JPS63315862A - Thermoaccumulative type heat exchanger - Google Patents

Thermoaccumulative type heat exchanger

Info

Publication number
JPS63315862A
JPS63315862A JP62152289A JP15228987A JPS63315862A JP S63315862 A JPS63315862 A JP S63315862A JP 62152289 A JP62152289 A JP 62152289A JP 15228987 A JP15228987 A JP 15228987A JP S63315862 A JPS63315862 A JP S63315862A
Authority
JP
Japan
Prior art keywords
pcm
shape
thermal
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62152289A
Other languages
Japanese (ja)
Inventor
Toshifumi Mukai
利文 向井
Ikuhisa Hamada
幾久 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP62152289A priority Critical patent/JPS63315862A/en
Publication of JPS63315862A publication Critical patent/JPS63315862A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To provide a peeling of a solid phase layer of PCM generated when a heat is produced under a variation of shape of an object and output heat under a thermal medium of specified temperature by a method wherein a substance accompanied with a variation in phase (PCM) in a region of applied temperature and an object showing a variation in shape near a melting point of the substance are stored in a desired cell of a honeycomb structure. CONSTITUTION:PCM 2 is filled in a zig-zag form in respect to a plurality of cells of a honeycomb rib 1, a shape varying object 3 of which shape is varied with temperature is inserted into PCM 2. The cell filled with these substances is constituted by a thermal accumulation body with lids 4 at both ends, a shell 6 for guiding a thermal medium 3 for storing the thermal accumulation body and a thermal insulation material 7 present between the shell and the thermal accumulation body. With this arrangement, a contact are between the thermal medium 5 and PCM 2 contacting through the honeycomb rib 1 is increased, resulting in that a converted thermal calorie between the time of thermal accumulation and the time of thermal discharging can be increased. Since the shape of a shape varying object 3 is varied with a variation in temperature of PCM 2, a solid phase layer of PCM 2 formed in the rib wall surface is peeled off, a natural convection flow is generated and then a total thermal conductivity is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱機関に係り、特に周期的に変動する熱源を定
常熱源に変換するのに好適な蓄熱式熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat engine, and particularly to a regenerative heat exchanger suitable for converting a periodically fluctuating heat source into a steady heat source.

〔従来の技術〕[Conventional technology]

化石燃料の枯渇に伴ない自然エネルギが見直され、その
中でも太陽熱の有効刃用が検討されている。しかし太陽
エネルギは、希薄なうえに周期的に変動し、さらに天候
によっても大きく左右されるという根本的に避けられな
い問題を有している。
With the depletion of fossil fuels, natural energy sources are being reconsidered, and solar energy is being considered for effective blade use. However, solar energy has the fundamental and unavoidable problem that it is scarce, fluctuates periodically, and is also greatly influenced by the weather.

そこでこの太陽エネルギから定常的に出力を得るために
は、蓄熱技術の確立が不可欠である。蓄熱器には物理的
に蓄熱させる方法として2種類あり、物質の温度上昇に
よって蓄熱する顕熱式と、使用温度領域で相変化を伴う
物質(P haseChange Material、
以下PCMと記す、、)で蓄熱する潜熱式である。
Therefore, in order to obtain steady output from this solar energy, it is essential to establish heat storage technology. There are two types of heat storage methods for physically storing heat: a sensible heat storage method that stores heat by increasing the temperature of a material, and a material that undergoes a phase change in the operating temperature range (PhaseChange Material).
It is a latent heat type that stores heat in (hereinafter referred to as PCM).

潜熱式は顕熱式と比べて単位体積当りの蓄熱量が大きく
、出熱時に一定温度で取り出せるという極めて魅力的な
蓄熱法である。
The latent heat type is an extremely attractive heat storage method that stores a larger amount of heat per unit volume than the sensible heat type, and can be extracted at a constant temperature when heat is released.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、特に出熱時において、PCMの壁面凝固
が生じ熱交換特性を著しく低下させるという問題点があ
った。
However, there was a problem in that the PCM solidified on the wall surface, particularly when heat was released, and the heat exchange characteristics were significantly deteriorated.

そのためにPCM側の選定条件として、以下のものが好
ましい。すなわち固相の熱伝導率の大きな物質であるこ
と(熱抵抗低減。)、相変化の際に体積変化の大きな物
質であること(凝固壁面剥離が生じ自然対流熱伝達が維
持される。)、液相での体積膨張率が大きな物質である
こと(自然対流促進。)、溶液が凝固する際、結晶が発
現するもの(フィン効果。)等の条件が挙げられる。
For this purpose, the following selection conditions on the PCM side are preferable. In other words, it is a material with high thermal conductivity in the solid phase (reducing thermal resistance), a material with a large volume change during phase change (solidification wall separation occurs, and natural convection heat transfer is maintained). Conditions include the substance having a large coefficient of volumetric expansion in the liquid phase (promoting natural convection), and crystals appearing when the solution solidifies (fin effect).

一方、PCMを充填するための伝熱容器の条件として、
伝熱面積が広いこと、自然対流が促進される形状である
こと、材料の熱伝導率が大きいこと等が挙げられる。
On the other hand, the conditions for the heat transfer container for filling PCM are as follows:
Examples include a large heat transfer area, a shape that promotes natural convection, and a material with high thermal conductivity.

ところが、PGMや伝熱容器に要求される条件の中で、
これらは必ずしも優先されるとは限らない、例えば、蓄
熱量、蓄熱温度、熱交換器の容積等の条件を満足するよ
うなPCM、伝熱容器を選定した場合、上述の条件を満
足しているPCMが存在するとは限らず、出熱時の熱交
換特性を犠牲にせざるを得ない場合があった。
However, within the conditions required for PGM and heat transfer containers,
These are not necessarily prioritized; for example, if a PCM or heat transfer vessel is selected that satisfies the conditions such as heat storage amount, heat storage temperature, heat exchanger volume, etc., the above conditions are satisfied. PCM was not always present, and there were cases where the heat exchange characteristics during heat output had to be sacrificed.

逆に、出熱時の熱交換特性を満足させれば、蓄熱量、蓄
熱温度、熱交換器の容積等の仕様に合わない場合がある
という不都合があった。
On the other hand, if the heat exchange characteristics at the time of heat output are satisfied, specifications such as the amount of heat storage, the heat storage temperature, and the volume of the heat exchanger may not be met.

即ち、従来の技術においては出熱時におけるPCMの壁
面凝固による熱交換特性の低下に対して根本的な対策が
なされておらず、あくまで従属的な対策でしかなかった
That is, in the conventional technology, no fundamental measures have been taken against the deterioration of heat exchange characteristics due to wall surface solidification of the PCM during heat release, and these measures have only been secondary measures.

この発明の目的は、上記問題点を解消するためになされ
たもので、任意のPCMに対して出熱時の壁面凝固を防
止して、熱交換特性の低下しない蓄熱式熱交換器を提供
することにある。
The purpose of the present invention was to solve the above-mentioned problems, and to provide a regenerative heat exchanger that prevents wall surface solidification during heat output from any PCM and does not reduce heat exchange characteristics. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明の蓄熱式熱交換器
は、ハニカム構造体の複数セルのうちの所定セル内に、
PCMが充填され且つ該PCMの融点の近傍で形状変化
する物体が挿入され、該PCMと該形状変化物体が内在
する前記所定セルのみに蓋のされた蓄熱体と、該蓄熱体
を収納して熱媒が導流されるシェルとからなるものであ
る。
In order to achieve the above object, the regenerative heat exchanger of the present invention includes, in a predetermined cell of a plurality of cells of a honeycomb structure,
A heat storage body filled with PCM and into which an object that changes shape near the melting point of the PCM is inserted, and a lid is placed only on the predetermined cell in which the PCM and the shape-changeable object reside, and the heat storage body is housed. It consists of a shell through which a heat medium is guided.

〔作用〕[Effect]

上記の構成によると、ハニカム構造体の所定セル内に、
PCMと、該PCMの融点近傍で形状が変化する物体が
内圧するので、蓄熱時や出熱時において、PCMの温度
変化に伴い該物体の形状が変化する。
According to the above configuration, in the predetermined cells of the honeycomb structure,
Since the PCM and an object whose shape changes near the melting point of the PCM are subjected to internal pressure, the shape of the object changes as the temperature of the PCM changes during heat storage or heat release.

そのために、特に出熱時には、ハニカムのリブ壁面で形
成されつつあるPCMの同相層が該物体の形状変化によ
ってリブ壁面から剥離する。その結果、リブ壁面と剥離
したPCMの固相層との間で形成される空間を埋めるよ
うに液相のPCMが流入し、リブ壁面と液相PCMとの
間で自然対流が復活あるいは継続的に発現し、総括伝熱
係数が大きくなり、出熱時の熱交換が促進される。さら
に形状変化物体は、PCM中でフィン効果を発現し、伝
熱を促進せしめることになる。
Therefore, especially when heat is released, the in-phase layer of PCM that is being formed on the rib wall surface of the honeycomb peels off from the rib wall surface due to the shape change of the object. As a result, liquid phase PCM flows to fill the space formed between the rib wall surface and the separated solid phase layer of PCM, and natural convection is restored or continues between the rib wall surface and the liquid phase PCM. The overall heat transfer coefficient increases, and heat exchange during heat output is promoted. Furthermore, the shape-changing object will develop a fin effect in the PCM, promoting heat transfer.

〔実施例〕〔Example〕

以下、本発明の実施例1を図面に基づいて説明する。 Embodiment 1 A first embodiment of the present invention will be described below based on the drawings.

第1図及び第2図は、本発明になる蓄熱式熱交換器の一
実施例を示し、第1図は破砕縦断面図、第2図は横断面
図である。
FIGS. 1 and 2 show an embodiment of the regenerative heat exchanger according to the present invention, with FIG. 1 being a fragmented vertical cross-sectional view and FIG. 2 being a cross-sectional view.

ハニカムリブ1の複数セルに対して千鳥の位置にPCM
2を充填し、さらに該PCM2の中に温度によって形状
が変化する形状変化物体3を挿入し、それらの物質を充
填したセルのみ両端に蓋4をした蓄熱体と、これを収納
するとともに熱媒5を導流するためのシェル6と蓄熱体
の間に介在する断熱材7とから構成される。
PCM in staggered position for multiple cells of honeycomb rib 1
A shape-changing object 3 whose shape changes depending on the temperature is inserted into the PCM 2, and only the cell filled with these materials has a heat storage body with lids 4 on both ends, and a heat storage body that houses this and a heat medium. 5 and a heat insulating material 7 interposed between the heat storage body.

本実施例ではハニカムリブ1にはコーディエライト組成
で、セル寸法10nm角、リブ厚1mm、外形155n
n角、セル数14X14.厚さ500mnのものを用い
た。PCM2としてC22H4G (融点44℃、潜熱
60 kca Q / kg)を充填し、その中にCu
 −Z n −A Q系の形状記憶合金(10〜50℃
で変形)を10℃以下でバネ状に成形したものを挿入し
5また充填材の両端には、無機系接着剤で蓋4がされて
いる。
In this example, the honeycomb rib 1 has a cordierite composition, a cell size of 10 nm square, a rib thickness of 1 mm, and an outer diameter of 155 nm.
n square, number of cells 14x14. A material with a thickness of 500 mm was used. C22H4G (melting point 44°C, latent heat 60 kca Q/kg) is filled as PCM2, and Cu
-Z n -A Q-based shape memory alloy (10~50℃
A material formed into a spring shape at 10° C. or lower is inserted into the filling material (deformed at 10° C.), and both ends of the filling material are covered with lids 4 using an inorganic adhesive.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

ハニカム構造体の複数セルに対してPCM2及び形状変
化物体3の内在するセルを第2図に示すように千鳥状に
配置するので、ハニカムリブ1を介して接する熱媒5と
PCM2との接触面積が大きくなり、その結果蓄熱時及
び出熱時の変換熱量を大きくすることができる。
Since the cells containing the PCM 2 and the shape-changing object 3 are arranged in a staggered manner as shown in FIG. 2 among the plurality of cells of the honeycomb structure, the contact area between the heat medium 5 and the PCM 2 that come in contact with each other through the honeycomb ribs 1 becomes large, and as a result, the amount of converted heat during heat storage and heat output can be increased.

またPCM2の温度変化に伴い形状変化物体3の形状が
変化するので、リブ壁面に形成されるPCM2の固相層
が剥離し、自然対流が発現し総括伝熱係数が大きくなる
ため、出熱時の熱交換が促進される。
In addition, as the shape of the shape-changing object 3 changes as the temperature of the PCM 2 changes, the solid phase layer of the PCM 2 formed on the rib wall peels off, natural convection occurs, and the overall heat transfer coefficient increases. heat exchange is promoted.

本実施例に、熱媒5として50〜80℃の空気を毎分0
.5〜1rri’流通した場合の蓄熱特性を第3図に、
出熱特性を第4図に示す。これらの特性から明らかなよ
うに、出熱時においては熱媒5の出口温度がほぼ一定に
保持されていることが分る。
In this embodiment, air at a temperature of 50 to 80°C is used as the heating medium 5 at 0°C per minute.
.. Figure 3 shows the heat storage characteristics when 5 to 1 rri' is distributed.
Figure 4 shows the heat output characteristics. As is clear from these characteristics, it can be seen that the outlet temperature of the heating medium 5 is kept almost constant during heat output.

尚実施例2として、実施例1のセル寸法のみ5薗角とし
、その他外形、厚さPCM、形状記憶合金を同一のもの
を用いてみると、第3図及び第4図に示すように、実施
例1と比べて、その特性は出熱時の熱媒温度が徐々に下
がる傾向にある。
In addition, as Example 2, when using the same cell dimensions as Example 1, except for the same external shape, thickness PCM, and shape memory alloy, as shown in FIGS. 3 and 4, Compared to Example 1, the characteristic is that the heating medium temperature during heat output tends to gradually decrease.

これらの実施例1及′び実施例2を実施例1において形
状記憶合金を挿入しない場合の比較例と比較してみると
、第3図及び第4図に示すように、比較例は実施例1及
び実施例2と比べて出熱時の温度がほぼ連続的に低下す
ることが分る。
When these Examples 1 and 2 are compared with a comparative example in which no shape memory alloy is inserted in Example 1, as shown in FIGS. 3 and 4, the comparative example is different from the example. It can be seen that the temperature at the time of heat release decreases almost continuously compared to Example 1 and Example 2.

このようにこれらの実施例によれば、出熱時に伝熱面で
生成されるPCMの固相層を随時剥離し、伝熱面近傍で
自然対流を継続的に生じさせるため、出熱時に一定温度
の熱媒で取り出せる効果がある。
In this way, according to these embodiments, the solid phase layer of PCM generated on the heat transfer surface during heat output is peeled off at any time, and natural convection is continuously generated near the heat transfer surface. It has the effect of being extracted using a heating medium at a certain temperature.

更に他の実施例3として、第5図及び第6図に示すよう
に、形状変化物体3としてハニカムセル内に、高熱伝導
率(鋼製)のバネ31と10〜50℃で形状が変化する
形状記憶合金製(Cu −Z n −A Q系)のバネ
32を直列につなげた構造のバネが挿入され、両端は無
機系接着剤の蓋4に埋め込まれ固定されている。
As still another example 3, as shown in FIGS. 5 and 6, a shape-changing object 3 is provided in a honeycomb cell with a spring 31 having a high thermal conductivity (made of steel) and whose shape changes at 10 to 50 degrees Celsius. A spring having a structure in which springs 32 made of shape memory alloy (Cu-Zn-AQ series) are connected in series is inserted, and both ends are embedded and fixed in the lid 4 made of inorganic adhesive.

このバネ31,32は、ハニカムリブ1内にほぼ内接す
るようになっており、バネ31は常に引っ張りの状態に
し、バネ32はPCM2の融点以上で縮んだ状態で設置
されている。
The springs 31 and 32 are arranged to be substantially inscribed within the honeycomb rib 1, and the spring 31 is always in a tensioned state, and the spring 32 is installed in a contracted state at a temperature higher than the melting point of the PCM2.

本実施例3によれば、形状記憶合金がPCM融点以下の
場合には、バネ31が縮みバネ32が伸びる。逆にPC
M融点以上の場合にはバネ31が伸び、バネ32が縮む
ことになる。
According to the third embodiment, when the shape memory alloy has a melting point of PCM or lower, the spring 31 contracts and the spring 32 expands. On the contrary, PC
If the temperature is higher than the melting point M, the spring 31 will expand and the spring 32 will contract.

この際、PCM2の固相層2aの生成の起点となる壁面
には、バネ31.32とセル壁面での接点が存在する。
At this time, there are contact points between the springs 31 and 32 and the cell wall surface on the wall surface which is the starting point for the formation of the solid phase layer 2a of the PCM 2.

このため形状記憶合金製のバネ32において局所的に記
憶温度発現の温度になった場合でもバネの伸縮が生じ固
相層2aの剥離効果が生じる。
Therefore, even if the shape memory alloy spring 32 locally reaches the temperature where the memory temperature is expressed, the spring expands and contracts, resulting in the peeling effect of the solid phase layer 2a.

その結果、PCM2に相変化が生じる温度ではバネ31
.32が伝熱壁(ハニカムリブ1)に沿って移動し、特
に出熱時には固相層2aを剥離させる効果があり、伝熱
効率を向上させることができる。またバネ31.32が
フィン効果を発揮するため伝熱効率向上の相乗効果が生
じる。
As a result, at temperatures where PCM2 undergoes a phase change, the spring 31
.. 32 moves along the heat transfer wall (honeycomb ribs 1), which has the effect of peeling off the solid phase layer 2a especially when heat is released, thereby improving heat transfer efficiency. Further, since the springs 31 and 32 exhibit a fin effect, a synergistic effect of improving heat transfer efficiency occurs.

尚、第6図中2bは液相のPCM2である。In addition, 2b in FIG. 6 is PCM2 in a liquid phase.

〔発明の効果〕〔Effect of the invention〕

上述のとおり本発明によれば、ハニカム構造体の所定セ
ル内に、PCMと該PCMの融点近傍で形状変化する物
体が内在しているので、出熱時に生成されるPCMの固
相層が物体の形状変化によって随時剥離し、一定温度の
熱媒で出熱される。
As described above, according to the present invention, PCM and an object whose shape changes near the melting point of the PCM are present in the predetermined cells of the honeycomb structure, so that the solid phase layer of PCM generated when heat is released is It peels off at any time due to changes in shape, and heat is emitted by a heating medium at a constant temperature.

そのために、熱交換特性の低下しない蓄熱式熱交換器が
得られる。
Therefore, a regenerative heat exchanger with no deterioration in heat exchange characteristics can be obtained.

さらに本発明になる蓄熱式熱交換器を用いれば。Furthermore, if the regenerative heat exchanger according to the present invention is used.

太陽熱あるいは、ボイラ等の排熱を高密度に回収蓄熱で
き、例えばユングストローム型の空気予熱器の蓄熱体と
しても適用可能であり、また出熱時には温度変動の少な
い熱媒として出力されるため温度制御装置の不要な熱交
換システムをつくることができる。
It can collect and store solar heat or exhaust heat from boilers, etc. in a high density, and can be used as a heat storage medium in a Ljungström air preheater, for example. Also, when heat is output, it is output as a heat medium with little temperature fluctuation, so the temperature can be reduced. It is possible to create a heat exchange system that does not require a control device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例1又は2の破砕縦断面図、第2図は第
1図のn−n断面図、第3図は蓄熱特性グラフ、第4図
は出熱特性グラフ、第5図は実施例3のセル内詳細図、
第6図は実施例3の横断面図である。 1・・・ハニカムリブ。 2・・・PCM、 3・・・形状変化物体、 4・・・蓋、 5・・・熱媒、 6・・・シェル、 7・・断熱材。
Fig. 1 is a fractured longitudinal cross-sectional view of Example 1 or 2, Fig. 2 is a nn cross-sectional view of Fig. 1, Fig. 3 is a heat storage characteristic graph, Fig. 4 is a heat output characteristic graph, and Fig. 5 is a detailed diagram inside the cell of Example 3,
FIG. 6 is a cross-sectional view of Example 3. 1...Honeycomb ribs. 2...PCM, 3...Shape changing object, 4...Lid, 5...Heating medium, 6...Shell, 7...Insulating material.

Claims (3)

【特許請求の範囲】[Claims] (1)ハニカム構造体の複数セルのうちの所定セル内に
、使用温度領域で相変化を伴う物質が充填され且つ該物
質の融点の近傍で形状変化する物体が挿入され、該物質
と該形状変化物体が内在する前記所定セルのみに蓋のさ
れた蓄熱体と、該蓄熱体を収納して熱媒が導流されるシ
ェルとからなる蓄熱式熱交換器。
(1) An object filled with a substance that undergoes a phase change in the operating temperature range and whose shape changes near the melting point of the substance is inserted into a predetermined cell among the plurality of cells of the honeycomb structure, and the substance and the shape A regenerative heat exchanger comprising a heat storage body in which only the predetermined cell in which a changeable object resides is covered, and a shell that houses the heat storage body and allows a heat medium to flow therethrough.
(2)前記所定セルが、前記ハニカム構造体の複数セル
に対して千鳥状に配置されていることを特徴とする特許
請求の範囲第1項記載の蓄熱式熱交換器。
(2) The regenerative heat exchanger according to claim 1, wherein the predetermined cells are arranged in a staggered manner with respect to the plurality of cells of the honeycomb structure.
(3)前記形状変化物体が、互に直列に連結された、高
熱伝導性の鋼製バネと温度によって形状が変化する形状
記憶合金製バネとよりなり、両端が前記蓋に固定されて
いることを特徴とする特許請求の範囲第1項又は第2項
記載の蓄熱式熱交換器。
(3) The shape-changing object is composed of a highly thermally conductive steel spring and a shape-memory alloy spring whose shape changes depending on temperature, which are connected in series, and both ends are fixed to the lid. A regenerative heat exchanger according to claim 1 or 2, characterized in that:
JP62152289A 1987-06-18 1987-06-18 Thermoaccumulative type heat exchanger Pending JPS63315862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62152289A JPS63315862A (en) 1987-06-18 1987-06-18 Thermoaccumulative type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62152289A JPS63315862A (en) 1987-06-18 1987-06-18 Thermoaccumulative type heat exchanger

Publications (1)

Publication Number Publication Date
JPS63315862A true JPS63315862A (en) 1988-12-23

Family

ID=15537270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62152289A Pending JPS63315862A (en) 1987-06-18 1987-06-18 Thermoaccumulative type heat exchanger

Country Status (1)

Country Link
JP (1) JPS63315862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038750A (en) * 2009-08-18 2011-02-24 Ngk Insulators Ltd Honeycomb type latent-heat heat reservoir
US20110048388A1 (en) * 2009-09-03 2011-03-03 Ngk Insulators, Ltd. Heat accumulation element
US20110139404A1 (en) * 2009-12-16 2011-06-16 General Electric Company Heat exchanger and method for making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038750A (en) * 2009-08-18 2011-02-24 Ngk Insulators Ltd Honeycomb type latent-heat heat reservoir
US20110048388A1 (en) * 2009-09-03 2011-03-03 Ngk Insulators, Ltd. Heat accumulation element
US20110139404A1 (en) * 2009-12-16 2011-06-16 General Electric Company Heat exchanger and method for making the same

Similar Documents

Publication Publication Date Title
US20110030915A1 (en) Improved latent heat storage device
US4599867A (en) Hydrogen storage cell
EP1979697B1 (en) Thermal energy storage apparatus
US20120168111A1 (en) Heat transfer system utilizing thermal energy storage materials
US11067344B2 (en) Thermal energy storage apparatus
JP2005100821A (en) High temperature type fuel cell system
US9834364B2 (en) Molten salts insulated storage tank
Mathur Heat transfer and latent heat storage in inorganic molten salts for concentrating solar power plants
Priyadarsini et al. Effect of trapezoidal fin on heat transfer enhancement in pcm thermal energy storage system: A computational approach
JPS63315862A (en) Thermoaccumulative type heat exchanger
AL-Migdady et al. Combined effects of eccentricity and internal fins on the shell and tube latent heat storage systems
JP6662239B2 (en) Thermal switch device
JP2009247049A (en) Thermoelectric power generation system and method
CN110360865A (en) A kind of finned multiple phase change materials heat-storing sphere
JPS60188697A (en) Heat radiating vessel for alloy absorbing and storing hydrogen
JPS62284193A (en) Heat transfer pipe
JP2004271119A (en) Heat accumulator
Mehryan et al. Analyzing battery thermal management systems: A comparative study of hydrogel and various PCMs in different configurations and convection conditions
Taher et al. Experimental investigation of solar energy storage using paraffin wax as thermal mass
Kumar et al. Solar thermal energy storage
Benlekkam et al. Numerical Performances Study of Curved Photovoltaic Panel Integrated with Phase Change Material.
Hirano et al. Influence of operating temperature on efficiency of supercooled thermal energy storage
RU2753067C1 (en) Heat storage device
JPH0578758B2 (en)
KR20200080643A (en) Hydrogen storage device with optimized thermal management system