JPS63316489A - Manufacture of infrared sensor - Google Patents

Manufacture of infrared sensor

Info

Publication number
JPS63316489A
JPS63316489A JP62152676A JP15267687A JPS63316489A JP S63316489 A JPS63316489 A JP S63316489A JP 62152676 A JP62152676 A JP 62152676A JP 15267687 A JP15267687 A JP 15267687A JP S63316489 A JPS63316489 A JP S63316489A
Authority
JP
Japan
Prior art keywords
single crystal
etching
hole
infrared sensor
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62152676A
Other languages
Japanese (ja)
Inventor
Masao Yamashita
山下 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP62152676A priority Critical patent/JPS63316489A/en
Publication of JPS63316489A publication Critical patent/JPS63316489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To obtain an infrared sensor having a high S/N ratio and high reliability by making a single crystal as material thinner after etching or polishing the above crystal as well from the rear side through a hole which is made on the substrate when the untreated single crystal is affixed on the above substrate. CONSTITUTION:After fixing a single crystal as material, which is thinned to some extent on a substrate where a hole is made, etching or polishing of the single crystal as material from the rear side through the above hole as well makes its crystal further thinner and then, electrodes and the like are formed and the resultant infrared sensor is formed. For example, a board body 1 consisting of an n-type HgCdTe single crystal is affixed to the center part of a sapphire substrate 2 where a hole 3 is made at its center part. After the single crystal rear side is etched in a spheric form, a through hole 4 is made at the crystal center part and then, an indium (In) electrode 5 as well as a lead 6 are installed and zinc sulfide is coated to complete an infrared sensor. As this sensor lessons an internal strain very much and makes a S/N ratio high, it has a good performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体赤外線センサすなわち光Q子型赤外線
センサの製造方法に係り、特に、その¥J造歩留りの向
上をはかると共に、性能の向上をはかるための方法に関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor infrared sensor, that is, an optical Q-type infrared sensor, and in particular, aims to improve the manufacturing yield thereof and improve the performance. Concerning methods for measuring.

〔従来技術およびその問題点〕[Prior art and its problems]

半導体赤外線センサは、高@度であってかつ応答速度が
高いことから、Ila視カメラ、サーモグラフ、赤外分
光計等に、広く利用されてきているデバイスである。
Semiconductor infrared sensors are devices that have been widely used in Ila cameras, thermographs, infrared spectrometers, and the like because they have a high temperature and a high response speed.

従来最も広く利用されている光導電モードのセンサにお
いては、インジウムアンチモン(InSb)、水限カド
ミウムテルル(HQCdTe)等の化合物半導体の素材
単結晶を薄板状に加工した後、電極をつけ、更に反射防
止膜で表面を被覆したものが用いられている。
In the photoconductive mode sensor, which is the most widely used sensor in the past, a single crystal compound semiconductor material such as indium antimony (InSb) or water-limited cadmium tellurium (HQCdTe) is processed into a thin plate shape, electrodes are attached, and then a reflective layer is formed. The surface is coated with a protective film.

ところで、表面から入射する赤外光は深さ数μmでほと
んど吸収されてしまうため、原理的には、約2素材単結
晶を数μmの厚さまで薄板化すればBa電流が減少しS
/N比が向上すると考えられる。
By the way, most of the infrared light incident from the surface is absorbed at a depth of several micrometers, so in principle, if a single crystal of approximately two materials is thinned to a thickness of several micrometers, the Ba current will decrease and the S
It is thought that this improves the /N ratio.

しかしながら、第2図に示ずように結晶の厚さが薄くな
るに従って、その曲り変形等による格子欠陥が増大し、
センサの特性上雑音が茗しくなるという問題が生じてく
る。このため、実際上の最適厚みは数10μmとされて
いる。しかし、数10μmとはいっても、格子欠陥の原
因となる加工歪を残すことなく結晶を薄板化するには晶
面の技術が要求され、特に、■nS′b%HgCdTe
等の化合物2r導体について番よ烈歪均−薄板化技術は
確立されておらず、製造者毎にノウハウとして技術蓄積
がなされているのが現状である。
However, as shown in Figure 2, as the thickness of the crystal becomes thinner, lattice defects due to bending deformation, etc. increase.
Due to the characteristics of the sensor, a problem arises in that the noise becomes harsh. Therefore, the practical optimum thickness is several tens of micrometers. However, even if the thickness is several tens of micrometers, crystal plane technology is required to thin the crystal without leaving processing strain that causes lattice defects.
For compound 2r conductors such as 2r conductors, there is no established strain uniformity thinning technology, and the technology is currently accumulated as know-how by each manufacturer.

例えば、加工歪等による結晶の不完全性、特に格子欠陥
あるいは組成の局部的不均一によるエネルギーギャップ
の異常、又は、表面処理の不良等により、 ■S/N比の十分なものを安定して得ることができない
For example, due to crystal imperfections due to processing strain, etc., energy gap abnormalities due to lattice defects or local non-uniformity of composition, or poor surface treatment, etc. can't get it.

■受光面上における感度分布にばらつきがある。■There is variation in the sensitivity distribution on the light receiving surface.

等の不都合が生じ、センサ完成品の性能検査等において
、雑音大で不良品となるものが多く、製造歩留りが悪い
という問題があった。
In the performance inspection of finished sensor products, many products are rejected due to high noise, resulting in a problem of poor manufacturing yield.

また、素材結晶も高価であり、これらが半導体赤外線セ
ンサが高価格であることの最大の原因となっていた。
Furthermore, the crystal material is also expensive, which is the main reason why semiconductor infrared sensors are expensive.

そこで、これらの問題を解決するため、電極の配置によ
りS/N比を向上させる方法(特開昭56−36028
号)、あるいは受光位置による特性のばらつきを電気回
路的に補正する方法(特開昭57−132031号)等
が試みられている。
Therefore, in order to solve these problems, a method of improving the S/N ratio by arranging electrodes (Japanese Patent Laid-Open No. 56-36028
), or a method of correcting variations in characteristics depending on the light receiving position using an electric circuit (Japanese Patent Application Laid-Open No. 132031/1983), etc. have been attempted.

しかしながら、いずれの方法も、本質的な解決にはなっ
ておらず、特性の向上が望まれていた。
However, none of these methods provides an essential solution, and improvements in characteristics have been desired.

本発明は、前記実情に鑑みてなされたもので、S/N比
が高く、製造歩留りの高い赤外線センサを提供すること
を目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an infrared sensor with a high S/N ratio and a high manufacturing yield.

〔問題点を解決する!ζめの手段〕[Solve the problem! ζth means]

そこで、本発明では、孔を穿設してなる基板上に、ある
程度まで鋳板化した木材単結晶を貼着した後、この孔を
通して、裏面からも素材単結晶を更にエツチング又は研
磨して薄クシ、電極等を形成して赤外線センサを形成す
るようにしている。
Therefore, in the present invention, after pasting a wood single crystal that has been made into a cast plate to some extent on a substrate with holes, the material single crystal is further etched or polished from the back side through the holes to thin it. A comb, electrodes, etc. are formed to form an infrared sensor.

〔作用〕[Effect]

上記方法によれば、孔の部分には、接着Hもないため、
この部分で単結晶が薄くなっていても接着層の残留応力
による格子欠陥附加もなく、受光部全体としての平均厚
みを小さくすることができるため、’ifi M流を大
幅に低減ゼしめることができる。
According to the above method, since there is no adhesive H in the hole part,
Even if the single crystal is thinner in this area, there is no addition of lattice defects due to residual stress in the adhesive layer, and the average thickness of the entire light-receiving area can be reduced, making it possible to significantly reduce the 'ifi M flow. can.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を参照しつつ詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

まず、第1図(a)に示す如くn型HgCdTe単結晶
を(100)面に平行にダイヤモンドカッターでスライ
スし、3.5ffi#+X3.5m厚さ500μmの板
状体1を形成した後、#3000のシリコンカーバイド
(S i C)砥粒でラッピングし、厚さ300μmと
した。
First, as shown in FIG. 1(a), an n-type HgCdTe single crystal was sliced with a diamond cutter parallel to the (100) plane to form a plate-like body 1 of 3.5ffi#+X3.5m and 500μm thick. It was lapped with #3000 silicon carbide (S i C) abrasive grains to a thickness of 300 μm.

この後、この板状体1の周囲に額縁状にテフロン枠を装
着し、厚さ200μmになるまで5%ブロムメタノール
でエツチングを行ない、更にテフロン枠を外してメタノ
ールで洗浄する。
Thereafter, a Teflon frame was attached around the plate-shaped body 1 in the shape of a picture frame, and etching was performed with 5% bromine methanol until the thickness reached 200 μm. Further, the Teflon frame was removed and washed with methanol.

このようにして形成した板状体は、エツチングのばらつ
きに起因して、周囲が幾分厚み大となっているため、マ
スク(図示せず)を装着して、中央部の2.5sX2.
OOamの部分のみを残し、周囲を5%ブロムメタノー
ルでエツチング除去する。そして同様にメタノール洗浄
する(第1図(b))。
The plate-shaped body formed in this way has a somewhat thicker circumference due to variations in etching, so a mask (not shown) is attached to the central part.
Only the OOam portion is left and the surrounding area is removed by etching with 5% bromethanol. Then, it is washed with methanol in the same manner (FIG. 1(b)).

一方、厚さ500μmのサファイア基板2を10mX1
C)u+に切断し、中央部に超音波加工で1.5制径の
孔3を穿孔する。このとき、砥粒としてはダイヤモンド
を使用し、36kHz25Wの加工条件で加工別を作動
せしめた。この後、更にダイヤモンド砥粒でラッピング
し、鏡面加工を行なった後3 u X 3 Uの大きさ
に切断した。
On the other hand, a sapphire substrate 2 with a thickness of 500 μm was placed in a 10 m
C) Cut into u+, and drill a hole 3 with a diameter of 1.5 in the center using ultrasonic processing. At this time, diamond was used as the abrasive grain, and each processing was operated under processing conditions of 36kHz and 25W. Thereafter, it was further lapped with diamond abrasive grains, mirror-finished, and then cut into a size of 3 U x 3 U.

このようにして、中央部に孔3の穿孔せしめられたサフ
ァイア基板2の中央部に、第1図(C)に示す如く前記
メタノール洗浄後のHqCdTe単結晶からなる板状体
1をエポキシ樹脂すを用いて貼着する。
In this way, as shown in FIG. 1(C), a plate-like body 1 made of the HqCdTe single crystal washed with methanol is coated with epoxy resin at the center of the sapphire substrate 2, which has a hole 3 drilled in the center. Attach using.

そして、エポキシ樹脂の硬化後、全体を再び5%ブロム
メタノールに浸漬し最も厚い単結晶周縁部が50μmと
なるまでエツチングする。
After the epoxy resin has hardened, the whole is immersed in 5% bromine methanol again and etched until the thickest single crystal periphery reaches 50 μm.

更に、1%および0.5%ブロムメタノールで各々5分
間および10分間ずつエツチングする。
Further, etching is performed with 1% and 0.5% bromethanol for 5 minutes and 10 minutes, respectively.

このとき、表面は鏡面となり、単結晶縁部は約40μm
となった。また、サファイア基板の孔を通して裏面から
・観察すると単結晶裏面は、第1図(d)に示す如く球
面状にエッチされていることが!g認された。
At this time, the surface becomes a mirror surface, and the edge of the single crystal is approximately 40 μm thick.
It became. Furthermore, when observed from the back side through a hole in the sapphire substrate, the back side of the single crystal was etched into a spherical shape as shown in Figure 1(d)! g was approved.

続いて、第1図(e)に示す如く、単結晶が上面になる
ように置き、鉛直方向から、ガラスビユレットを用いて
1%ブロムメタノールを孔をめがけて滴下しつつ、ルー
ペで結晶の状況観察を行ない、結晶中火部に微細な連通
孔を生じるまで、これを繰り返す。そして、連通孔4が
生じるとすぐ、全体をメタノール熱気中にさらして十分
洗浄した。
Next, as shown in Figure 1(e), place the single crystal with the top surface, and while dropping 1% bromine methanol from the vertical direction into the hole using a glass villet, examine the crystal using a magnifying glass. Observe the situation and repeat this process until fine communication holes are created in the middle part of the crystal. As soon as the communicating holes 4 were formed, the whole was exposed to hot methanol and thoroughly cleaned.

ここで、メタノール液を用いることなく、メタノ−ル蒸
気中で洗浄したのは、孔の周辺の結晶が液圧により永久
歪を受けないようにするためである。
Here, the reason why the cleaning was performed in methanol vapor without using methanol liquid is to prevent the crystals around the holes from being permanently deformed by the liquid pressure.

そして最後に、第1図(f)およびl)に示す如く、イ
ンジウム(In>電極5を両端に熱着し、全てのリード
l116をとりつけ、反射防止膜7として硫化亜鉛(Z
nS)コーティングをほどこして赤外線センサを完成し
その性能評価を行った。
Finally, as shown in FIG.
nS) coating was applied to complete an infrared sensor, and its performance was evaluated.

ここで第1図(f)は第1図(q)のA−A断面図であ
る。
Here, FIG. 1(f) is a sectional view taken along the line AA in FIG. 1(q).

なお、ここで受光部の面積は1.Oa2とした。Note that the area of the light receiving section is 1. It was set as Oa2.

性能測定は、完成せしめられたセンサを市販のデユワビ
ンにセットし、液体窒素によって冷却した状態で行なっ
た。光源としては、500°にの黒体炉を用い、規格化
されたS/N比を求めた結果次表にも示す通り2 X 
109((IHz ”” W−1>であった。
Performance measurements were carried out with the completed sensor set in a commercially available de-wax bottle and cooled with liquid nitrogen. As a light source, a blackbody furnace at 500° was used, and the standardized S/N ratio was determined to be 2X as shown in the following table.
109 ((IHz ""W-1>.

このとき、受光部全体の結晶平均厚さを測定すると約1
5μmであった。このように平均厚さが小さいにもかか
わらず内部歪が著しく少ないことが、上述の如<S/N
比が高く、高性能であることの原因であることはいうま
でもない。
At this time, the average crystal thickness of the entire light receiving area is approximately 1
It was 5 μm. The fact that the internal strain is extremely small despite the small average thickness is due to the fact that S/N
Needless to say, this is the reason for the high ratio and high performance.

比較のために、次に示す2つの赤外線センサを作成し、
性能を測定した。
For comparison, we created the following two infrared sensors,
Performance was measured.

比  較  例  1 穿孔工程を除き、実施例と同様にして形成した3 rm
 X 3 rmのサファイア基板上に、実施例と同球に
して形成したn型HC]CdTe1m晶の板状体をエポ
キシ樹脂で貼着した後、5%ブロムメタノールに浸漬し
エツチングを行ない、平均厚さが50μmに達した後、
1%および0.5%ブロムメタノールに夫々5分間およ
び10分間浸漬し、結晶表面を鏡面加工する。このとき
厚さは40μmとなっており、サファイア基板に孔がな
いため、結晶が裏面からエツチングされることは全くな
い。
Comparison Example 1 3rm formed in the same manner as in Example except for the drilling process.
On a sapphire substrate of After the height reaches 50μm,
The crystal surface is mirror-finished by immersing it in 1% and 0.5% bromethanol for 5 and 10 minutes, respectively. At this time, the thickness was 40 μm, and since there were no holes in the sapphire substrate, the crystal was never etched from the back surface.

そして、実施例と全く同様に、電極およびリード線をと
りつけ、反q寸防止膜を形成した後、性能評価を行なっ
た。
Then, in exactly the same manner as in the examples, after attaching electrodes and lead wires and forming an anti-q dimension film, performance evaluation was performed.

結晶は、次表にも示す如く、S/N比は4X108 (
(JH2”” W−’)に過ぎず、納品ノ″平均厚さが
大であるため優れた性能を行ることができないというこ
とが明らかである。
As shown in the table below, the crystal has an S/N ratio of 4X108 (
(JH2""W-'), and it is clear that excellent performance cannot be achieved because the average thickness of the delivered product is large.

比  較  例  2 比較例1と全く同様にして、結晶の平均厚さが35μm
に達した後、鏡面加工し、最終的厚さを25μmとし同
様に電極およびリード線をとりつけ、反射防止膜を形成
した後性能評価を行った。
Comparison Example 2 In exactly the same manner as Comparative Example 1, the average thickness of the crystal was 35 μm.
After reaching the desired temperature, mirror finishing was performed, the final thickness was set to 25 μm, electrodes and lead wires were attached in the same manner, and an antireflection film was formed, followed by performance evaluation.

結果は、次表にも示す如く、S/N比が1×108 (
c!RH21/2W−1)に過ぎなかった。
As shown in the table below, the results show that the S/N ratio is 1×108 (
c! RH21/2W-1).

これは、結晶の最終厚みが小さ過ぎるために接12層の
残留応力とにより結晶が歪み、優れた性能を得ることが
できないということが明らかである。
It is clear that because the final thickness of the crystal is too small, the crystal is distorted by the residual stress of the contact layer 12 and good performance cannot be obtained.

この表の比較からも、本発明実施例の方法によって形成
した赤外線センサのS/N比が楊めて優れていることが
わかる。
A comparison of this table also shows that the S/N ratio of the infrared sensor formed by the method of the example of the present invention is extremely excellent.

なお、実施例では、単結晶のエツチング終点を微細な貫
通孔の形成された詩点としたが、n311孔は形成され
なくともよく、できるだけ薄くなるまでエツチングする
ようにすればよい。
In the example, the etching end point of the single crystal was set at a point where a fine through hole was formed, but the N311 hole does not need to be formed, and etching may be performed until it is as thin as possible.

また、エツチング方法についても、実施例に限定される
ことなく、再現性の良い方法を適宜選択すればよい。
Furthermore, the etching method is not limited to the embodiments, and any method with good reproducibility may be selected as appropriate.

加えて、本発明の方法は、HqCdTetl結晶のみな
らず、他の材料に対しても適用可能であることはいうま
でもない。
In addition, it goes without saying that the method of the present invention is applicable not only to HqCdTetl crystals but also to other materials.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明の方法によれば、孔を
穿設してなる基板上に、Δ材単結晶を貼着した後、この
孔を介して裏面からも凧材単結晶を更にエツチング又は
研磨しC薄くするようにしているため、S/N比が高く
、信頼外の高い赤外線センサを提供することが可能とな
る。
As explained above, according to the method of the present invention, after a Δ material single crystal is adhered to a substrate formed with holes, a kite material single crystal is further attached from the back side through the holes. Since C is thinned by etching or polishing, it is possible to provide an infrared sensor with a high S/N ratio and high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至第1図(c[は、本発明実施例の赤外
線センサの¥J造工程図、第2図は、従来例のセンサに
おける素材単結晶の厚みとS/N比との関係を示す図で
ある。 1・・・素材単結晶(板状体)、 2・・・サファイア塞板、3・・・孔、4・・・口過孔
、5・・・電極、6・・・リード線、7・・・反射防止
膜。 第1図(a) 第1図(b) 第1図(C)。 第1図(d) 〜 第1図(e) 武 第1図(f) 第1図(9)
Figures 1(a) to 1(c) are manufacturing process diagrams of an infrared sensor according to an embodiment of the present invention, and Figure 2 is a diagram showing the thickness and S/N ratio of a single crystal material in a conventional sensor. 1 is a diagram showing the relationship between the following: 1... Material single crystal (plate-like body), 2... Sapphire blocking plate, 3... Hole, 4... Orifice, 5... Electrode, 6 ...Lead wire, 7...Anti-reflection film. Fig. 1 (a) Fig. 1 (b) Fig. 1 (C). Fig. 1 (d) to Fig. 1 (e) Fig. 1 (f) Figure 1 (9)

Claims (3)

【特許請求の範囲】[Claims] (1)光導電材料からなる薄板上に 電極を具備してなる赤外線センサを製造するに際し、 孔を穿設してなる支持用の基板上に素材単結晶を貼着す
る貼着工程と、 前記素材単結晶を前記孔を介して裏面側から薄板化する
薄板化工程と、 薄板化せしめられた素材単結晶上に、電極を配設し、セ
ンサを形成するセンサ形成工程とを具備したことを特徴
とする赤外線センサの製造方法。
(1) When manufacturing an infrared sensor comprising an electrode on a thin plate made of a photoconductive material, an adhesion step of adhering a material single crystal onto a support substrate having holes formed therein; and the above-mentioned steps. A thinning step of thinning the material single crystal from the back side through the hole, and a sensor forming step of arranging electrodes on the thinned material single crystal to form a sensor. A manufacturing method for a featured infrared sensor.
(2)前記薄板化工程は、全体をエッチング液に浸漬し
、エッチングにより薄板化する湿式エッチング工程であ
ることを特徴とする特許請求の範囲第(1)項記載の赤
外線センサの製造方法。
(2) The method for manufacturing an infrared sensor according to claim (1), wherein the thinning step is a wet etching step in which the entire plate is immersed in an etching solution and the plate is thinned by etching.
(3)前記薄板化工程は、 全体をエッチング液に浸漬し薄板化する第1のエッチン
グ工程と、 表面を鏡面化すべく全体を低濃度のエッチング液に浸漬
する第2のエッチング工程と、 前記孔が上面にくるようにし、観察しながら孔内にエッ
チング液を滴下し、所定の厚さとなるまで仕上げエッチ
ングを行なう第3のエッチング工程とを具備したことを
特徴とする特許請求の範囲第(1)項記載の赤外線セン
サの製造方法。
(3) The thinning process includes: a first etching process in which the entire plate is immersed in an etching solution to make the plate thin; a second etching process in which the entire plate is immersed in a low-concentration etching solution to make the surface mirror-like; and the holes. and a third etching step of dropping an etching solution into the hole while observing the hole so that it is on the upper surface, and performing final etching until a predetermined thickness is reached. ) The method for manufacturing the infrared sensor described in item 2.
JP62152676A 1987-06-19 1987-06-19 Manufacture of infrared sensor Pending JPS63316489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62152676A JPS63316489A (en) 1987-06-19 1987-06-19 Manufacture of infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62152676A JPS63316489A (en) 1987-06-19 1987-06-19 Manufacture of infrared sensor

Publications (1)

Publication Number Publication Date
JPS63316489A true JPS63316489A (en) 1988-12-23

Family

ID=15545672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62152676A Pending JPS63316489A (en) 1987-06-19 1987-06-19 Manufacture of infrared sensor

Country Status (1)

Country Link
JP (1) JPS63316489A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198572A (en) * 2000-12-27 2002-07-12 Rohm Co Ltd Infrared rays data communication module and its manufacturing method
JP2015023203A (en) * 2013-07-22 2015-02-02 株式会社島津製作所 Manufacturing method of two-dimensional radiation detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198572A (en) * 2000-12-27 2002-07-12 Rohm Co Ltd Infrared rays data communication module and its manufacturing method
JP2015023203A (en) * 2013-07-22 2015-02-02 株式会社島津製作所 Manufacturing method of two-dimensional radiation detector

Similar Documents

Publication Publication Date Title
US3994009A (en) Stress sensor diaphragms over recessed substrates
US4319258A (en) Schottky barrier photovoltaic detector
JPS6212454B2 (en)
US3670404A (en) Method of fabricating a semiconductor
JP2022516790A (en) Wafer level shim processing
US20030054179A1 (en) Radiation-absorbing layers for thermopile radiation detectors
JPS63316489A (en) Manufacture of infrared sensor
Norkus et al. Process technologies for high-resolution infrared detectors based on LiTaO3
Lesser et al. Bump-bonded back-illuminated CCDs
GB2132757A (en) Infra-red detector assembly
Lesser Back-illuminated large-format Loral CCDs
US4170781A (en) Photodiode and method of manufacture
US5846850A (en) Double sided interdiffusion process and structure for a double layer heterojunction focal plane array
US4443303A (en) Method of making cold shield and antireflector for infrared detector array and product thereof
US5827771A (en) Readout backside processing for hybridization
US4302531A (en) Method of manufacture of photodiode
JPH09232197A (en) Method for manufacturing joined semiconductor wafer
JPH09214017A (en) Hall device
JPH06334158A (en) Rear irradiation type semiconductor element and manufacture thereof
CN112768598B (en) Infrared pyroelectric detector and preparation method thereof
JPS6233755B2 (en)
JPS63316488A (en) Manufacture of infrared sensor
Lesser CCD Chemical/Mechanical thinning results
JPH09191140A (en) Hall element
JPH03270073A (en) Insb photodiode array element