JPS6331762B2 - - Google Patents

Info

Publication number
JPS6331762B2
JPS6331762B2 JP4077580A JP4077580A JPS6331762B2 JP S6331762 B2 JPS6331762 B2 JP S6331762B2 JP 4077580 A JP4077580 A JP 4077580A JP 4077580 A JP4077580 A JP 4077580A JP S6331762 B2 JPS6331762 B2 JP S6331762B2
Authority
JP
Japan
Prior art keywords
light
wave component
wave
components
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4077580A
Other languages
Japanese (ja)
Other versions
JPS56137317A (en
Inventor
Hiroki Nakajima
Minoru Kyono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4077580A priority Critical patent/JPS56137317A/en
Publication of JPS56137317A publication Critical patent/JPS56137317A/en
Publication of JPS6331762B2 publication Critical patent/JPS6331762B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 本発明は、多重反射光干渉偏波器、特に複数種
類の誘電体薄膜を積層した光偏光フイルタを対向
して配置すると共に非所望な全反射を防止するよ
うにして上記光偏光フイルタによつて多重反射を
行なわせ、光成分中のP波とS波とを分離するよ
うにした多重反射光干渉偏波器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a multi-reflection light interference polarizer, in particular, a multi-reflection light interference polarizer, in particular, a light polarizing filter in which a plurality of types of dielectric thin films are laminated, which are arranged to face each other and prevent undesired total reflection. The present invention relates to a multi-reflection light interference polarizer in which multiple reflection is performed by the above-mentioned light polarization filter to separate P waves and S waves in a light component.

従来から光の偏波成分を分離する手段として方
解石などの結晶体を用いることが行なわれている
が、光干渉フイルタがP波成分とS波成分とを分
離する機能をもつことも知られている。しかし、
該光干渉フイルタを光偏光フイルタとして用いる
場合P波成分とS波成分との分離精度が十分でな
く例えば50dBないし60dB程度の高い精度を要す
る箇所には使用し得ないものであつた。
Conventionally, crystals such as calcite have been used as a means of separating the polarized components of light, but it is also known that optical interference filters have the function of separating P-wave components and S-wave components. There is. but,
When the optical interference filter is used as an optical polarization filter, the accuracy of separating the P wave component and the S wave component is insufficient, and it cannot be used where high accuracy of, for example, 50 dB to 60 dB is required.

本発明は、上記の点を解決することを目的とし
ており、例えばガラスの両面に光偏光フイルタを
対向せしめて多重反射を形成せしめて高精度でP
波成分とS波成分とを分離するようにすることを
目的としている。そしてそのため本発明の多重反
射光干渉偏波器は、P波成分あるいはS波成分あ
るいはその両者成分を含む光の通路上に介在せし
めてP波成分とS波成分とを分離する偏波器にお
いて、複数種類の誘電体薄膜を多層構造に積層し
た誘電体多層膜を光偏光フイルタとして使用する
よう構成されてなり、偏光フイルタに用いた材料
のうち屈折率の小さい方と等しいかまたはこれよ
りも屈折率の大きい第1の物質を挾んで上記光偏
光フイルタを対向させると共に上記各光偏光フイ
ルタの裏面に適宜屈折率の大きい第2の物質を裏
あてして非所望な全反射にもとづく反射を防止す
るよう構成し、上記第1の物質を通つて上記光偏
光フイルタに対して所望の入射角をもつて入射さ
れた光のうちの上記S波成分と上記P波成分にく
らべて大きい値をもつて反射せしめかつ該反射さ
れた光を上記対向する他の光偏光フイルタに所望
の入射角をもつて入射せしめて上記P波成分とS
波成分とを分離するようにしたことを特徴として
いる。以下図面を参照しつつ説明する。
The present invention aims to solve the above-mentioned problems. For example, by arranging optical polarizing filters on both sides of glass to form multiple reflections, it is possible to obtain high-precision polarization.
The purpose is to separate the wave component and the S-wave component. Therefore, the multiple reflection light interference polarizer of the present invention is a polarizer that is interposed on the path of light containing P-wave components, S-wave components, or both components to separate P-wave components and S-wave components. , a dielectric multilayer film in which multiple types of dielectric thin films are laminated in a multilayer structure is used as an optical polarizing filter, and the refractive index is equal to or greater than the one of the materials used for the polarizing filter. The light polarizing filters are placed opposite to each other with a first substance having a high refractive index sandwiched between them, and a second substance having a high refractive index is appropriately placed on the back side of each of the light polarizing filters to prevent reflection based on undesired total reflection. of the light that is incident on the light polarization filter at a desired angle of incidence through the first substance and has a value larger than that of the S wave component and the P wave component. The reflected light is made to enter the other opposing light polarizing filter at a desired angle of incidence to separate the P wave component and the S wave component.
It is characterized by separating the wave components. This will be explained below with reference to the drawings.

第1図は本発明にいう光偏光フイルタを説明す
る説明図、第2図は本発明の多重反射光干渉偏波
器の一実施例構成、第3図A,B,Cは本発明の
多重反射光干渉偏波器における問題点を説明する
説明図、第4図は本発明の多重反射光干渉偏波器
の応用例を示す。
FIG. 1 is an explanatory diagram illustrating the optical polarization filter according to the present invention, FIG. 2 is an embodiment of the configuration of a multiple reflection light interference polarizer according to the present invention, and FIG. FIG. 4, which is an explanatory diagram for explaining problems in a reflected light interference polarizer, shows an application example of the multiple reflected light interference polarizer of the present invention.

第1図において、1は光偏光フイルタ、2−
1,2−2,2−3,2−4,……は夫々誘電体
層を表わしている。例えば誘電体層2−1,2−
2,……は誘電率が大小大小の如き関係をもつよ
うにされ光の波長入に対してλ/4の層厚をもつ
ようにされている。このような光偏光フイルタ1
は周知の如く光の波長λを横軸にとるとき反射率
が所定の波長以下において急速に小となるが、こ
の波長λ0近傍においてP波成分の反射率とS波成
分の反射率とが比較的大きく異なる。また、光偏
光フイルタに入射される光の入射角を横軸にとる
と、S波成分の反射率は入射角が増大するにつ
れて単調に増大するが一方P波成分の反射率は入
射角が所定の角度近傍にあるとき最小値をもつ
ものとなる。
In FIG. 1, 1 is a light polarizing filter, 2-
1, 2-2, 2-3, 2-4, . . . represent dielectric layers, respectively. For example, dielectric layers 2-1, 2-
2, . . . have dielectric constants that have a relationship of magnitude, and have a layer thickness of λ/4 with respect to the wavelength of light incident thereon. Such a light polarizing filter 1
As is well known, when the wavelength of light λ is plotted on the horizontal axis, the reflectance decreases rapidly below a certain wavelength, but near this wavelength λ 0 , the reflectance of the P-wave component and the reflectance of the S-wave component are There are relatively large differences. Furthermore, when the horizontal axis is the incident angle of light incident on the polarizing filter, the reflectance of the S-wave component increases monotonically as the incident angle increases, while the reflectance of the P-wave component increases as the incident angle increases. It has a minimum value when it is near the angle of .

第2図は本発明の一実施例構成を示し、図中の
符号1A,1Bは夫々第1図に対応する光偏光フ
イルタ、3は本発明にいう多重反射光干渉偏波
器、4は雰囲気、5は例えばガラスであつて雰囲
気4よりも大きい屈折率をもつもの、6A,6B
は夫々例えばガラスであつて光偏光フイルタとの
境界面で全反射を起さないように適度に大きい屈
折率をもつもの、7は入射光であつて例えばP波
成分とS波成分とを含んでいるもの、8−1,8
−2,……は夫々反射されたS波成分、9は出力
されたS波成分、10−1,10−2,……は透
過されたP波成分を表わしている。
FIG. 2 shows the configuration of an embodiment of the present invention, in which reference numerals 1A and 1B are optical polarization filters corresponding to those in FIG. 1, 3 is a multi-reflection light interference polarizer according to the present invention, and 4 is an atmosphere. , 5 is glass, for example, and has a refractive index higher than atmosphere 4, 6A, 6B
7 is, for example, glass and has a suitably large refractive index so as not to cause total reflection at the interface with the polarizing filter, and 7 is the incident light, which includes, for example, a P-wave component and an S-wave component. Deiramono, 8-1, 8
-2, . . . represent reflected S wave components, 9 represents output S wave components, and 10-1, 10-2, . . . represent transmitted P wave components.

P波成分とS波成分とを含んでいる入射光7が
ガラス5を介して光偏光フイルタ1Aに対して所
定の入射角をもつて入射されると、入射光7に含
まれるS波成分は大部分反射されたS波成分8−
1となつて反射され、一方入射光7に含まれるP
波成分は大部分透過されたP波成分10−1とな
つて透過される。そして、S波成分8−1は他方
の光偏光フイルタ1Bに入射され、ここにおいて
も大部分のS波成分は反射されて図示反射された
S波成分8−2となり、S波成分8−1中に含ま
れていたP波成分は大部分透過されて図示透過さ
れたP波成分10−2となる。以下同様となり、
最終的にS波成分のみが出力されたS波成分9と
して出力される。今光偏光フイルタ1Aまたは1
Bの分離率がη(η<1)であるとするとn回反
射された結果の総合された分離率はηoとなり、出
力されたS波成分9中にはP波成分が殆んど含ま
れないものとなる。
When incident light 7 containing a P-wave component and an S-wave component is incident on the optical polarization filter 1A through the glass 5 at a predetermined angle of incidence, the S-wave component included in the incident light 7 is Mostly reflected S-wave component 8-
1 and is reflected, while P contained in the incident light 7
Most of the wave components are transmitted as P wave components 10-1. Then, the S-wave component 8-1 is incident on the other optical polarization filter 1B, where most of the S-wave component is reflected and becomes the reflected S-wave component 8-2, and the S-wave component 8-1 Most of the P-wave components contained therein are transmitted and become the transmitted P-wave component 10-2 shown in the figure. The same applies below,
Finally, only the S wave component is output as the S wave component 9. Now light polarizing filter 1A or 1
If the separation rate of B is η (η<1), the total separation rate of the results of n reflections is η o , and the output S wave component 9 contains almost all P wave components. It becomes something that cannot be done.

第3図A,B,Cは本発明の多重反射光干渉偏
波器における問題点を説明する説明図であり、図
中の符号1A,4,5,6Aは第2図に対応し、
11は入射光、12は出力光を表わしている。
FIGS. 3A, B, and C are explanatory diagrams for explaining problems in the multiple reflection light interference polarizer of the present invention, and symbols 1A, 4, 5, and 6A in the figures correspond to FIG. 2,
11 represents incident light, and 12 represents output light.

本発明の多重反射光干渉偏波器3は第2図を参
照して説明した如くP波成分とS波成分とを分離
する機能をもつものであるが、例えば第3図A図
示の如く雰囲気4から直接的に入射光11が光偏
光フイルタ1Aに入射されると、周知の如く入射
角iにくらべて屈折角0が小となり、該角度0
限度以下になると光偏光フイルタ1Aの上記分離
機能が大きく低下することが生じる。また第3図
B図示の如く、雰囲気4よりも大きい屈折率をも
つガラス5をもうけて光偏光フイルタ1Aに入射
させた場合においても、光偏光フイルタ1Aの裏
面が屈折率の小さい例えば雰囲気4に露出してい
ると、周知の如く全反射を生じて折角分離したP
波成分が非所望に反射されることとなる。更に第
3図C図示の如く屈折率の大きいガラス6Aによ
つて光偏光フイルタ1Aの裏打ちを行なつても、
第3図C図示の如くガラス6Aの面PLにおいて
全反射を生じるおそれがあり注意を要する。
The multiple reflection light interference polarizer 3 of the present invention has the function of separating the P wave component and the S wave component as explained with reference to FIG. When the incident light 11 directly enters the light polarizing filter 1A from 4, the refraction angle 0 becomes smaller than the incident angle i, and when the angle 0 becomes less than the limit, the above separation of the light polarizing filter 1A A significant decline in function occurs. Further, as shown in FIG. 3B, even when a glass 5 having a refractive index higher than that of the atmosphere 4 is provided and the light is incident on the polarizing filter 1A, the back surface of the polarizing filter 1A is exposed to the atmosphere 4 having a small refractive index. If it is exposed, as is well known, total internal reflection will occur and the P will be separated.
Wave components will be reflected undesirably. Furthermore, even if the polarizing filter 1A is lined with a glass 6A having a high refractive index as shown in FIG. 3C,
As shown in FIG. 3C, there is a risk that total reflection will occur on the surface PL of the glass 6A, so care must be taken.

第4図は本発明の多重反射光干渉偏波器を用い
た1つの応用例を示している。図中の符号1A,
1Bは第2図に対応し、3A,3Bは夫々第2図
に対応する多重反射光干渉偏波器、13はS波成
分をもつレーザ光、14は偏波器3Aの出力光、
15は偏波器3Bの入力光、16は偏波器3Bの
出力光、17は非所望な干渉光、18は干渉光中
の偏波器3Bからの出力光、19は偏波器3Aに
対する干渉入力光、20−1,20−2,……お
よび21−1,21−2,……は透過光、22お
よび23は例えばフアラデイ回転子や施光板など
の光制御手段であつて図示左から右へ通過する光
は施光されることなく通過され図示右から左へ通
過する光は90゜施光されるものを表わしている。
FIG. 4 shows one application example using the multiple reflection light interference polarizer of the present invention. Code 1A in the figure,
1B corresponds to FIG. 2, 3A and 3B are multiple reflection light interference polarizers corresponding to FIG. 2, 13 is a laser beam having an S wave component, 14 is the output light of the polarizer 3A,
15 is the input light of the polarizer 3B, 16 is the output light of the polarizer 3B, 17 is the undesired interference light, 18 is the output light from the polarizer 3B in the interference light, and 19 is the output light for the polarizer 3A. 20-1, 20-2, . . . and 21-1, 21-2, . . . are transmitted lights, and 22 and 23 are light control means such as a Faraday rotator or a light beam plate, which are shown on the left in the figure. The light passing from the right to the right passes through without being illuminated, and the light passing from the right to the left in the figure represents that which is illuminated at 90 degrees.

高い純度のS波成分をもつレーザ光13を用い
る装置において1つの大きい問題点は、非所望な
干渉光17がレーザ光13に干渉することであ
る。第4図図示の場合、レーザ光13は第2図を
参照して説明した如く多重反射されて出力光14
となつて出力される。そして、光制御手段によつ
て施光されることなく偏波器3Bの入力光とな
り、上記と同様に多重反射されて出力光16とな
る。これに対して、図示の如き干渉入力光17が
存在したとしても、次の如く干渉入力光17はす
べて透過されてしまいレーザ光13に対して干渉
を与えることがない。即ち、干渉入力光17がP
波成分とS波成分とを含んでいたとしても、偏波
器3BにおいてP波成分は透過光20−1,20
−2,……となつて透過されてしまう。そしてS
波成分のみよりなる出力光18が光制御手段2
2,23を通つて90゜施光されてP波成分の光と
なつて干渉入力光19となつて偏波器3Aに入力
される。そしてP波成分の干渉入力光19は偏波
器3A内において透過光21−1,21−2,…
…となつて透過されてしまう。即ちレーザ光13
に対して干渉を生じることがない。
One major problem in devices using laser light 13 with a high purity S-wave component is that unwanted interference light 17 interferes with laser light 13. In the case shown in FIG. 4, the laser beam 13 is multiple-reflected as explained with reference to FIG.
is output as follows. Then, the light becomes the input light of the polarizer 3B without being applied by the light control means, and is subjected to multiple reflections as described above to become the output light 16. On the other hand, even if the interference input light 17 as shown in the figure exists, the interference input light 17 is entirely transmitted and does not interfere with the laser beam 13 as described below. That is, the interference input light 17 is P
Even if it contains a wave component and an S wave component, the P wave component is transmitted by the polarizer 3B as the transmitted light 20-1, 20
-2,... and is transmitted. and S
The output light 18 consisting only of wave components is transmitted to the light control means 2.
2 and 23, the light is applied at 90 degrees to become P-wave component light, which becomes interference input light 19 and is input to the polarizer 3A. Then, the P-wave component interference input light 19 passes through the polarizer 3A as transmitted light 21-1, 21-2, . . .
...and it becomes transparent. That is, the laser beam 13
There will be no interference with the

以上説明した如く、本発明によれば、従来分離
率の劣つていた光偏光フイルタを用いて高い精度
でP波成分および/またはS波成分を分離するこ
とが可能となる。
As described above, according to the present invention, it is possible to separate the P wave component and/or the S wave component with high precision using an optical polarizing filter, which has conventionally had a poor separation rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にいう光偏光フイルタを説明す
る説明図、第2図は本発明の多重反射光干渉偏波
器の一実施例構成、第3図A,B,Cは本発明の
多重反射光干渉偏波器における問題点を説明する
説明図、第4図は本発明の多重反射光干渉偏波器
の応用例を示す。 図中、1,1A,1Bは光偏光フイルタ、2−
1,2−2,……は夫々誘電体層、3,3A,3
B,は多重反射光干渉偏波器、4は雰囲気、5は
ガラス、6A,6Bは夫々ガラス、7は入射光、
8−1,8−2,……は夫々反射されたS波成
分、9は出力されたS波成分、10−1,10−
2,……は夫々透過されたP波成分、22は光制
御手段を表わしている。
FIG. 1 is an explanatory diagram illustrating the optical polarization filter according to the present invention, FIG. 2 is an embodiment of the configuration of a multiple reflection light interference polarizer according to the present invention, and FIG. FIG. 4, which is an explanatory diagram for explaining problems in a reflected light interference polarizer, shows an application example of the multiple reflected light interference polarizer of the present invention. In the figure, 1, 1A, 1B are optical polarizing filters, 2-
1, 2-2, ... are dielectric layers, 3, 3A, 3, respectively.
B, is a multiple reflected light interference polarizer, 4 is the atmosphere, 5 is glass, 6A and 6B are each glass, 7 is incident light,
8-1, 8-2, ... are the reflected S-wave components, 9 is the output S-wave component, 10-1, 10-
2, . . . represent transmitted P-wave components, and 22 represents a light control means.

Claims (1)

【特許請求の範囲】[Claims] 1 P波成分あるいはS波成分あるいはその両者
成分を含む光の通路上に介在せしめてP波成分と
S波成分とを分離する偏波器において、複数種類
の誘電体薄膜を多層構造に積層した誘電体多層膜
を光偏光フイルタとして使用するよう構成されて
なり、偏光フイルタに用いた材料の屈折率の小さ
い方と等しいか、またはこれよりも屈折率の大き
い第1の物質を挾んで上記光偏光フイルタを対向
させると共に上記各光偏光フイルタの裏面に適宜
に屈折率の大きい第2の物質を裏あてして非所望
な全反射にもとづく反射を防止するよう構成し、
上記第1の物質を通つて上記光偏光フイルタに対
して所望の入射角をもつて入射された光のうちの
上記S波成分を上記P波成分にくらべて大きい値
をもつて反射せしめかつ該反射された光を上記対
向する他の光偏光フイルタに所望の入射角をもつ
て入射せしめて上記P波成分とS波成分とを分離
するようにしたことを特徴とする多重反射光干渉
偏波器。
1 In a polarizer that separates P-wave components and S-wave components by intervening on the path of light containing P-wave components, S-wave components, or both components, multiple types of dielectric thin films are laminated in a multilayer structure. The dielectric multilayer film is configured to be used as an optical polarizing filter, and the above-mentioned light is sandwiched between a first substance having a refractive index equal to or larger than the smaller refractive index of the material used for the polarizing filter. The polarizing filters are arranged to face each other, and a second substance having a suitably large refractive index is placed on the back surface of each of the optical polarizing filters to prevent reflection based on undesired total internal reflection,
The S-wave component of the light incident on the light polarization filter at a desired angle of incidence through the first substance is reflected with a larger value than the P-wave component, and Multi-reflected light interference polarization characterized in that the reflected light is made to enter the other opposing light polarizing filter at a desired angle of incidence to separate the P wave component and the S wave component. vessel.
JP4077580A 1980-03-28 1980-03-28 Interference polarizer of multireflection light Granted JPS56137317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077580A JPS56137317A (en) 1980-03-28 1980-03-28 Interference polarizer of multireflection light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077580A JPS56137317A (en) 1980-03-28 1980-03-28 Interference polarizer of multireflection light

Publications (2)

Publication Number Publication Date
JPS56137317A JPS56137317A (en) 1981-10-27
JPS6331762B2 true JPS6331762B2 (en) 1988-06-27

Family

ID=12589994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077580A Granted JPS56137317A (en) 1980-03-28 1980-03-28 Interference polarizer of multireflection light

Country Status (1)

Country Link
JP (1) JPS56137317A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381278A (en) * 1991-05-07 1995-01-10 Canon Kabushiki Kaisha Polarization conversion unit, polarization illumination apparatus provided with the unit, and projector provided with the apparatus
DE4317140A1 (en) * 1993-05-22 1994-11-24 Andreas Biedermann Variable color filter
WO1997024637A1 (en) * 1996-01-03 1997-07-10 Hughes-Jvc Technology Corporation Fresnel rhomb polarization converter
US6487014B2 (en) * 1996-08-12 2002-11-26 National Research Council Of Canada High isolation optical switch, isolator or circulator having thin film polarizing beam-splitters
US5912762A (en) * 1996-08-12 1999-06-15 Li; Li Thin film polarizing device

Also Published As

Publication number Publication date
JPS56137317A (en) 1981-10-27

Similar Documents

Publication Publication Date Title
JP2703930B2 (en) Birefringent diffraction grating polarizer
US4733926A (en) Infrared polarizing beamsplitter
US4536063A (en) Transmissive phase retarder
EP0100178A1 (en) Polarizing elements
US3753822A (en) Method of making a multi-layer optical isolation
KR920010621B1 (en) Optical base material and optical product using the same and method of manufacturing the optical base material
US6317264B1 (en) Thin film polarizing device having metal-dielectric films
JPS6331762B2 (en)
JPH02167502A (en) Optical product and production thereof
JPH11211916A (en) Polarized beam splitter
US6351296B1 (en) Liquid crystal beam polarizer and method for manufacturing thereof
JP3166115B2 (en) Filter device
JPH08254611A (en) Beam splitter
JPH0139561B2 (en)
GB1126392A (en) Optical polariser
EP0484626A1 (en) Polarizing beam splitter
JP2518137Y2 (en) Polarizing beam splitter
JPS6355501A (en) Diffraction grating type polarizing plate
JP2003114326A (en) Polarized beam splitter and optical apparatus using the polarized beam splitter
JPH08146218A (en) Polarizing beam splitter
JPH0242201B2 (en)
JPH0682623A (en) Light beam separating element and its production
JPH03217825A (en) Space optical modulating element
JP2741731B2 (en) Polarizer
JPS6315562B2 (en)