JPS63316486A - Thermoelectric and photoelectric generation device - Google Patents

Thermoelectric and photoelectric generation device

Info

Publication number
JPS63316486A
JPS63316486A JP62152753A JP15275387A JPS63316486A JP S63316486 A JPS63316486 A JP S63316486A JP 62152753 A JP62152753 A JP 62152753A JP 15275387 A JP15275387 A JP 15275387A JP S63316486 A JPS63316486 A JP S63316486A
Authority
JP
Japan
Prior art keywords
radiator
energy
exhaust gas
radiation energy
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62152753A
Other languages
Japanese (ja)
Other versions
JPH0787251B2 (en
Inventor
Yohei Yamamoto
洋平 山本
Hideo Tai
田井 秀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP62152753A priority Critical patent/JPH0787251B2/en
Publication of JPS63316486A publication Critical patent/JPS63316486A/en
Publication of JPH0787251B2 publication Critical patent/JPH0787251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE:To upgrade the conversion efficiency from thermal energy to radiation energy and improve its generation efficiency of electricity by lowering the temperature of a combustion exhaust gas and reducing the principal part of sensible heat difference to radiation energy on the upstream side having a low temperature heat receiving body when the combustion exhaust gas passes the inside of a radiator. CONSTITUTION:The radiator 3 made of a porus solid is centered in the thermoelectric and photoelectric generation part and a combustion chamber 19, a vacuum space (or air preheating space) 20, a photoelectric conversion element 5, a reflecting mirror 21, a cooling water path 22 are formed at the periphery of the radiator. The reflection mirror 21 allows a radiation energy having wavelengths which are not absorbed in the photoelectric conversion element 5 to return to the side of the radiator 3 and its radiator 3 is heated and then, heat retaining energy is produced. In other words, when the exhaust gas passes through the radiator 3, the temperature of its exhaust gas is lowered and also the principal part of sensible heat difference is reduced to the upstream side having a low temperature heat receiving body as radiation energy. As a result, the conversion efficiency from partial energy corresponding to the above reduced one to radiation energy is upgraded and the generation efficiency of electricity is improved.

Description

【発明の詳細な説明】 [産!に−の利用分野] 本発明は、燃焼エネルギーから幅射エネルギーを介して
発電を行なう熟光発″市装置に関するものである。
[Detailed description of the invention] [Produced! FIELD OF THE INVENTION The present invention relates to a light emitting device that generates power from combustion energy through radiation energy.

[従来の技術] 熱光発電装置とは、ガス象な燃焼させて幅射体を加熱し
、この幅射体からの幅射光を利用して光′Iヒ変換素子
により電流をとり出す発電方式を云い、従来の各種発電
方式に比較し°C発電効率か高く、装置かコンパクトで
ある等の特徴を右している。
[Prior art] A thermophotovoltaic power generation device is a power generation device that heats a beam body by burning gas, and uses the beam radiation from the beam body to extract current through a light conversion element. Compared to various conventional power generation methods, the system has the following characteristics: high °C power generation efficiency and compact equipment.

第t +:′!IはUSパテントNO,4,584,4
26として公知の熱光発電装置を示すもので、符りの5
0は燃料(イソフタン)タンク、12はバーナ、lOは
被加熱幅射体、62〜66は幅射光を集光する反射鏡、
74は熱アイソレータ、70は結晶シリコンの光電変換
素子で、10の幅射体は、70の光電変検素f−が最も
効率よく作動する波長1μ訳付近に急峻な幅射分光特性
を有する酸化イッテルビウムにより作成されている。
th +:′! I is US Patent No. 4,584,4
26, which indicates a thermophotovoltaic power generation device known as ``5''.
0 is a fuel (isophthane) tank, 12 is a burner, 1O is a heated beam body, 62 to 66 are reflectors that condense beam radiation,
74 is a thermal isolator, 70 is a photoelectric conversion element made of crystalline silicon, and 10 is an oxidized beam having steep radiation spectroscopic characteristics around the wavelength of 1μ, at which the photoelectric converter f- in 70 operates most efficiently. Created from ytterbium.

[従来技術の欠点] しかし、」、記の装置においては、幅射体加熱後の燃焼
排ガスが幅射体より高温となるため、熱エネルギーから
幅射エネルギーへの変換動(ぺが低く、その結果発電効
率に限界かある。
[Disadvantages of the prior art] However, in the device described in ``, since the combustion exhaust gas after heating the beam beam has a higher temperature than the beam beam, the conversion movement from thermal energy to beam energy (Pe is low, As a result, there is a limit to power generation efficiency.

[本発明の目的] 本発明は、斯かる点に鑑みて提案されるもので、熱エネ
ルギーから幅射エネルギーへの変換効率を改〜して発電
効率を向上させることを目的とするものである。
[Objective of the present invention] The present invention is proposed in view of the above points, and aims to improve power generation efficiency by improving the conversion efficiency from thermal energy to radiant energy. .

[本発明の構成及びその作用] 1−記目的を達成する手段とし゛C提案される本発明の
構成は以ドのとおりである。
[Configuration of the present invention and its operation] The configuration of the present invention proposed as a means to achieve the above objects is as follows.

多孔質r/;1体により製作された幅射体と、排ガスか
前記幅射体内を通過するように構成された該幅射体の加
熱手段と、前記幅射体からの幅射エネルギーを電気エネ
ルギーに変換する光市変検素fと、から構成される熱光
発電装置。
a porous beam body made of one body; heating means for the beam body configured to allow exhaust gas to pass through the beam body; A thermophotovoltaic power generation device consisting of a light city change sensor f that converts into energy.

L記装置にあってはガス等を燃焼させて幅射体を加熱す
る。幅射体は燃焼排ガスかその内部を通過する際、この
燃焼排ガスの温度を低ドさせ、かつその顕熱差の1ミ要
部を低温受熱体を有する」−流側に幅射エネルギーとし
て還元する。光電変換素子はこの幅射エネルギーな゛+
lF気エネルギー・に変換する。
In the device described in L, the projector is heated by burning gas or the like. The radiation body lowers the temperature of the combustion exhaust gas when it passes through the combustion exhaust gas, and has a low-temperature heat receiving body that reduces the temperature of the combustion exhaust gas and returns the main part of the sensible heat difference to the flow side as radiation energy. do. The photoelectric conversion element uses this radiant energy
Converts to 1F air energy.

[実施例] 第1図は熱光発電装置の一例を示し、この実施例は熱光
発電たけてなく、排熱を利用した給湯も同時に行なうこ
とのできる所謂トータルエネルギーシステノ^である。
[Example] Fig. 1 shows an example of a thermophotovoltaic power generation device, and this embodiment is a so-called total energy system that can not only generate thermophotovoltaic power generation but also supply hot water using waste heat.

図において、lは燃料ガスに1ノて、この燃料ガスはガ
スバーナにより燃焼される。3は多孔質固体例えばコー
ジライl−(2M、:0・2八4:2(1□・5Sj0
2)から成る幅射体にして、ガスバーナ2により発生し
た熱エネルギーはこの幅射体3において幅射エネルギー
(幅射光)4に変換される。5は前記幅射エネルギー4
の幅射光を電力に変換する光電変検素f−にして、ここ
で発生した電力6は直流のため、通常は−rンバータに
より交流に変換されて消費される。
In the figure, 1 is 1 for fuel gas, and this fuel gas is combusted by a gas burner. 3 is a porous solid, for example, Cordillera l-(2M, :0・284:2(1□・5Sj0
2), the thermal energy generated by the gas burner 2 is converted into radiation energy (radiation light) 4 in this beam radiation body 3. 5 is the radiation energy 4
Since the electric power 6 generated here is direct current, it is normally converted into alternating current by a -r inverter and consumed.

第2図は、熱光発電部分を示し、円筒状に形成された多
孔買置体製の幅射体3か中心にあり、この外に燃焼室1
9か形成され、更にこの燃焼室19の外に真空空間(、
又は空気予熱空間)20が形成され、この真空空間20
の外に光電変換素子5が位置し、更にこの先電変検素−
f5の外に反射鏡21か位置し、反射鏡21の外に冷却
水か流れる冷却水通路22が形成されている。反射&2
21は光電変換素子5に吸収されない波長の幅射エネル
ギーを幅射体3側に戻してこの幅射体3を加熱し、保温
エネルギーを作る。
Figure 2 shows the thermophotovoltaic power generation part, which has a cylindrical porous beam body 3 in the center, and a combustion chamber 1 outside it.
9 is formed, and a vacuum space (,
or air preheating space) 20 is formed, and this vacuum space 20
A photoelectric conversion element 5 is located outside the
A reflecting mirror 21 is located outside f5, and a cooling water passage 22 through which cooling water flows is formed outside the reflecting mirror 21. reflection &2
21 returns the radiation energy of wavelengths not absorbed by the photoelectric conversion element 5 to the radiation body 3 side, heats the radiation body 3, and generates heat-retaining energy.

7は前記幅射エネルギーのうら光電変換素子5に吸収さ
れず、幅射体3にも戻らない幅射光。
Reference numeral 7 denotes beam radiation that is not absorbed by the photoelectric conversion element 5 and does not return to the radiation body 3, which is the other side of the radiation energy.

8は光′准変検素了・5からの放熱にして、これらの熱
は熱交換′A10において水9を加熱し、この加熱され
た木は給湯熱交換器15にて更に加熱されて給湯17に
供せられる。
8 is the heat radiated from the light 'quasi-variable test element 5', and these heats heat the water 9 in the heat exchange 'A10, and this heated wood is further heated in the hot water heat exchanger 15 to supply hot water. It is served on the 17th.

11は幅射体3からの排ガスにして、この排ガス11は
バーナ2の燃焼空気13を予熱熱交換器12°C加熱し
てr−熱空気18を作り、更にこの後の排ガス14は前
記のとおり給湯熱交JirA15を経由して排気16さ
れる。
Reference numeral 11 indicates the exhaust gas from the beam body 3. This exhaust gas 11 heats the combustion air 13 of the burner 2 by 12°C in a preheating heat exchanger to create r-hot air 18, and the exhaust gas 14 after this is heated by the above-mentioned The hot water is then exhausted 16 via a heat exchanger JirA 15.

排ガスの温度は、幅射体3で吸収される幅射エネルギー
と同等の顕熱に対応するたけ幅射体3より低くなってい
る。この排ガスの持つ顕熱は。
The temperature of the exhaust gas is lower than that of the beam radiator 3, which corresponds to the sensible heat equivalent to the radiation energy absorbed by the beam radiator 3. What is the sensible heat that this exhaust gas has?

前記のとおり給湯熱交換器15て回収される。As described above, the water is recovered by the hot water heat exchanger 15.

本発明は幅射体3として多孔質固体を採用しており、こ
の多孔質固体としては前記実施例の他 JSa、Jn、
SiC、ジルコニア(XrO□J″gが考えられる。
The present invention employs a porous solid as the beam body 3, and examples of the porous solid include JSa, Jn,
Possible examples include SiC and zirconia (XrO□J″g).

[末完1!1の効果] 本発明は以」二のように、幅射体に多孔質固体を採用し
たことにより、排ガスがこの幅射体を通過する際、排ガ
スの温度を低下させ、かつその顕熱差の主要部を低温受
熱体を有する1:、Ift、側に幅射エネルギーとして
還元するため、この還元に見合う分従来のものに在校し
て熱エネルギーから幅射エネルギーへの変換効率か高ま
り、発電効率が向1−する。
[Effects of End 1!1] As described in 2 below, the present invention employs a porous solid for the beam body, so that when the exhaust gas passes through the beam body, the temperature of the exhaust gas is lowered, In addition, since the main part of the sensible heat difference is returned to the side having a low-temperature heat receiving body as radiant energy, the amount corresponding to this reduction is converted into radiant energy from conventional methods. Conversion efficiency increases and power generation efficiency improves.

又、排熱を給湯及び燃焼空気の予熱に利用することによ
り、殆んどの熱エネルギーは効率的に利用されるので、
トータルエネルギーシスデムとしての応用にも道を開く
ことになる。
In addition, most of the thermal energy is used efficiently by using waste heat for hot water supply and preheating of combustion air.
This will also pave the way for application as a total energy system.

次に、充電変換素子に反射体を付設することにより、光
電変換素子に吸収されなかった熱エネルギーはこの反射
体で反射されて再び幅射体に至り、これを加熱するので
、この分#Ifび幅射エネルギーを発生するため、変換
効率か向」ニする。
Next, by attaching a reflector to the charging conversion element, the thermal energy that is not absorbed by the photoelectric conversion element is reflected by this reflector and reaches the radiation body again, heating it, so that #If Since it generates radiant energy, the conversion efficiency is affected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の実施例図、第2図は充電発生部の
断面1′7!、第3 f4は公知の熱光発電装置の説明
排4である。 2・・・・・・ガスバーナ 3・・・・・・幅射体 5・・・・・・光電変検素f 21・・・反射体 第2図
Fig. 1 is an embodiment of the device of the present invention, and Fig. 2 is a cross section 1'7 of the charge generation part! , 3rd f4 is an explanation part 4 of a known thermophotovoltaic power generation device. 2... Gas burner 3... Radiation body 5... Photoelectric transformation sensor f 21... Reflector Fig. 2

Claims (2)

【特許請求の範囲】[Claims] 1.多孔質固体により製作された幅射体と、排ガスが前
記幅射体内を通過するように構成された該幅射体の加熱
手段と、前記幅射体からの幅射エネルギーを電気エネル
ギーに変換する光電変換素子と、から構成される熱光発
電装置。
1. a beam body made of a porous solid; heating means for the beam body configured to allow exhaust gas to pass through the beam body; and converting radiation energy from the beam body into electrical energy. A thermophotovoltaic power generation device consisting of a photoelectric conversion element.
2.光電変換素子の一面に反射手段を付設して成る特許
請求の範囲第1項記載の熱光発電装置。
2. 2. A thermophotovoltaic power generation device according to claim 1, wherein a reflecting means is provided on one surface of a photoelectric conversion element.
JP62152753A 1987-06-19 1987-06-19 Thermophotovoltaic generator Expired - Lifetime JPH0787251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62152753A JPH0787251B2 (en) 1987-06-19 1987-06-19 Thermophotovoltaic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62152753A JPH0787251B2 (en) 1987-06-19 1987-06-19 Thermophotovoltaic generator

Publications (2)

Publication Number Publication Date
JPS63316486A true JPS63316486A (en) 1988-12-23
JPH0787251B2 JPH0787251B2 (en) 1995-09-20

Family

ID=15547413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62152753A Expired - Lifetime JPH0787251B2 (en) 1987-06-19 1987-06-19 Thermophotovoltaic generator

Country Status (1)

Country Link
JP (1) JPH0787251B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403405A (en) * 1992-06-30 1995-04-04 Jx Crystals, Inc. Spectral control for thermophotovoltaic generators
US6037536A (en) * 1998-03-31 2000-03-14 Jx Crystals Inc. TPV fireplace insert or TPV indoor heating stove
JP2000106001A (en) * 1998-09-28 2000-04-11 Ishikawajima Harima Heavy Ind Co Ltd Operation method of thermal excitation luminescence, thermal excitation luminescent device, and thermal photovoltaic power generating device
US6177628B1 (en) 1998-12-21 2001-01-23 Jx Crystals, Inc. Antireflection coated refractory metal matched emitters for use in thermophotovoltaic generators
US6232545B1 (en) 1998-08-06 2001-05-15 Jx Crystals Inc. Linear circuit designs for solar photovoltaic concentrator and thermophotovoltaic applications using cell and substrate materials with matched coefficients of thermal expansion
US6271461B1 (en) 2000-04-03 2001-08-07 Jx Crystals Inc. Antireflection coated refractory metal matched emitters for use in thermophotovoltaic generators
US6284969B1 (en) 1997-05-15 2001-09-04 Jx Crystals Inc. Hydrocarbon fired thermophotovoltaic furnace
US6303853B1 (en) 1998-08-06 2001-10-16 Jx Crystals Inc. Shingle circuits for thermophotovoltaic systems
JP2002319693A (en) * 2001-04-23 2002-10-31 Toyota Motor Corp Thermooptical power generator
US6489553B1 (en) 2001-05-30 2002-12-03 Jx Crystals Inc. TPV cylindrical generator for home cogeneration
US6768049B2 (en) 2001-04-13 2004-07-27 Toyota Jidosha Kabushiki Kaisha Thermophotovoltaic electric power generating apparatus and power generating method thereof
US6888059B2 (en) 2001-07-27 2005-05-03 Toyota Jidosha Kabushiki Kaisha Photothermal power generation device and method
US6927417B2 (en) 2001-11-13 2005-08-09 Toyota Jidosha Kabushiki Kaisha Photoelectric conversion element and method of manufacturing the same
US7060891B2 (en) 2002-08-01 2006-06-13 Toyota Jidosha Kabushiki Kaisha Thermophotovoltaic generator apparatus
US7196263B2 (en) 2001-10-18 2007-03-27 Jx Crystals Inc. TPV cylindrical generator for home cogeneration using low NOx radiant tube burner
US7388146B2 (en) 2002-04-24 2008-06-17 Jx Crystals Inc. Planar solar concentrator power module
US7994417B1 (en) 2006-02-23 2011-08-09 Jx Crystals Inc. Optimal cell selection for series connection in Cassegrain PV module

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403405A (en) * 1992-06-30 1995-04-04 Jx Crystals, Inc. Spectral control for thermophotovoltaic generators
US6284969B1 (en) 1997-05-15 2001-09-04 Jx Crystals Inc. Hydrocarbon fired thermophotovoltaic furnace
US6037536A (en) * 1998-03-31 2000-03-14 Jx Crystals Inc. TPV fireplace insert or TPV indoor heating stove
US6232545B1 (en) 1998-08-06 2001-05-15 Jx Crystals Inc. Linear circuit designs for solar photovoltaic concentrator and thermophotovoltaic applications using cell and substrate materials with matched coefficients of thermal expansion
US6303853B1 (en) 1998-08-06 2001-10-16 Jx Crystals Inc. Shingle circuits for thermophotovoltaic systems
JP2000106001A (en) * 1998-09-28 2000-04-11 Ishikawajima Harima Heavy Ind Co Ltd Operation method of thermal excitation luminescence, thermal excitation luminescent device, and thermal photovoltaic power generating device
US6177628B1 (en) 1998-12-21 2001-01-23 Jx Crystals, Inc. Antireflection coated refractory metal matched emitters for use in thermophotovoltaic generators
US6271461B1 (en) 2000-04-03 2001-08-07 Jx Crystals Inc. Antireflection coated refractory metal matched emitters for use in thermophotovoltaic generators
US6768049B2 (en) 2001-04-13 2004-07-27 Toyota Jidosha Kabushiki Kaisha Thermophotovoltaic electric power generating apparatus and power generating method thereof
JP2002319693A (en) * 2001-04-23 2002-10-31 Toyota Motor Corp Thermooptical power generator
US7045703B2 (en) 2001-04-23 2006-05-16 Toyota Jidosha Kabushiki Kaisha Thermophotovoltaic power generating apparatus
JP4538981B2 (en) * 2001-04-23 2010-09-08 トヨタ自動車株式会社 Thermolight generator
US6489553B1 (en) 2001-05-30 2002-12-03 Jx Crystals Inc. TPV cylindrical generator for home cogeneration
US6888059B2 (en) 2001-07-27 2005-05-03 Toyota Jidosha Kabushiki Kaisha Photothermal power generation device and method
US7196263B2 (en) 2001-10-18 2007-03-27 Jx Crystals Inc. TPV cylindrical generator for home cogeneration using low NOx radiant tube burner
US6927417B2 (en) 2001-11-13 2005-08-09 Toyota Jidosha Kabushiki Kaisha Photoelectric conversion element and method of manufacturing the same
US7368797B2 (en) 2001-11-13 2008-05-06 Toyota Jidosha Kabushiki Kaisha Photoelectric conversion element and method of manufacturing the same
US7388146B2 (en) 2002-04-24 2008-06-17 Jx Crystals Inc. Planar solar concentrator power module
US7872192B1 (en) 2002-04-24 2011-01-18 Jx Crystals Inc. Planar solar concentrator power module
US7060891B2 (en) 2002-08-01 2006-06-13 Toyota Jidosha Kabushiki Kaisha Thermophotovoltaic generator apparatus
US7994417B1 (en) 2006-02-23 2011-08-09 Jx Crystals Inc. Optimal cell selection for series connection in Cassegrain PV module

Also Published As

Publication number Publication date
JPH0787251B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
JPS63316486A (en) Thermoelectric and photoelectric generation device
US5312521A (en) Compact DC electric power generator using low bandgap thermophotovoltaic cell strings with a hydrocarbon gas burner fitted with a regenerator
US5932885A (en) Thermophotovoltaic electric generator
GB2060860A (en) Solar power installation
CN101630926B (en) Thermo-photovoltaic direct conversion power generating device
WO1992007225A1 (en) Reversing linear flow tpv process and apparatus
KR101029572B1 (en) Thermophotovoltaic generator using combustion in porous media of ceramic fiber
JP4710161B2 (en) Thermolight generator
Bitnar et al. Record electricity-to-gas-power efficiency of a silicon solar cell based TPV system
RU2122642C1 (en) Combined-cycle steam power plant
Fraas et al. TPV generators using the radiant tube burner configuration
JP2002319693A (en) Thermooptical power generator
JPS5819013B2 (en) Boiler with concentrator
Qiu et al. Thermophotovoltaic generation of electricity in a gas fired heater: influence of radiant burner configurations and combustion processes
CN210292387U (en) Reduce dish formula solar energy heat absorption system that thermal stress strikes
JP2006228821A (en) Thermophotovoltaic power generator
JP2512839B2 (en) Solar energy absorber
US11835265B2 (en) Apparatus combining solar tracker and dual heat source collector
Schubnell et al. Overview of European activities in thermophotovoltaics
JPH01151757A (en) Stirling engine utilizing solar heat
Fraas et al. Development status on a TPV cylinder for combined heat and electric power for the home
TWI767357B (en) Device combing solar tracker and dual heat source collector
TWI724887B (en) Heat engine and dual heat source solar heat collector
WO2001048832A1 (en) Electric power, heat and cold generation system and associated process
Mayor et al. OF THE PERFORMANCE OF A THERMOPHOTOVOLTAIC CONVERTER