JPS6331571B2 - - Google Patents

Info

Publication number
JPS6331571B2
JPS6331571B2 JP17850982A JP17850982A JPS6331571B2 JP S6331571 B2 JPS6331571 B2 JP S6331571B2 JP 17850982 A JP17850982 A JP 17850982A JP 17850982 A JP17850982 A JP 17850982A JP S6331571 B2 JPS6331571 B2 JP S6331571B2
Authority
JP
Japan
Prior art keywords
fibers
heat
strength
polyester
sewing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17850982A
Other languages
Japanese (ja)
Other versions
JPS5971450A (en
Inventor
Shunichi Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP17850982A priority Critical patent/JPS5971450A/en
Publication of JPS5971450A publication Critical patent/JPS5971450A/en
Publication of JPS6331571B2 publication Critical patent/JPS6331571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高強力で、且つ、耐熱性に優れた高
速縫製用ポリエステルミシン糸に関する。 ポリエステル繊維は高強力、高モジユラスで、
且つ染色堅牢度が良好であるため、ミシン糸用素
材として広く用いられている。しかし、ポリエス
テル繊維のミシン糸は融点が高々250〜265℃であ
り、高速縫製には適していない。即ち、高速縫製
では、ミシン針が温度300℃以上の高温状態にな
ること、又、縫製の際、上糸と下糸とが被縫製布
中で係絡するが、該係絡時に、上糸と下糸が擦過
して該係絡部が高温状態になることにより、ポリ
エステル繊維が溶融して、該ミシン糸の強力低下
を起すか、又は、断糸する。 そこで、かかる問題点を解決する試みがある。
例えば、油剤の平滑性を上げたり付着量を増やし
たりする試みがあるが、高速可縫性を達成するま
でには到つていない。また耐熱性を向上させるた
めにポリエステルと綿を混紡することも試みられ
ているが、綿の耐熱性が充分でなく、満足できる
高速可縫性能が得られないし、又、綿を混紡した
場合染色堅牢度の低下を招くなどの欠点もある。 即ち、ポリエステルミシン糸の最大の欠点は、
前記のように縫製中に溶融することであつた。こ
の溶融現象を改良するために、糸の表層部に多く
の毛羽を有する紡績糸によりミシン糸を構成する
ことは、それなりに効果がある。併しながら、か
かる紡績糸から構成されていても溶融が一旦、発
生すると該溶融がミシン糸の内層まで容易に伝播
し断糸が発生すると考えられる。本発明者らは、
この溶融部分の伝播を防止するため、非溶融性繊
維を用いても、木綿繊維やレーヨン繊維では、温
度が300℃以上の高温になると強度劣化が起り、
高速縫製中に、受ける張力のため該非溶融繊維の
切断が発生し、該溶融部分の伝播を防止する機能
を充分に果していないことを見出し、本発明に到
達したものである。 即ち、本発明は、強度6.5g/de以上を有する
ポリエステル短繊維と、温度300℃で1分間熱処
理した後の強度が2g/de以上あり、且つ、該
ポリエステル短繊維の切断伸度より大なる切断伸
度を有する耐熱性繊維とからなり、全重量に対し
て該耐熱性繊維を10〜50重量%含有すると共に、
横断面中の全構成繊維本数に対して該耐熱性繊維
の構成本数の割合が10%以上である混紡糸から構
成されていることを特徴とする高速縫製用ポリエ
ステルミシン糸にある。 以下、本発明を詳細に説明する。 本発明のミシン糸に用いるポリエステル短繊維
は、その強度が6.5g/de以上の高強力を有する
ことが必要である。該強度が6.5g/de未満の場
合は、ミシン糸の強力が充分大とならず縫目強力
の低下を招き好ましくない。 次に、本発明に使用する耐熱性繊維としては、
乾熱温度300℃で、1分間処理した後の強度が2
g/de以上あるものを用いることが重要である。
この条件下での強度が2g/de未満では、高速
縫製により高温にさらされるミシン糸中におい
て、該耐熱繊維が切断し、ポリエステル繊維の溶
融の伝播を防止するブロツク繊維として作用し得
ない。 さらに、本発明に使用する耐熱性繊維に必要な
特性としては、その切断伸度が、前記ポリエステ
ル短繊維の切断伸度より大であることが必要であ
る。 即ち、耐熱性繊維を混紡して得られる糸が、ポ
リエステル短繊維の有する高強度を効率よく利用
するためには、ポリエステルの伸度の方を小さく
して、ミシン糸が引張を受けた際に、ポリエステ
ルの強度がより大きくミシン糸の強力に寄与する
ようにしたものである。耐熱性繊維の伸度が小さ
い場合には、ミシン糸の引張時に耐熱性繊維の切
断が先に起り、ポリエステル短繊維および耐熱性
繊維の強力を効率よく利用することができない。 このような特長を有する耐熱性繊維としては、
ポリメタフエニレンイソフタルアミドからなる繊
維や、さらに、該ポリメタフエニレンイソフタル
アミドにポリメタキシリレンイソフタルアミドを
ブレンドしたポリマーからなる繊維等が好適に例
示される。特に、後者のブレンドポリマーからな
る繊維の場合、温度300℃で1分間の熱処理を施
した後の強度低下が殆ど起らず、強度3.5g/de
以上を維持しており、又、切断伸度が38.5%であ
り、ポリエステル短繊維として切断伸度20%のも
のと組合せて用いることにより、混紡による強度
低下が少なく本発明のミシン糸として充分機能す
ることが出来る。 さらに、本発明のミシン糸では、該耐熱性繊維
の混合割合としては、全重量の10〜50重量%が必
要であり、且つ、横断面中の全構成繊維本数に対
して該耐熱性繊維の構成本数が10%以上であるこ
とが必要である。 該耐熱性繊維の混合割合が、10%未満の場合に
は、耐熱性繊維の量が少ないため、溶融したポリ
エステルを防いで、内部への伝播を食い止める役
割(耐熱性繊維のブロツク効果)が充分でなく、
一方、該混合割合が50%を超えるポリエステル短
繊維の含有量が相対的に低下し、ミシン糸の強力
低下が大となり充分な強力が得られない。ミシン
糸全体に対してポリエステル短繊維が50%以上含
まれていることが必要である。 更に、糸の横断中の全構成繊維本数に対して該
耐熱性繊維の構成本数の割合が10%以上である必
要がある。又、該耐熱性繊維は、横断中で、均一
分散(ランダム、ミツクスによる分布)している
ことが望ましい。 該構成本数の割合が、10%未満の場合には、該
耐熱性繊維が断面中で均一分散せず、又、その本
数も少ないことから、耐熱性繊維のブロツク効果
が充分に行われない。 かくして得られるポリエステルミシン糸は、高
速縫製の際に、ポリエステル繊維の溶融が起つて
も、溶融ポリエステルが糸の内部に伝播するのが
防止され、溶融による断糸が防止できるので、縫
製能率を大幅にアツプすることができる。 以下、実施例により説明する。 実施例 試料A 単繊維デニール1.1deで、切断強度7.4g/de、
切断伸度18%、沸水収縮率1.2%のポリエステル
短繊維を80重量%と、耐熱性繊維としてポリメタ
フエニレンイソフタルアミドとポリメタキシリレ
ンイソフタルアミドを8対2の割合でブレンドし
たポリマーからなる繊維を20重量%とを用いて混
紡し、撚係数α=3.5の撚数(S撚)で60番手
(綿糸番手)の糸を得て、この糸を3本引揃えて、
下撚の90%の撚数(Z撚)で上撚を施し、しかる
後、温度130℃で染色し、次いで、シリコン系油
剤を糸全重量に対して3%付与したミシン糸を試
作した。この糸の中でのポリエステル繊維の切断
強度は7.2g/de、切断伸度は19.5%であり、一
方耐熱性繊維は切断強度3.1g/de、切断伸度は
38%であつた。さらに、該耐熱性繊維を温度300
℃で1分間処理した後、強度を測定すると、その
切断強度は3.1g/deと全く変化がなかつた。尚、
このミシン糸中の耐熱性繊維の構成本数の割合は
20%であつた。 この糸を高速で縫製テストして第1表のような
結果を得た。 試料B 試料Aで使用したポリエステル短繊維のみを用
いて、同一撚数、番手のミシン糸を作り、これを
温度130℃で染色後、試料Aと同一条件で油剤処
理を行つた。この糸の高速縫製テスト結果を第1
表に合わせて示す。 試料C 試料Aで使用した耐熱性繊維の代りとして20重
量%の木綿繊維を用いて、他は試料Aと同一条件
でミシン糸を作り、高速縫製テストを行つた。結
果を第1表に示す。
The present invention relates to a polyester sewing thread for high-speed sewing that has high strength and excellent heat resistance. Polyester fiber has high strength and high modulus,
Since it also has good color fastness, it is widely used as a material for sewing thread. However, polyester fiber sewing thread has a melting point of 250 to 265°C at most, and is not suitable for high-speed sewing. In other words, during high-speed sewing, the sewing machine needle reaches a high temperature of 300°C or higher, and during sewing, the upper thread and lower thread become entangled in the fabric being sewn. When the bobbin thread rubs against the thread and the entangled portion reaches a high temperature, the polyester fibers melt and the strength of the sewing thread decreases or the thread breaks. Therefore, attempts have been made to solve these problems.
For example, attempts have been made to improve the smoothness of the oil or increase the amount of oil adhered, but this has not yet reached the point of achieving high-speed sewability. In addition, attempts have been made to blend polyester and cotton to improve heat resistance, but the heat resistance of cotton is insufficient and satisfactory high-speed sewing performance cannot be obtained, and if cotton is blended, dyeing may occur. There are also drawbacks such as a decrease in fastness. In other words, the biggest drawback of polyester sewing thread is
As mentioned above, it melted during sewing. In order to improve this melting phenomenon, it is effective to construct the sewing thread from a spun yarn having a large amount of fluff on the surface layer of the yarn. However, even if such a spun yarn is used, once melting occurs, the melting will easily propagate to the inner layer of the sewing thread, causing yarn breakage. The inventors
Even if non-melting fibers are used to prevent the spread of this melted portion, cotton fibers and rayon fibers will deteriorate in strength when the temperature reaches 300°C or higher.
The present invention was developed based on the discovery that during high-speed sewing, the unmelted fibers are cut due to the applied tension, and that the function of preventing the fused portion from spreading is not sufficiently achieved. That is, the present invention provides polyester staple fibers having a strength of 6.5 g/de or more, and a polyester staple fiber having a strength of 2 g/de or more after heat treatment at a temperature of 300° C. for 1 minute, and which has a breaking elongation greater than the cutting elongation of the polyester staple fiber. It consists of heat-resistant fibers having a cutting elongation, and contains 10 to 50% by weight of the heat-resistant fibers based on the total weight,
A polyester sewing thread for high-speed sewing is characterized in that it is composed of a blended yarn in which the proportion of the heat-resistant fibers in the cross section is 10% or more of the total number of constituent fibers. The present invention will be explained in detail below. The polyester short fibers used in the sewing thread of the present invention need to have a high strength of 6.5 g/de or more. If the strength is less than 6.5 g/de, the strength of the sewing thread will not be sufficiently high, resulting in a decrease in seam strength, which is undesirable. Next, the heat-resistant fibers used in the present invention include:
The strength after processing for 1 minute at a dry heat temperature of 300℃ is 2.
It is important to use a material with a ratio of g/de or higher.
If the strength under these conditions is less than 2 g/de, the heat-resistant fibers will break in the sewing thread that is exposed to high temperatures during high-speed sewing, and cannot act as block fibers to prevent the propagation of melting of the polyester fibers. Furthermore, as a characteristic necessary for the heat-resistant fiber used in the present invention, its elongation at break must be greater than the elongation at break of the short polyester fiber. In other words, in order for the yarn obtained by blending heat-resistant fibers to efficiently utilize the high strength of polyester short fibers, the elongation of the polyester should be made smaller so that when the sewing thread is subjected to tension, , the strength of the polyester is greater and contributes to the strength of the sewing thread. If the elongation of the heat-resistant fibers is low, the heat-resistant fibers will be cut first when the sewing thread is pulled, and the strength of the short polyester fibers and the heat-resistant fibers cannot be utilized efficiently. Heat-resistant fibers with such features include:
Preferred examples include fibers made of polymetaphenylene isophthalamide, and fibers made of a polymer obtained by blending the polymetaphenylene isophthalamide with polymethaxylylene isophthalamide. In particular, in the case of fibers made of the latter blended polymer, there was almost no decrease in strength after heat treatment at 300°C for 1 minute, with a strength of 3.5g/de
In addition, the elongation at break is 38.5%, and by using it in combination with short polyester fibers with an elongation at break of 20%, there is little loss in strength due to blending, and it functions well as the sewing thread of the present invention. You can. Furthermore, in the sewing thread of the present invention, the mixing ratio of the heat-resistant fibers is required to be 10 to 50% by weight of the total weight, and the amount of the heat-resistant fibers is relative to the total number of constituent fibers in the cross section. The number of components must be 10% or more. When the mixing ratio of the heat-resistant fibers is less than 10%, the amount of heat-resistant fibers is small, so the role of preventing melted polyester and stopping its propagation to the inside (blocking effect of heat-resistant fibers) is sufficient. Not, but
On the other hand, the content of polyester short fibers in which the mixing ratio exceeds 50% is relatively reduced, and the strength of the sewing thread is greatly reduced, making it impossible to obtain sufficient strength. It is necessary that polyester staple fibers account for 50% or more of the entire sewing thread. Furthermore, the ratio of the number of heat-resistant fibers to the total number of fibers traversing the thread must be 10% or more. Further, it is desirable that the heat-resistant fibers are uniformly dispersed (randomly or mixedly distributed) in the traverse. If the ratio of the number of constituent fibers is less than 10%, the heat-resistant fibers will not be uniformly dispersed in the cross section, and the number of fibers will be small, so that the blocking effect of the heat-resistant fibers will not be sufficiently achieved. The polyester sewing thread thus obtained can prevent the molten polyester from propagating inside the thread even if the polyester fibers melt during high-speed sewing, and can prevent thread breakage due to melting, greatly increasing sewing efficiency. It can be applied to. Examples will be explained below. Example Sample A Single fiber denier 1.1 de, cutting strength 7.4 g/de,
A fiber made of a polymer blend of 80% by weight polyester short fibers with a cutting elongation of 18% and a boiling water shrinkage rate of 1.2%, and a heat-resistant fiber of polymethaphenylene isophthalamide and polymethaxylylene isophthalamide in a ratio of 8:2. and 20% by weight to obtain a yarn of 60 count (cotton yarn count) with a twist coefficient α = 3.5 (S twist), and three of these yarns are aligned.
A sewing thread was prepared by applying a final twist to 90% of the first twist (Z twist), then dyeing at a temperature of 130°C, and then applying a silicone oil agent in an amount of 3% based on the total weight of the thread. The polyester fiber in this yarn has a breaking strength of 7.2 g/de and a breaking elongation of 19.5%, while the heat-resistant fiber has a breaking strength of 3.1 g/de and a breaking elongation of 19.5%.
It was 38%. Furthermore, the heat-resistant fiber is heated to a temperature of 300
When the strength was measured after being treated at ℃ for 1 minute, the cutting strength was 3.1 g/de, with no change at all. still,
The proportion of heat-resistant fibers in this sewing thread is
It was 20%. This thread was tested for sewing at high speed and the results shown in Table 1 were obtained. Sample B Using only the short polyester fibers used in Sample A, sewing thread with the same number of twists and count was made, which was dyed at a temperature of 130°C and then treated with an oil agent under the same conditions as Sample A. The results of the high-speed sewing test for this thread are the first
Shown in the table. Sample C Sewing thread was made under the same conditions as Sample A, except that 20% by weight cotton fiber was used in place of the heat-resistant fiber used in Sample A, and a high-speed sewing test was conducted. The results are shown in Table 1.

【表】 第1表から明らかなように、耐熱性繊維を用い
た試料A(実施例)では、高速回転による連続運
転時間が大幅に改良される。
[Table] As is clear from Table 1, in Sample A (Example) using heat-resistant fibers, the continuous operation time due to high speed rotation is significantly improved.

Claims (1)

【特許請求の範囲】[Claims] 1 強度6.5g/de以上を有するポリエステル短
繊維と、温度300℃で1分間熱処理した後の強度
が2g/de以上あり、且つ該ポリエステル短繊
維の切断伸度より大なる切断伸度を有するポリメ
タフエニレンイソフタルアミドからなる耐熱性繊
維を含む短繊維とからなり、全重量に対して該耐
熱性繊維を10〜50重量%含有すると共に、横断面
中の全構成繊維本数に対して該耐熱性繊維の構成
本数の割合が10%以上である混紡糸から構成され
ていることを特徴とする高速縫製用ポリエステル
ミシン糸。
1 Polyester staple fibers having a strength of 6.5 g/de or more and polyester staple fibers having a strength of 2 g/de or more after heat treatment at a temperature of 300°C for 1 minute and a breaking elongation greater than the breaking elongation of the polyester staple fibers. short fibers containing heat-resistant fibers made of metaphenylene isophthalamide, containing 10 to 50% by weight of the heat-resistant fibers based on the total weight, and containing the heat-resistant fibers based on the total number of fibers in the cross section. A polyester sewing thread for high-speed sewing, characterized in that it is composed of a blended yarn in which the number of fibers is 10% or more.
JP17850982A 1982-10-13 1982-10-13 Polyester sewing machine yarn for high speed weaving Granted JPS5971450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17850982A JPS5971450A (en) 1982-10-13 1982-10-13 Polyester sewing machine yarn for high speed weaving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17850982A JPS5971450A (en) 1982-10-13 1982-10-13 Polyester sewing machine yarn for high speed weaving

Publications (2)

Publication Number Publication Date
JPS5971450A JPS5971450A (en) 1984-04-23
JPS6331571B2 true JPS6331571B2 (en) 1988-06-24

Family

ID=16049707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17850982A Granted JPS5971450A (en) 1982-10-13 1982-10-13 Polyester sewing machine yarn for high speed weaving

Country Status (1)

Country Link
JP (1) JPS5971450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307391A (en) * 2004-04-21 2005-11-04 Teijin Techno Products Ltd Heat-resistant antistatic machine sewing thread

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307391A (en) * 2004-04-21 2005-11-04 Teijin Techno Products Ltd Heat-resistant antistatic machine sewing thread

Also Published As

Publication number Publication date
JPS5971450A (en) 1984-04-23

Similar Documents

Publication Publication Date Title
JPH0321652B2 (en)
JP2021102819A (en) Fiber structure
JPS6331571B2 (en)
JPS5976941A (en) High speed stitching sewing machine yarn
JP3464300B2 (en) Sewing thread and manufacturing method thereof
JPS59106535A (en) Polyester sewing machine yarn
JP2000303285A (en) Sheath-core type composite spun yarn composed of para- based aramid staple and woven fabric and knitted fabric using the same
JP2548687B2 (en) Polyester sewing thread
JPH02160943A (en) Covering yarn machine sewing thread
JPS6238457B2 (en)
JP4867410B2 (en) Polyester core yarn sewing thread
JPS60162823A (en) Composite yarn
JP2901806B2 (en) Composite sewing thread
JPH0229778B2 (en) HORIE SUTERUMISHINITO
KR920000250B1 (en) Composite sewing machine yarn
JP3140239B2 (en) Spanize sewing thread
JPS63135535A (en) High heat resistant spinning body
JP3035895B2 (en) Polyester spun sewing thread
JPH04263637A (en) Spun yarn for summer sweater
JPH0226944A (en) Machine sewing yarn
JP2946535B2 (en) Method for producing synthetic fiber sewing thread
KR870001816B1 (en) Making method of polypropylene sewing yarn
JPH05186925A (en) Composite machine-sewing thread
KR100235221B1 (en) Yarn of sewing machine
JPH01139832A (en) Increasing diameter following control apparatus of warping machine