductivity was 3 W / cm · k, which was an order of magnitude larger than the 200 mW / cm · K of Comparative Example 1. The binder content in the sintered body was 20 to 25% by volume.

実施例2 Dy75重量%,残部Alからなる合金(A)、Er75.6重量
%,残部Alから合金(B)、Dy37.6重量%,Ho38.2重量
%,残部Alからなる合金(C)、Ho75.4重量%,残部Al
からなる合金(D)を各々別々にアーク溶解炉を用いて
作製し、ボールミル法で粒径30μm程度の微粉末に粉砕
した後、合金(A),(B),(C),(D)粉末をそ
れぞれ得、これらを各々1モル,0.38モル,0.24モル,0.3
1モルのモル比でミキサーにより混合し、混合粉を得
た。
Example 2 Alloy (A) consisting of Dy 75% by weight and balance Al, Er 75.6% by weight, alloy (B) from balance Al, alloy (C) consisting of Dy 37.6% by weight, Ho 38.2% by weight and balance Al , Ho75.4% by weight, balance Al
Alloy (D) consisting of the above is separately produced by using an arc melting furnace, pulverized into a fine powder having a particle size of about 30 μm by a ball mill method, and then the alloy (A), (B), (C), (D) Powders are obtained, and these are 1 mol, 0.38 mol, 0.24 mol and 0.3 mol, respectively.
Mixing was performed with a mixer at a molar ratio of 1 mol to obtain a mixed powder.

得られた混合粉に実施例1と同様の処理を施して焼結体
を得た。得られた焼結体につき、5テスラの磁界印加状
態および無磁場状態での比熱(Cp)を測定し、磁気エン
トロピー変化量(ΔSM/R)の温度依存性を調べた結果を
第4図に示す。
The obtained mixed powder was treated in the same manner as in Example 1 to obtain a sintered body. Fig. 4 shows the results of measuring the specific heat (Cp) of the obtained sintered body under a magnetic field of 5 Tesla and in the absence of a magnetic field, and examining the temperature dependence of the amount of change in magnetic entropy (ΔS M / R). Shown in.

また、比較例1における磁気エントロピー変化量の温度
依存性の結果も併せて第4図に示した。
The results of the temperature dependence of the amount of change in magnetic entropy in Comparative Example 1 are also shown in FIG.

第4図から明らかなように、本発明の焼結体は10K〜70K
と広範囲において冷却効果を得ることができるが、比較
例1では30K〜50Kと冷却温度の範囲が狭い。
As is clear from FIG. 4, the sintered body of the present invention is 10K to 70K.
Thus, the cooling effect can be obtained in a wide range, but in Comparative Example 1, the range of the cooling temperature is as narrow as 30K to 50K.

実施例3 Dy58重量%,残部Niからなる合金(E)、Er59重量%,
残部Niからなる合金(F)を作製したほかは実施例1と
同様にして混合粉を得た。
Example 3 Dy 58% by weight, alloy (E) consisting of balance Ni, Er 59% by weight,
A mixed powder was obtained in the same manner as in Example 1 except that an alloy (F) consisting of the balance Ni was prepared.

得られた混合粉に対して実施例1と同様のメッキ処理を
施した。このときの合金粉末と銅メッキ量は重量比で5
〜6:1とした。
The obtained mixed powder was plated as in Example 1. At this time, the alloy powder and the copper plating amount are 5 by weight ratio.
It was ~ 6: 1.

銅メッキ処理された合金粉末を用いて実施例1と同様に
焼結体を得た。得られた焼結体のX線回折の結果を第5
図に示す。また、比較例2として、上記混合粉を用いて
焼結温度を980℃としたほかは比較例1と同様に製造し
た焼結体のX線回折の結果を第6図に示す。
A sintered body was obtained in the same manner as in Example 1 using the copper-plated alloy powder. The result of X-ray diffraction of the obtained sintered body
Shown in the figure. Further, as Comparative Example 2, FIG. 6 shows the result of X-ray diffraction of a sintered body produced in the same manner as in Comparative Example 1 except that the sintering temperature was 980 ° C. using the mixed powder.

更に、実施例3,比較例2の磁化測定結果を第7図に示
す。図から明らかなように実施例3においては8K付近に
ErNi2の磁気転移点、20K付近にDyNi2の磁気転移点がそ
れぞれ認められる。
Furthermore, the magnetization measurement results of Example 3 and Comparative Example 2 are shown in FIG. As is clear from the figure, in the third embodiment, in the vicinity of 8K
The magnetic transition point of ErNi 2 and the magnetic transition point of DyNi 2 near 20 K are observed.

また、実施例3における充填率は98%を超え、熱伝導性
は比較例3の350mW/cm・Kに対して一桁大きい4W/cm・
Kであった。なお、焼結体中のバインダ存在割合は20〜
25体積%であった。
Further, the filling rate in Example 3 exceeds 98%, and the thermal conductivity is 4 W / cm ·, which is an order of magnitude higher than the 350 mW / cm · K in Comparative Example 3.
It was K. In addition, the binder existence ratio in the sintered body is 20 ~
It was 25% by volume.

実施例4 Dy58重量%,残部Niからなる合金(E)、Ho58.5重量
%,残部Niからなる合金(G)、Er57.5重量%,残部Ni
からなる合金(H)を作製したほかは実施例1と同様に
合金粉を得、これらを各々1モル,0.4モル,0.3モルのモ
ル比で混合して混合粉を得た。
Example 4 Dy 58% by weight, alloy (E) consisting of balance Ni, Ho58.5% by weight, alloy (G) consisting of balance Ni, Er 57.5% by weight, balance Ni
An alloy powder was prepared in the same manner as in Example 1 except that the alloy (H) was prepared, and these powders were mixed at a molar ratio of 1 mol, 0.4 mol, and 0.3 mol to obtain a mixed powder.

得られた混合粉に実施例3と同様の処理を施して焼結体
を得た。得られた焼結体につき、5テスラの磁界印加状
態および無磁場状態での比熱(Cp)を測定し、磁気エン
トロピー変化量(ΔSM/R)の温度依存性を調べた結果を
第8図に示す。
The obtained mixed powder was treated in the same manner as in Example 3 to obtain a sintered body. Fig. 8 shows the results obtained by measuring the specific heat (Cp) of the obtained sintered body under a magnetic field of 5 Tesla and in the absence of a magnetic field, and examining the temperature dependence of the amount of change in magnetic entropy (ΔS M / R). Shown in.

また、比較例2における磁気エントロピー変化量の温度
依存性も併せて第8図に示した。
The temperature dependence of the magnetic entropy change amount in Comparative Example 2 is also shown in FIG.

実施例5 Er58.7重量%,残部Coからなる合金(I)、Tm58.9重量
%,残部Coからなる合金(J)を作製したほかは実施例
1と同様にして混合粉を得た。
Example 5 A mixed powder was obtained in the same manner as in Example 1 except that an alloy (I) containing 58.7 wt% Er and the balance Co and an alloy (J) containing 58.9 wt% Tm and the balance Co were prepared.

得られた混合粉に対して実施例1と同様のメッキ処理を
施した。このときの合金粉末と銅メッキ量は重量比で4
〜5:1とした。
The obtained mixed powder was plated as in Example 1. At this time, the alloy powder and the copper plating amount are 4 by weight ratio.
It was ~ 5: 1.

銅メッキ処理された合金粉末を用いて実施例1と同様に
焼結体を得た。得られた焼結体のX線回折の結果を第9
図に示す。また、比較例3として、上記混合粉を用いて
焼結温度を1000℃としたほかは比較例1と同様に製造し
た焼結体のX線回折の結果を第10図に示す。
A sintered body was obtained in the same manner as in Example 1 using the copper-plated alloy powder. The result of X-ray diffraction of the obtained sintered body is
Shown in the figure. In addition, as Comparative Example 3, FIG. 10 shows the result of X-ray diffraction of a sintered body produced in the same manner as in Comparative Example 1 except that the sintering temperature was 1000 ° C. using the above mixed powder.

更に、実施例5,比較例3の磁化測定結果を第11図に示
す。図から明らかなように実施例5においては10K付近
にTmCO2の磁気転移点、30K付近にErCO2の磁気転移点が
それぞれ認められる。
Further, the magnetization measurement results of Example 5 and Comparative Example 3 are shown in FIG. As is clear from the figure, in Example 5, the magnetic transition point of TmCO 2 is observed at around 10 K, and the magnetic transition point of ErCO 2 is observed at around 30 K.

また、実施例5における充填率は98%を超え、熱伝導率
は比較例5の180mW/cm・Kに対して一桁大きい2W/cm・
Kであった。なお、焼結体中のバインダ存在割合は20〜
50体積%であった。
Further, the filling rate in Example 5 exceeds 98%, and the thermal conductivity is 2 W / cm · which is one digit larger than 180 mW / cm · K in Comparative Example 5.
It was K. In addition, the binder existence ratio in the sintered body is 20 ~
It was 50% by volume.

実施例6 Er58.7重量%,残部Coからなる合金(I)、Tm58.9重量
%,残部Coからなる合金(J)、Ho38.9重量%,Er19.5
重量%,残部Coからなる合金(K)を作製したほかは実
施例1と同様に合金粉を得、これらを各々1モル,0.5モ
ル,0.7モルのモル比で混合して混合粉を得た。
Example 6 Alloy (I) consisting of Er 58.7 wt% and balance Co, Tm 58.9 wt% and alloy (J) consisting of balance Co, Ho 38.9 wt% and Er 19.5
An alloy powder was obtained in the same manner as in Example 1 except that an alloy (K) consisting of wt% and the balance Co was prepared, and these were mixed at a molar ratio of 1 mol, 0.5 mol, and 0.7 mol to obtain a mixed powder. .

得られた混合粉に対して実施例5と同様の処理を施して
焼結体を得た。得られた焼結体につき、5テスラの磁界
印加状態および無磁場状態での比熱(Cp)を測定し、磁
気エントロピー変化量(ΔSM/R)の温度依存性を調べた
結果を第12図に示す。
The obtained mixed powder was treated in the same manner as in Example 5 to obtain a sintered body. The specific heat (Cp) of the obtained sintered body was measured under a magnetic field of 5 Tesla and under no magnetic field, and the temperature dependence of the magnetic entropy change (ΔS M / R) was examined. Shown in.

また、比較例3における磁気エントロピー変化量の温度
依存性も併せて第12図にした。
The temperature dependence of the magnetic entropy change amount in Comparative Example 3 is also shown in FIG.

[発明の効果] 以上、説明したように本発明の冷凍方法は、用いる磁性
体が熱伝達性に優れているので、広範囲の冷凍温度領域
において充分な冷却効果を奏することが可能である。し
かも、該磁性体が高密度であるため、加工性に優れてい
る。とりわけ、エリクソン・サイクルのような蓄冷方式
に用いる磁気作業物質としてこのような磁性体を用いる
と良好な熱伝達を得ることができるため、本発明の冷凍
方法は特に有効である。
[Effects of the Invention] As described above, in the freezing method of the present invention, since the magnetic material used is excellent in heat transfer, it is possible to achieve a sufficient cooling effect in a wide range of freezing temperature range. Moreover, since the magnetic material has a high density, it has excellent workability. In particular, the freezing method of the present invention is particularly effective because good heat transfer can be obtained by using such a magnetic substance as a magnetic working substance used in a cold storage system such as the Ericsson cycle.

【図面の簡単な説明】 第1図,第2図,第5図,第6図,第9図,第10図はそ
れぞれ得られた焼結体のX線回折結果を表わす図、第3
図,第7図,第11図はそれぞれ得られた焼結体の磁化と
温度との関係を表わす図であり、第4図,第8図,第12
図はそれぞれ得られた焼結体の磁気エントロピー変化と
温度の関係を表わす図、第13図は磁性体のエントロピー
変化と温度の関係を表わす図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1, FIG. 2, FIG. 5, FIG. 6, FIG. 9, and FIG. 10 are views showing the X-ray diffraction results of the obtained sintered bodies, respectively.
Figures 7, 7 and 11 are diagrams showing the relationship between the magnetization and temperature of the obtained sintered body, respectively.
The figure shows the relationship between the magnetic entropy change and the temperature of the obtained sintered body, and FIG. 13 is the view showing the relationship between the entropy change and the temperature of the magnetic body.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,
Tm,Ybの群から選ばれる少なくとも1種の元素を含有
し、残部金属が実質的にAl,Ni,Coの群から選ばれる少な
くとも1種からなる磁性合金粉末と金属バインダとから
なり、かつ該金属バインダの存在割合が1〜80体積%で
ある磁性体を用いる冷凍方法。
1. Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
A magnetic alloy powder containing at least one element selected from the group of Tm and Yb, and the balance metal consisting essentially of at least one selected from the group of Al, Ni and Co, and a metal binder, and A refrigeration method using a magnetic material having a metal binder content of 1 to 80% by volume.
【請求項2】前記磁性体が、磁気冷凍用磁気作業物質で
あることを特徴とする特許請求の範囲第1項記載の冷凍
方法。
2. The refrigerating method according to claim 1, wherein the magnetic substance is a magnetic working substance for magnetic refrigeration.
【請求項3】前記磁性合金粉末が、2種以上の合金粉末
の混合粉であることを特徴とする特許請求の範囲第1項
又は第2項記載の冷凍方法。
3. The refrigerating method according to claim 1 or 2, wherein the magnetic alloy powder is a mixed powder of two or more kinds of alloy powder.
【請求項4】前記2種以上の合金粉末が、たがいに異な
る磁気転移点を有する特許請求の範囲第3項記載の冷凍
方法。
4. The refrigerating method according to claim 3, wherein the two or more alloy powders have different magnetic transition points.
【請求項5】前記金属バインダが、4.2Kにおける熱伝導
度が1W/cm・K以上の金属もしくは合金である特許請求
の範囲第1項記載の冷凍方法。
5. The refrigerating method according to claim 1, wherein the metal binder is a metal or an alloy having a thermal conductivity at 4.2 K of 1 W / cm · K or more.
JP60214617A 1985-09-30 1985-09-30 Freezing method Expired - Fee Related JPH0765823B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60214617A JPH0765823B2 (en) 1985-09-30 1985-09-30 Freezing method
EP86113399A EP0217347B1 (en) 1985-09-30 1986-09-30 Use of polycrystalline magnetic substances for magnetic refrigeration
DE8686113399T DE3687680T2 (en) 1985-09-30 1986-09-30 USE OF POLYCRYSTALLINE MAGNETIC SUBSTANCES FOR MAGNETIC COOLING.
US07/248,286 US4985072A (en) 1985-09-30 1988-09-22 Polycrystalline magnetic substances for magnetic refrigeration and a method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60214617A JPH0765823B2 (en) 1985-09-30 1985-09-30 Freezing method

Publications (2)

Publication Number Publication Date
JPS6277438A JPS6277438A (en) 1987-04-09
JPH0765823B2 true JPH0765823B2 (en) 1995-07-19

Family

ID=16658688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214617A Expired - Fee Related JPH0765823B2 (en) 1985-09-30 1985-09-30 Freezing method

Country Status (1)

Country Link
JP (1) JPH0765823B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263392A (en) * 2006-03-27 2007-10-11 Toshiba Corp Magnetic refrigerating material and magnetic refrigerating device
DE102013203129A1 (en) 2013-02-26 2014-08-28 Wacker Chemie Ag Asymmetric porous membranes of cross-linked thermoplastic silicone elastomer
DE102013213318A1 (en) 2013-07-08 2015-01-08 Wacker Chemie Ag Asymmetric porous membranes of aldehyde-crosslinked thermoplastic silicone elastomer
US11208584B2 (en) 2018-09-18 2021-12-28 Kabushiki Kaisha Toshiba Heat regenerating material, regenerator, refrigerator, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, cryopump, and magnetic field application type single crystal pulling apparatus
CN110634638B (en) * 2019-09-29 2021-07-23 桂林电子科技大学 (Pr, Gd) Co permanent magnet material and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485106A (en) * 1977-12-20 1979-07-06 Seiko Epson Corp Magnet made from inter-rare-earth-metallic compound

Also Published As

Publication number Publication date
JPS6277438A (en) 1987-04-09

Similar Documents

Publication Publication Date Title
US4985072A (en) Polycrystalline magnetic substances for magnetic refrigeration and a method of manufacturing the same
US4849017A (en) Magnetic refrigerant for magnetic refrigeration
US4975411A (en) Superconductors and methods of making same
JPH07101134B2 (en) Heat storage material and low temperature heat storage
JP2739935B2 (en) Cold storage body and method of manufacturing the same
JP2582753B2 (en) Manufacturing method of laminated magnetic body
US5372657A (en) Amorphous material for regenerator
JPH0765823B2 (en) Freezing method
WO1999020956A1 (en) Cold-accumulating material and cold-accumulating refrigerator
WO2002069353A1 (en) Superconducting borides and wires made thereof
US6953770B2 (en) MgB2—based superconductor with high critical current density, and method for manufacturing the same
JP6495546B1 (en) HoCu-based regenerator material and regenerator and refrigerator equipped with the same
JP6377880B1 (en) Rare earth regenerator material and regenerator and refrigerator provided with the same
JP2828978B2 (en) Cold storage material and method for producing the same
JPH05239586A (en) Low temperature cold regenerator
JP2585240B2 (en) Manufacturing method of cold storage material
JPH0765136B2 (en) Magnetic sintered body
JPH031050A (en) Cold heat storage apparatus
JPH10253183A (en) Heat storage material and low temperature heat storage apparatus
JPH0765137B2 (en) Magnetic sintered body
Nasunjilegal et al. Formation and magnetic properties of a novel Gd3 (Fe, Ti) 29Ny nitride
JPH02153822A (en) Oxide superconductor composition
JPH06243737A (en) Oxide superconductive coil
Avci Investigation of transport properties of superconducting MgB2/Fe wires fabricated by magnesium coating method
JPS63245825A (en) Manufacture of superconductive composite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees