JPS63317693A - Production of tube material for heat exchanger - Google Patents

Production of tube material for heat exchanger

Info

Publication number
JPS63317693A
JPS63317693A JP15310187A JP15310187A JPS63317693A JP S63317693 A JPS63317693 A JP S63317693A JP 15310187 A JP15310187 A JP 15310187A JP 15310187 A JP15310187 A JP 15310187A JP S63317693 A JPS63317693 A JP S63317693A
Authority
JP
Japan
Prior art keywords
zinc
tube material
heat exchanger
plating
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15310187A
Other languages
Japanese (ja)
Inventor
Motoyoshi Yamaguchi
山口 元由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP15310187A priority Critical patent/JPS63317693A/en
Publication of JPS63317693A publication Critical patent/JPS63317693A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To continuously produce an Al tube material for a heat exchanger with a Zn coating layer having superior adhesion and uniformity at a high speed and a low cost by tubularly extruding an Al material and subjecting the resulting tube material to degreasing, cleaning, Zn substitution treatment and contact plating. CONSTITUTION:An Al material is tubularly hot- or warm-extruded. The resulted tube material is well degreased and cleaned with trichloroethylene or the like. The clean material is subjected to Zn substitution treatment by immersion in a soln. contg. essentially NaOH and ZnO. Contact plating is then carried out with a graphite electrode coated with cotton cloth or the like impregnated with an electrolytic soln. contg. ZnO and ZnSO4. Thus, a Zn coating layer of 0.5-10mum thickness is formed on the surface of the extruded tube material and a tube material for an Al heat exchanger having superior pitting corrosion resistance is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルミニウム製熱交換器用亜鉛被覆管材の製造
方法に関し、さらに詳しくは、表面を亜鉛置換処理後電
気的に亜鉛めっきしたアルミニウム製熱交換器用管材の
製造方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing zinc-coated pipe material for an aluminum heat exchanger, and more specifically, to an aluminum heat exchanger whose surface is electrically galvanized after zinc substitution treatment. The present invention relates to a method of manufacturing a dexterous tube material.

(従来の技術) 自動車のエアコン用熱交換器、すなわちコンデンサー及
びエバポレーターはほとんどアルミニウム材で作られて
いる。これらの形状は第2図に示すようなサーヘンタイ
ンタイプが多く、熱間あるいは温間で管状に押出成形し
た管材lを曲げ部4で折り曲げて蛇行状とし、この管材
1.1間にプレージングシートのコルゲートフィン2を
接合し、さらにコネクター3を取り付けて構成されてお
り、種々のろう付工法により製造されている。
(Prior Art) Heat exchangers for automobile air conditioners, ie, condensers and evaporators, are mostly made of aluminum. Most of these shapes are of the serpentine type as shown in Fig. 2, in which a tube material 1 is extruded into a tubular shape in a hot or warm state and is bent at a bending part 4 to form a serpentine shape. It is constructed by joining corrugated fins 2 made of ging sheets and further attaching connectors 3, and is manufactured by various brazing methods.

アルミニウム材はその性質として高温多湿下で孔食形態
の腐食を生じることがあげられるが、熱交換器の管材に
ついては、その内面は有機媒体に接しているので腐食問
題は起きないものの、外面は高温多湿の条件にさらされ
た場合に孔食が発生し、管材の内面に達する貫通による
事故につながる重大な問題となることかある。
Aluminum materials are prone to corrosion in the form of pitting under high temperature and high humidity conditions, but the inner surface of heat exchanger tubes is in contact with the organic medium, so corrosion does not occur, but the outer surface does. Pitting corrosion occurs when exposed to hot and humid conditions and can be a serious problem that can lead to accidents due to penetration reaching the inner surface of the pipe.

この外面よりの孔食腐食対策として、各ろう付工法によ
りそれぞれ異なった方法で対処している。塩化物系フラ
ックスを用いたろう打法(FB法)では成分として塩化
亜鉛を含んだフラックスを使用し、ろう付時に亜鉛を管
材の表面層に拡散させ1通常最大濃度1〜2%、拡散深
さ100〜200ILmの亜鉛拡散層を形成させる。
To counter this pitting corrosion from the outside surface, each brazing method uses a different method. The brazing method using chloride-based flux (FB method) uses a flux containing zinc chloride as a component, and during brazing, zinc is diffused into the surface layer of the pipe material.1 Normally, the maximum concentration is 1 to 2%, and the diffusion depth is A zinc diffusion layer of 100-200 ILm is formed.

この層は管材の電位に対して卑であり電気化学的に犠牲
層として働き、Znの未拡散の部分を保護し、貫通孔食
な防ぐものである。また真空ろう打法(VB法)ではフ
ィン材として管材に対して電位が卑な亜鉛又はすず等を
添加したプレージングシートを用い、フィンが犠牲腐食
し、管材を保護する方法をとっている。しかし、これら
のろう付工法のうち、FB法は潮解性、腐食性のフラッ
クスを使用するので、ろう打抜湯洗、硝酸洗浄、水洗等
の後処理が必要であり、またVB法は後処理を必要とし
ないが高価な真空装置が必要であるとともにフ、fン材
の犠牲効果か管材の曲げ部、例えば第2図の曲げ部4に
は働かず、腐食環境のきびしい所では使用できない。
This layer is base with respect to the potential of the tube material and acts as an electrochemical sacrificial layer to protect the undiffused portions of Zn and prevent through-pitting corrosion. Further, in the vacuum brazing method (VB method), a plating sheet to which zinc or tin, etc., which has a base potential with respect to the pipe material is added, is used as the fin material, so that the fins are sacrificially corroded and the pipe material is protected. However, among these brazing methods, the FB method uses deliquescent and corrosive flux, so post-treatments such as wax punching hot water washing, nitric acid washing, and water washing are required, and the VB method requires post-treatment. However, it does require an expensive vacuum device, and due to the sacrificial effect of the fan material, it does not work on bent portions of the pipe material, such as the bent portion 4 in FIG. 2, and cannot be used in places with severe corrosive environments.

そこで最近になってフッ化物系の非腐食性フラックスを
使用し、非酸化性雰囲気中でろう付けする方法(NB法
)が採用されるようになワてきたが、このろう打法では
VB法と同じく、犠牲フィンを用い、さらに予め亜鉛を
被覆した管材とを組合せてろう付し、管材の孔食を防ぐ
ものである。この亜鉛を被覆する方法として現在採用さ
れているのは、管材を曲げ加工後に亜鉛を化学的に置換
処理する方法である。
Recently, a method of brazing in a non-oxidizing atmosphere using a fluoride-based non-corrosive flux (NB method) has been adopted. Similarly, sacrificial fins are used in combination with a tube material coated with zinc in advance and brazed to prevent pitting corrosion of the tube material. The method currently employed for coating the pipe material with zinc is to chemically replace the zinc after bending the pipe material.

この置換処理法は浸漬法によるため、管材の内部を処理
液から保護するために両端部の開孔を個別に密封する手
間を要するほか、液がアルカリ性のため処理後の水洗工
程に時間がかかる等熱交換器の製造工程が繁雑になって
くる。このために熱交換器製造メーカーでは予め材料製
造メーカーにおいて押出後に何らかの方法で管材に亜鉛
を長尺品として、すなわち連続的に被覆することを望ん
でいる。この管材を使用すれば新しくNB法でエアコン
の熱交換器を製造する場合には、従来の置換処理等亜鉛
を被覆する設備が不要となり有利である。
Since this replacement treatment method is based on the immersion method, it is necessary to separately seal the openings at both ends to protect the inside of the pipe material from the treatment solution, and since the solution is alkaline, the post-treatment rinsing process takes time. The manufacturing process for isothermal exchangers becomes complicated. For this reason, heat exchanger manufacturers desire that after extrusion, the material manufacturer coats the tube with zinc in the form of a long product, ie, continuously, by some method. Use of this tube material is advantageous when manufacturing a new heat exchanger for an air conditioner using the NB method, since conventional zinc coating equipment such as replacement treatment is not required.

管材等に亜鉛を被覆する技術については、浸漬法に代る
方法として溶射法(特開昭58−204169号)およ
び押圧溶融法(特開昭58−157522号)が提案さ
れている。
Regarding techniques for coating pipe materials and the like with zinc, a thermal spraying method (Japanese Patent Laid-Open No. 58-204169) and a pressure melting method (Japanese Patent Laid-Open No. 58-157522) have been proposed as methods in place of the dipping method.

(発明が解決しようとする問題点) しかしながら、特開昭58−204169号公報及び特
開昭58−157522号公報にそれぞれ開示された亜
鉛を被覆するための溶射法及び押圧溶融法にはいずれも
連続処理が可能な点に優位性があるものの、被覆層の厚
さあるいは均一性の制御に難点が残されていた。さらに
被覆層の密着性に問題があり、折曲げ加工により屈曲部
に剥離、肌荒れ、クラック等表面欠陥をもたらすことが
あった。
(Problems to be Solved by the Invention) However, the thermal spraying method and the pressure melting method for coating zinc disclosed in JP-A-58-204169 and JP-A-58-157522, respectively, do not Although it has the advantage of being able to perform continuous processing, there remains a difficulty in controlling the thickness or uniformity of the coating layer. Furthermore, there was a problem with the adhesion of the coating layer, and the bending process sometimes caused surface defects such as peeling, rough skin, and cracks at bent portions.

本発明は以上の問題点に鑑み、改善された熱交換器用亜
鉛被覆管材の製造方法を提供することな目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an improved method for manufacturing zinc-coated pipe materials for heat exchangers.

(問題点を解決するための手段) 本発明者はアルミニウム管材表面に亜鉛層を連続的に被
覆する方法について鋭意研究を続け、アルミニウム押出
管材表面を予備処理後接触めっきにより亜鉛被覆すれば
密着性、均一性の良好な亜鉛被覆層が連続的に得られる
ことを見いだした。
(Means for Solving the Problems) The present inventor has continued to conduct intensive research on a method for continuously coating the surface of aluminum pipes with a zinc layer, and found that if the surface of extruded aluminum pipes is coated with zinc by contact plating after pretreatment, the adhesion will be improved. It has been found that a zinc coating layer with good uniformity can be obtained continuously.

本発明はこの知見に基づいてなされたものである。The present invention has been made based on this knowledge.

すなわち本発明は、アルミニウム材を熱間又は温間で管
状に押出成形したのち脱脂洗浄し、亜鉛置換処理後電解
液の含浸体で覆われた電極を用いて接触めっきを行い、
押出管材表面に亜鉛被覆層を形成させることを特徴とす
る熱交換器用管材の製造方法を提供するものである。
That is, in the present invention, an aluminum material is hot or warm extruded into a tubular shape, degreased and cleaned, and after zinc substitution treatment, contact plating is performed using an electrode covered with an electrolyte-impregnated body.
The present invention provides a method for manufacturing a heat exchanger tube material, which is characterized by forming a zinc coating layer on the surface of the extruded tube material.

本発明においてアルミニウム材とは各種アルミニウム合
金材を指す。
In the present invention, the aluminum material refers to various aluminum alloy materials.

本発明においてめっき処理前に少なくとも押出材のめっ
きされるべき部分を例えば有機溶剤で脱脂洗浄するのは
被覆層の均一性と密着性を確保するだめに必要なことで
あり、また亜鉛置換処理を行うのも密着性をより向上さ
せるために必要なものである。
In the present invention, it is necessary to degrease and wash at least the part of the extruded material to be plated with an organic solvent before the plating process in order to ensure the uniformity and adhesion of the coating layer. This is necessary to further improve adhesion.

本発明において行う亜鉛置換処理は、その方法として一
般的な水酸化ナトリウムと酸化亜鉛を主体とする液中て
行う浸漬法か用いられるが、アルミニウム押出管材を曲
げ加工あるいは切断することなく長尺のまま連続的に処
理するので装置、手順も比較的簡単にすることかできる
。また置換後の洗浄もこれに続く接触めっきに支障のな
い限り簡単に行うことができる。
The zinc replacement treatment carried out in the present invention uses a general immersion method in a solution mainly consisting of sodium hydroxide and zinc oxide. Since the process is carried out continuously, the equipment and procedures can be relatively simple. Further, cleaning after replacement can be easily performed as long as it does not interfere with the subsequent contact plating.

本発明において接触めっきに用いる電解液は電気めっき
に供される既知の亜鉛化合物含有電解液か適用できるが
、酸化亜鉛及び/又は硫酸亜鉛を主体とする電解液か好
ましく用いられる。
In the present invention, the electrolytic solution used for contact plating can be any known zinc compound-containing electrolytic solution used for electroplating, but an electrolytic solution mainly containing zinc oxide and/or zinc sulfate is preferably used.

接触めっきは、被めっき面を陰極とし、通常電解液を含
浸させた綿布ないしは軟質フェルト類より成る含浸体で
覆われた黒鉛質の電極を陽極として被めっき面上を接触
移動させながらめっきを施す手法で筆めっき、ブラシめ
っきとも呼称されているものであり、本発明においても
この方法に従って行うことができる。
In contact plating, the surface to be plated is used as a cathode, and a graphite electrode covered with an impregnated material usually made of cotton cloth or soft felt impregnated with electrolyte is used as an anode, and plating is performed while moving the electrode in contact with the surface to be plated. This method is also called brush plating or brush plating, and this method can also be used in the present invention.

本発明において亜鉛被覆層の厚さは好ましくは0.5〜
10gmである。亜鉛被覆層の厚さか0.5gm未満で
はその管材にフィンを装着して両者をろう付した後、十
分な亜鉛拡散層が得られないため熱交換器としての実使
用時に孔食が発生する危険性があり、10gmを越える
と拡散層における亜鉛の濃度が高すぎることとなって孔
食発生防止効果が飽和してしまうと同時に白錆と言われ
る全面腐食が発生し易くなるので共に好ましくない。
In the present invention, the thickness of the zinc coating layer is preferably 0.5 to
It is 10gm. If the thickness of the zinc coating layer is less than 0.5 gm, there is a risk that pitting corrosion will occur during actual use as a heat exchanger because a sufficient zinc diffusion layer will not be obtained after attaching fins to the pipe material and brazing the two together. If the zinc concentration exceeds 10 gm, the concentration of zinc in the diffusion layer becomes too high, and the effect of preventing pitting corrosion is saturated, and at the same time, general corrosion called white rust is likely to occur, which are both undesirable.

(実施例) 以下実施例により本発明をさらに詳細に説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

実施例1 第1図に示すような形状のアルミニウム押出管材1 (
A1050)をトリクロルエチレンで脱脂後NaOH5
00g/jlZno  100g/文を含有する浸漬液
中に室温で30秒間浸浸漬ることにより亜鉛置換処理を
行い、水洗後ZnO40g / fL、 Z n S 
O480g / Jlを含有する電解液を含浸させた綿
布で覆われた黒鉛電極を用い、25A/drn’、11
V、電極接触時間25秒の条件で摩擦しながら約1.5
gmの亜鉛めっきを管材の表面に施した。得られた管材
を試料lとした。
Example 1 Aluminum extruded pipe material 1 (
After degreasing A1050) with trichlorethylene, NaOH5
ZnO 40g/fL, ZnS after rinsing with water.
Using a graphite electrode covered with a cotton cloth impregnated with an electrolyte containing O480g/Jl, 25A/drn', 11
V, about 1.5 while rubbing under the condition of electrode contact time 25 seconds.
GM zinc plating was applied to the surface of the tube material. The obtained tube material was designated as sample 1.

また、比較例として溶剤脱脂後亜鉛置換処理を行わず上
記の条件で接触めっきを施した管材試料を作製し、これ
を試料2とした。また、従来例として亜鉛温材、亜鉛溶
融めっき及び亜鉛置換処理をそれぞれ別個に行った管材
試料を作製し、これらをそれぞれ試料3,4及び5とし
た。
In addition, as a comparative example, a pipe material sample was prepared which was subjected to contact plating under the above conditions without performing zinc substitution treatment after solvent degreasing, and this was designated as Sample 2. In addition, as a conventional example, pipe material samples were prepared in which zinc hot material, zinc hot-dip plating, and zinc replacement treatment were performed separately, and these were designated as samples 3, 4, and 5, respectively.

これら5種の試料についてめっきの均一性、密着性、ろ
う付性及びろう付加熱橋の亜鉛の拡散分布を試験した。
These five types of samples were tested for plating uniformity, adhesion, brazeability, and zinc diffusion distribution in the brazed thermal bridge.

これらの結果を第1表に示す。These results are shown in Table 1.

なお、めっきの均一性は、数ケ所の亜鉛のめっき厚さを
調べて目標めっき厚さ1.5ルmに対して±17zmの
範囲に入っていれば「良」、範囲外の場合は「不可」と
した。
The uniformity of the plating is determined by examining the zinc plating thickness at several locations, and if it is within the range of ±17 zm relative to the target plating thickness of 1.5 lm, it is considered "good", and if it is outside the range, it is "good". Not possible.”

密着性については、第2図に示す管材の曲げ加工を想定
し、半径8腸■の曲率で180°曲げた面について亜鉛
めっき層がはがれなければ「良」、少しでもはがれた場
合を「不可」とした。
Regarding adhesion, assuming the bending process of the pipe material shown in Figure 2, if the galvanized layer does not peel off on the surface bent 180 degrees with a radius of 8 mm, it is judged as "good", and if it peels off even slightly, it is judged as "unacceptable". ”.

ろう付性は、各試料管材と板厚1msのプレージングシ
ート(BA12pc)を逆T字型に組合せ、これをKA
!LF4/に2AiF5・H2Oの粉末を水に溶かして
約10重量%の濃度とした溶液に浸漬した後、乾燥を十
分行って水分を除去してから露点−30℃以下のN2ガ
ス雰囲気中で600℃×3分の加熱するろう付を行って
その結果を評価した。この評価ではろう付によるフィレ
ットの形成状況、亜鉛による溶食等を観察し、熱交換器
として使用可能なものを「良」とし、使用上問題がある
ものを「不可」とした。
Brazing properties were determined by combining each sample tube material with a plating sheet (BA12pc) with a plate thickness of 1 ms in an inverted T-shape.
! After immersing LF4/ in a solution of 2AiF5/H2O powder dissolved in water to a concentration of approximately 10% by weight, thoroughly drying to remove moisture, it was heated to 600°C in an N2 gas atmosphere with a dew point of -30°C or lower. Brazing was performed by heating for 3 minutes at °C, and the results were evaluated. In this evaluation, the state of fillet formation due to brazing, corrosion due to zinc, etc. was observed, and those that could be used as heat exchangers were rated "good," and those that had problems in use were rated "unacceptable."

亜鉛拡散分布は、上記のろう付加熱後試料の断面なEP
MAで分析し、亜鉛のピーク濃度0.8〜5%、拡散深
さ100〜200gmの両者を同時に満足する場合「良
」とし、それ以外を「不可」とした。
The zinc diffusion distribution is the cross-sectional EP of the sample after the above brazing heat.
When analyzed by MA, if both the zinc peak concentration of 0.8 to 5% and the diffusion depth of 100 to 200 gm were satisfied at the same time, it was judged as "good", and in other cases, it was judged as "unsatisfactory".

第1表の結果から明らかなように、本発明方法による亜
鉛被覆アルミニウム管材は、比較例及び従来例に比べて
均一性、密着性、ろう付性、ろう打抜の亜鉛の拡散のす
べてにおいて良好で熱交換器用管材として非常に優れた
ものである。
As is clear from the results in Table 1, the zinc-coated aluminum pipe material produced by the method of the present invention has better uniformity, adhesion, brazability, and diffusion of zinc during solder punching than the comparative and conventional examples. This makes it an excellent tube material for heat exchangers.

実施例2 5を図に示すような形状のアルミニウム押出管材1 (
A3003)をトリクロルエチレンで脱脂後NaOH5
00g/l、ZnO100g/文を含有する浸漬液中に
室温で30秒間浸漬することにより亜鉛置換処理を行い
、水洗後Zn040g/l、Z n S O4180g
 / lを含有する電解液を含浸させた綿布で覆われた
黒鉛電極を用い第2表に示すように電極接触時間を変え
ることによりめっき厚さを変えた7種の管材試料(No
、1〜7)を作製し、それら試料を実施例1の場合と同
様な方法で評価した。評価結果を第2表に示す。
Example 2 An extruded aluminum pipe material 1 (
After degreasing A3003) with trichlorethylene, NaOH5
Zinc replacement treatment was performed by immersing the sample in an immersion solution containing 00 g/l and 100 g/liter of ZnO at room temperature for 30 seconds, and after washing with water Zn040 g/l and 180 g of ZnSO4.
Seven types of tube material samples (No.
, 1 to 7) were prepared, and the samples were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.

第2表の結果から明らかなように、亜鉛被覆層厚さ0.
5〜10gmの範囲内にある本発明方法によるアルミニ
ウム管材は熱交換器用管材として優れた特性を示してい
る。
As is clear from the results in Table 2, the zinc coating layer thickness is 0.
The aluminum tube material produced by the method of the present invention having a weight in the range of 5 to 10 gm exhibits excellent properties as a tube material for a heat exchanger.

実施例3 第1図に示すような形状のアルミニウム押出管材lAl
100)をトリクロルエチレンて脱脂後NaOH500
g/見、ZnO100g/文を含有する浸漬液中に室温
で30秒間浸漬することにより亜鉛置換処理を行い、水
洗後ZnO40g/ l 、 Z n S O,s  
、180 g/ fLを含有す  ゛る電解液を含浸さ
せた綿布で覆われた黒鉛電極を用い、l IV、24A
/drn’、電極接触時間35秒の電解条件て約2pm
厚の亜鉛めっきを施した。これを第2図に示すように蛇
行状に曲げ、板厚0.16mmのプレージングシート2
 (BA12pc)と組合せ、実施例1と同様な条件で
ろう付を行って第2図のような熱交換器を作った。
Example 3 Aluminum extruded pipe material lAl shaped as shown in Fig. 1
100) was degreased with trichlorethylene and then NaOH500
ZnSO,s
, using a graphite electrode covered with a cotton cloth impregnated with an electrolyte containing 180 g/fL, 1 IV, 24 A.
/drn', about 2 pm under electrolysis conditions with electrode contact time of 35 seconds
Thick galvanized. This was bent into a serpentine shape as shown in Figure 2, and a plating sheet 2 with a thickness of 0.16 mm was prepared.
(BA12pc) and brazing was performed under the same conditions as in Example 1 to produce a heat exchanger as shown in Fig. 2.

この熱交換器にアルゴンガスな20kg/crn’の圧
力で封入し、全体を約5000時間塩水噴霧試験を行っ
たが、腐食によってガスが漏れることはなかった。
This heat exchanger was filled with argon gas at a pressure of 20 kg/crn', and the whole was subjected to a salt spray test for about 5,000 hours, but no gas leaked due to corrosion.

また、それを切断して孔食の深さを調べたが、いずれも
亜鉛の拡散層(200pm)まで到達せず、本発明によ
る亜鉛被12管材が耐食的に優れていることか判明した
In addition, the pitting corrosion depth was examined by cutting it, but none of the pitting corrosion reached the zinc diffusion layer (200 pm), indicating that the zinc-coated 12 pipe material according to the present invention has excellent corrosion resistance.

(発明の効果) 本発明の製造方法によればアルミニウム押出管材の連続
的亜鉛被覆処理が可能であり、被覆処理後の折曲げ加工
にも十分耐え得るような皮膜の均一性と密着性か得られ
る。また接触めっき法を利用するのでめっきの高速性と
も相まって低コストの管材が製造できる。これら品質及
びコストの優位性はアルミニウム管材メーカーばかりで
なく熱交換器メーカーにも大きく寄与するものである。
(Effects of the Invention) According to the manufacturing method of the present invention, it is possible to continuously coat aluminum extruded pipes with zinc, and it is possible to obtain coating uniformity and adhesion that can sufficiently withstand bending after coating. It will be done. In addition, since contact plating is used, combined with the high speed of plating, it is possible to manufacture pipe materials at low cost. These quality and cost advantages greatly contribute not only to aluminum tube manufacturers but also to heat exchanger manufacturers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアルミニウム押出管材の斜視図、第2図はエア
コン用熱交換器の一例を示す斜視図である。 符号の説明
FIG. 1 is a perspective view of an extruded aluminum tube material, and FIG. 2 is a perspective view showing an example of a heat exchanger for an air conditioner. Explanation of symbols

Claims (3)

【特許請求の範囲】[Claims] (1)アルミニウム材を熱間又は温間で管状に押出成形
したのち脱脂洗浄し、亜鉛置換処理後電解液の含浸体で
覆われた電極を用いて接触めっきを行い、押出管材表面
に亜鉛被覆層を形成させることを特徴とする熱交換器用
管材の製造方法。
(1) After hot or warm extrusion of aluminum material into a tubular shape, it is degreased and washed, and after zinc substitution treatment, contact plating is performed using an electrode covered with an electrolyte-impregnated body, and the surface of the extruded tubular material is coated with zinc. A method for manufacturing a tube material for a heat exchanger, the method comprising forming a layer.
(2)電解液が酸化亜鉛及び/又は硫酸亜鉛を主体とす
る液である特許請求の範囲第1項記載の熱交換器用管材
の製造方法。
(2) The method for manufacturing a heat exchanger tube material according to claim 1, wherein the electrolytic solution is a solution mainly containing zinc oxide and/or zinc sulfate.
(3)亜鉛被覆層の厚さが0.5〜10μmの範囲にあ
る特許請求の範囲第1項又は第2項記載の熱交換器用管
材の製造方法。
(3) The method for manufacturing a heat exchanger tube material according to claim 1 or 2, wherein the zinc coating layer has a thickness in the range of 0.5 to 10 μm.
JP15310187A 1987-06-19 1987-06-19 Production of tube material for heat exchanger Pending JPS63317693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15310187A JPS63317693A (en) 1987-06-19 1987-06-19 Production of tube material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15310187A JPS63317693A (en) 1987-06-19 1987-06-19 Production of tube material for heat exchanger

Publications (1)

Publication Number Publication Date
JPS63317693A true JPS63317693A (en) 1988-12-26

Family

ID=15554994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15310187A Pending JPS63317693A (en) 1987-06-19 1987-06-19 Production of tube material for heat exchanger

Country Status (1)

Country Link
JP (1) JPS63317693A (en)

Similar Documents

Publication Publication Date Title
KR0139548B1 (en) Method pof manufacturing heat exchanger
US3909209A (en) Method of treating aluminum and aluminum alloys and article produced thereby
CA2346587C (en) Method of manufacturing an aluminum product
KR100778205B1 (en) Method of manufacturing an assembly of brazed components
US6475301B1 (en) Conversion coatings on aluminum from KF solutions
KR100696928B1 (en) Pickling agent for the chemical convertion coating of heat exchanger, method of pickling heat exchanger
US4177325A (en) Aluminium or copper substrate panel for selective absorption of solar energy
CA1193220A (en) Steel strip coated with amorphous metal base, tin intermediate and chronium surface layers
JPS5815555B2 (en) Treatment method before electroplating metal on titanium or titanium alloys
US5014774A (en) Biocidal coated air conditioning evaporator
US4104134A (en) Method for making an aluminum or copper substrate panel for selective absorption of solar energy
JP2005257257A (en) Heat exchanger and its manufacturing method
US4888218A (en) Process for applying a zinc coating to an aluminum article
US2398738A (en) Process of metal coating light metals
US4852791A (en) Method for making corrosion resistance heat exchangers
JPS63317693A (en) Production of tube material for heat exchanger
JP2001502757A (en) Advanced electrolytic corrosion protection
JP2579234B2 (en) Aluminum fin material for heat exchanger and method for producing the same
JPH0527717B2 (en)
JP3369553B2 (en) Plating film structure with heat and corrosion resistance
JPS59229280A (en) Production of heat exchanger formed of aluminum
JPS6144194A (en) Manufacture of heat exchange medium made of friction drive type extruded material
JPS63143285A (en) Production of clad material for heat exchanger
EP0771888A1 (en) Process for the protection against external corrosion in copper-based heat exchangers
JPH03114666A (en) Vapor brazing method for al or al alloy