JPS6331525B2 - - Google Patents

Info

Publication number
JPS6331525B2
JPS6331525B2 JP60190381A JP19038185A JPS6331525B2 JP S6331525 B2 JPS6331525 B2 JP S6331525B2 JP 60190381 A JP60190381 A JP 60190381A JP 19038185 A JP19038185 A JP 19038185A JP S6331525 B2 JPS6331525 B2 JP S6331525B2
Authority
JP
Japan
Prior art keywords
less
bearing steel
content
ppm
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60190381A
Other languages
Japanese (ja)
Other versions
JPS6250403A (en
Inventor
Toshasu Oonishi
Kyoshi Shiaku
Shozo Kawasaki
Yasuo Suzuki
Nobuhiro Ueno
Kenji Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19038185A priority Critical patent/JPS6250403A/en
Publication of JPS6250403A publication Critical patent/JPS6250403A/en
Publication of JPS6331525B2 publication Critical patent/JPS6331525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高炭素クロム軸受鋼の製造方法に関
し、さらに詳しくは、超清浄、即ち、高疲労寿命
を有する高炭素クロム軸受鋼の製造方法に開す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing high carbon chromium bearing steel, and more particularly, to a method for manufacturing high carbon chromium bearing steel that is ultra-clean, that is, has a high fatigue life. Open.

〔従来技術〕[Prior art]

従来において、超清浄の軸受鋼は真空溶解法に
より製造されており、そして、電気炉精錬や転炉
精錬後に炉外精錬を行ない、連続鋳造・インゴツ
ト鋳造する方法では安定した超清浄鋼を製造する
ことは不可能であつた。
Conventionally, ultra-clean bearing steel has been manufactured using a vacuum melting method, and stable ultra-clean steel can be manufactured using methods such as electric furnace refining or converter refining followed by external furnace refining and continuous casting or ingot casting. That was impossible.

また、従来においては、Crを添加するのは溶
鋼処理中であり、Cr源からのTiピツクアツプの
問題と加熱する処理時間が長いので再酸化する可
能性が非常に高いという問題と連続鋳造の場合中
心偏析が非常に大きいという問題があつた。
In addition, in the past, Cr was added during molten steel processing, and there were problems such as picking up Ti from the Cr source, and the long heating process time, so there was a high possibility of re-oxidation, and in continuous casting. There was a problem with extremely large center segregation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記に説明したような種々の問題点に
鑑みなされたものであり、本発明者が鋭意研究の
結果、軸受鋼の疲労寿命に対して悪影響を与える
有害物のP、S、Ti、Oの量を極めて少なくし、
かつ、中心偏析をも著しく減ずることができる高
疲労寿命で超清浄の高炭素クロム軸受鋼の製造方
法を開発したのである。
The present invention has been made in view of the various problems as explained above, and as a result of intensive research, the present inventor has found that harmful substances such as P, S, Ti, and The amount of O is extremely small,
Furthermore, we have developed a method for producing ultra-clean, high-carbon chromium bearing steel with a long fatigue life that can significantly reduce center segregation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る高炭素クロム軸受鋼の製造方法の
特徴とするところは、溶銑予備処理において
P0.010wt%以下、S0.007wt%以下に低減してか
ら、転炉においてスラグミニマム吹錬下で製品
Cr含有量の全量を炉中添加することにより
Ti10ppm以下に低減し、次いで、炉外精錬によ
りO28ppm以下に低減した溶鋼を、連続鋳造に際
して鋳型内および凝固末期に電磁撹拌を行ない鋳
片の中心偏析を低減し、最終的にP0.010wt%以
下、S0.005wt%以下、Ti10ppm以下、O8ppm以
下の清浄鋼とすることにある。
The feature of the manufacturing method of high carbon chromium bearing steel according to the present invention is that in hot metal pretreatment,
After reducing P0.010wt% or less and S0.007wt% or less, the product is processed in a converter under minimum slag blowing.
By adding the entire amount of Cr content in the furnace
Molten steel with Ti reduced to 10 ppm or less and O 2 reduced to 8 ppm or less through out-of-furnace refining is subjected to electromagnetic stirring in the mold and at the final stage of solidification during continuous casting to reduce center segregation of the slab, and finally P0.010wt. % or less, S0.005wt% or less, Ti 10ppm or less, and O8ppm or less.

本発明に係る高炭素クロム軸受鋼の製造方法に
ついて以下詳細に説明する。
The method for manufacturing high carbon chromium bearing steel according to the present invention will be described in detail below.

即ち、本発明に係る高炭素クロム軸受鋼の製造
方法は、溶銑予備処理→転炉精錬→炉外精錬→連
続鋳造に際し鋳型内・凝固末期に電磁撹拌を行な
う工程において、夫々の工程において軸受鋼に有
害な物質を除去し、かつ、中心偏析を低減する大
量生産が可能である超清浄の高疲労寿命の高炭素
クロム軸受鋼の製造方法である。
That is, the method for manufacturing high carbon chromium bearing steel according to the present invention involves the following steps: hot metal pretreatment → converter refining → outside furnace refining → electromagnetic stirring in the mold and at the final stage of solidification during continuous casting. This is a method for producing ultra-clean, high-carbon chromium bearing steel with a long fatigue life that can be mass-produced by removing harmful substances and reducing center segregation.

以下、本発明に係る高炭素クロム軸受鋼の製造
方法における夫々の工程について説明する。
Hereinafter, each step in the method for manufacturing high carbon chromium bearing steel according to the present invention will be explained.

溶銑予備処理においては、PおよびSの含有量
を著しく低減する脱燐、脱硫黄を行ない、第1図
a,bに示すように、少なくともP含有量は
0.010wt%以下およびS含有量を0.007wt%以下に
低減し、転炉におけるスラグミニマム吹錬を可能
とするものである。
In hot metal pretreatment, dephosphorization and desulfurization are performed to significantly reduce the P and S contents, and as shown in Figure 1 a and b, at least the P content is reduced.
This reduces the S content to 0.010wt% or less and the S content to 0.007wt% or less, making it possible to carry out minimum slag blowing in a converter.

転炉においては、スラグミニマム吹錬下で軸受
鋼中のCr含有量の全量を転炉で炉中添加するこ
とにより、Cr源の中に含有されているTiを酸化
除去して、10ppm以下(第2図aでは5.6ppm)
とする。この時スラグ量が少ないとCrの歩留り
が向上し、また、Ti含有量の多い低級のFeCr合
金をCr源として用いても、Tiが酸化除去できる。
In a converter, the entire amount of Cr in the bearing steel is added to the furnace under minimum slag blowing, and the Ti contained in the Cr source is oxidized and removed, reducing the amount to 10 ppm or less ( 5.6ppm in Figure 2a)
shall be. At this time, if the amount of slag is small, the yield of Cr improves, and even if a low grade FeCr alloy with a high Ti content is used as a Cr source, Ti can be oxidized and removed.

このように、Ti含有量が極めて少なくなると、
第2図bに示すスラスト形転動疲労試験機による
軸受としての性能、即ち、寿命(B10)が非常に
優れたものとなる。因に、この第2図bにおい
て、Ti含有量が10ppmを越えるとB10が極端に短
かくなることがわかる。
In this way, when the Ti content becomes extremely low,
The performance as a bearing, that is, the life (B 10 ), as measured by the thrust type rolling fatigue testing machine shown in FIG. 2b, is very excellent. Incidentally, in FIG. 2b, it can be seen that when the Ti content exceeds 10 ppm, B 10 becomes extremely short.

炉外精錬は、前工程においてCrを添加するた
め脱酸を主に行なうものであり、O2含有量を
8ppm以下(第3図では6.4ppm)となるように処
理を行なう。
Out-of-furnace refining mainly performs deoxidation because Cr is added in the previous process, and the O 2 content is reduced.
Processing is performed so that the concentration is 8 ppm or less (6.4 ppm in Figure 3).

このようにして最終的には、第1図〜第3図に
示すようにP0.010wt%以下、S0.005wt%以下、
Ti10ppm以下、O8ppm以下の清浄鋼が得られる。
In this way, the final results are P0.010wt% or less, S0.005wt% or less, as shown in Figures 1 to 3.
Clean steel with Ti below 10ppm and O below 8ppm can be obtained.

連続鋳造に際して鋳型内および凝固末期におけ
る電磁撹拌において、連続鋳造は造塊工程に比べ
溶鋼注入時の再酸化防止を行なうことができ、か
つ、TD使用による介在物の低減および鋳型内の
溶鋼の電磁撹拌による介在物の浮上分離を行な
い、さらに、鋳型内と凝固末期における電磁撹拌
により鋳片の中心偏析を問題のない水準にまで軽
減し、従つて、この二度の溶鋼に対する電磁撹拌
により介在物を除去すると共に中心偏析を著しく
低減させるものである。即ち、高炭素クロム軸受
鋼においては、マツシーゾーンの非常に広い鋼種
であり、凝固末期にはブリツジングができ易く、
このブリツジングの形成を阻止し、均一凝固を行
なわせるためには、溶湯の凝固末期における電磁
撹拌が必要である。また、この電磁撹拌を時期は
残存溶鋼プール厚さが40〜80mmの時点が非常に有
効である。
During continuous casting, continuous casting can prevent re-oxidation during pouring of molten steel compared to the ingot-making process during electromagnetic stirring inside the mold and at the final stage of solidification. The inclusions are floated and separated by stirring, and the center segregation of the slab is reduced to a non-problematic level by electromagnetic stirring inside the mold and at the final stage of solidification. This eliminates the problem and significantly reduces center segregation. In other words, high carbon chromium bearing steel has a very wide matsee zone and is prone to bridging at the final stage of solidification.
In order to prevent the formation of bridging and to achieve uniform solidification, electromagnetic stirring is required at the final stage of solidification of the molten metal. Furthermore, this electromagnetic stirring is very effective when the thickness of the remaining molten steel pool is 40 to 80 mm.

第4図aに鋳型内における電磁撹拌と第4図b
に鋳型内+溶鋼凝固末期の二度の電磁撹拌の鋳片
における偏析度の比較を示してあるが、第4図b
に示す鋳型内+溶湯凝固末期における電磁撹拌の
二度による場合が偏析度△C=1.3であつて、鋳
型内のみの場合に比して、偏析度は1/2以下にな
つており優れていることがわかる。
Figure 4a shows electromagnetic stirring in the mold and Figure 4b
Figure 4b shows a comparison of the degree of segregation in slabs subjected to two electromagnetic stirrings in the mold and at the final stage of molten steel solidification.
The case of double electromagnetic stirring in the mold and at the final stage of solidification of the molten metal shown in Figure 1 has a degree of segregation △C = 1.3, which is less than 1/2 that of the case only in the mold, which is excellent. I know that there is.

このような、各工程を結合することによつて、
超清浄の高疲労寿命の高炭素クロム軸受鋼を安定
して大量に生産することができる。
By combining these steps,
It is possible to stably produce large quantities of ultra-clean, high-carbon chromium bearing steel with a long fatigue life.

〔実施例〕〔Example〕

本発明に係る高炭素クロム軸受鋼の製造方法の
実施例を説明する。
An example of the method for manufacturing high carbon chromium bearing steel according to the present invention will be described.

実施例 溶銑予備処理 溶銑予備処理炉において、CaO系脱燐剤23Kg/
屯添加し、同時に、ソーダ灰系脱硫黄剤10Kg/屯
添加して溶銑を処理した。
Example Hot metal pre-treatment In the hot metal pre-treatment furnace, 23 kg of CaO-based dephosphorizing agent/
At the same time, 10 kg/ton of soda ash desulfurization agent was added to treat the hot metal.

〔P〕=0.006wt%および〔S〕=0.004wt%とな
り、転炉におけるスラグミニマム吹錬が可能とな
つた。このP、Sの量はJIS SUJ2およびSAE
(AISI)52100の軸受鋼の両規格のP含有量≦
0.025wt%、S含有量≦0.025wt%より遥かに低い
含有量となつている。
[P] = 0.006 wt% and [S] = 0.004 wt%, making it possible to perform slag minimum blowing in a converter. The amounts of P and S are JIS SUJ2 and SAE
(AISI) 52100 bearing steel P content of both standards ≦
The S content is 0.025wt%, which is much lower than the S content≦0.025wt%.

転炉処理(上下吹転炉) スラグ50Kg/屯を使用し、Fe―Cr合金を添加
し、Cr歩留り90%で〔Cr〕含有量は1.30wt%と
なつた。
Converter treatment (top and bottom blowing converter) Using slag 50Kg/tonne and adding Fe-Cr alloy, the Cr yield was 90% and the [Cr] content was 1.30wt%.

また、Ti含有量も転炉出鋼後10ppm以下にな
つていた。
Furthermore, the Ti content was below 10 ppm after being tapped from the converter.

炉外精錬 O2含有量を6ppmにまで低減し、次いで、次工
程の連続鋳造を行なつた。
Out-of-furnace refining The O 2 content was reduced to 6 ppm, and then the next step, continuous casting, was performed.

連続鋳造 鋳型内および凝固末期において、電磁撹拌を二
度行なつた。
Continuous casting Electromagnetic stirring was performed twice in the mold and at the end of solidification.

製造された軸受鋼の成分は、 C1.00wt%、Si0.25wt%、Mn0.32wt%、 P0.005wt%、S0.001wt%、Cu0.01wt%、 Ni0.01wt%、Cr1.30wt%、O6ppm、 Ti10ppm であつた。The components of the manufactured bearing steel are: C1.00wt%, Si0.25wt%, Mn0.32wt%, P0.005wt%, S0.001wt%, Cu0.01wt%, Ni0.01wt%, Cr1.30wt%, O6ppm, Ti10ppm It was hot.

このようにして製造された軸受鋼の転動疲労寿
命を第5図に示す。
FIG. 5 shows the rolling fatigue life of the bearing steel manufactured in this manner.

試験条件 負荷 500Kg/mm2 速度 1000rpm 潤滑油 #60spindle oil ● 縦断面、○ 横断面 この第5図からも、縦、横共に疲労寿命は殆ん
ど同等であり優れていることがわかる。
Test conditions Load: 500Kg/mm 2 Speed: 1000rpm Lubricating oil: #60spindle oil ● Vertical section, ○ Cross section From this Figure 5, it can be seen that the fatigue life is almost the same and excellent in both the vertical and horizontal directions.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る高炭素クロ
ム軸受鋼の製造方法は上記の構成であるから、超
清浄の軸受鋼を製造することができ、さらに、得
られた軸受鋼は転動疲労寿命を延長できる優れた
効果を有するものである。
As explained above, since the method for manufacturing high carbon chromium bearing steel according to the present invention has the above configuration, it is possible to manufacture ultra-clean bearing steel, and furthermore, the obtained bearing steel has a long rolling fatigue life. It has an excellent effect of extending the period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは溶銑予備処理によるPおよびS
の低減を示す図、第2図a,bは転炉における
Tiの低減とTi含有量とB10との関係を示す図、第
3図は炉外精錬によるO2量の低減を示す図、第
4図a,bは鋳型内電磁撹拌と鋳型内+溶鋼凝固
末期の二度の電磁撹拌との偏析度を示す図、第5
図は疲労寿命と累積破損確率との関係を示す図で
ある。
Figure 1 a and b show P and S due to hot metal pretreatment.
Figures 2a and b show the reduction of
Figure 3 shows the reduction of Ti and the relationship between Ti content and B 10. Figure 3 shows the reduction of O 2 amount by outside furnace refining. Figure 4 a and b show the relationship between in-mold electromagnetic stirring and in-mold + molten steel. Diagram showing the degree of segregation with twice electromagnetic stirring at the final stage of solidification, No. 5
The figure is a diagram showing the relationship between fatigue life and cumulative failure probability.

Claims (1)

【特許請求の範囲】[Claims] 1 溶銑予備処理においてP0.010wt%以下、
S0.007wt%以下に低減してから、転炉において
スラグミニマム吹錬下で製品Cr含有量の全量を
炉中添加すると共にTi10ppm以下に低減し、次
いで、炉外精錬によりO210ppm以下に低減した
溶湯を、連続鋳造に際して鋳型内および凝固末期
に電磁撹拌を行ない鋳片の中心偏析を低減し、最
終的にP0.010wt%以下、S0.005wt%以下、
Ti10ppm以下、O28ppm以下の清浄鋼とすること
を特徴とする高炭素クロム軸受鋼の製造方法。
1 P0.010wt% or less in hot metal pretreatment,
After reducing S to 0.007wt% or less, the entire Cr content of the product is added in the converter under minimum slag blowing, Ti is reduced to 10ppm or less, and then O 2 is reduced to 10ppm or less by outside-furnace refining. During continuous casting, the molten metal is electromagnetically stirred in the mold and at the final stage of solidification to reduce center segregation of the slab, resulting in P0.010wt% or less, S0.005wt% or less,
A method for producing high carbon chromium bearing steel, characterized by producing clean steel with Ti of 10 ppm or less and O 2 of 8 ppm or less.
JP19038185A 1985-08-29 1985-08-29 Production of high-carbon chromium bearing steel Granted JPS6250403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19038185A JPS6250403A (en) 1985-08-29 1985-08-29 Production of high-carbon chromium bearing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19038185A JPS6250403A (en) 1985-08-29 1985-08-29 Production of high-carbon chromium bearing steel

Publications (2)

Publication Number Publication Date
JPS6250403A JPS6250403A (en) 1987-03-05
JPS6331525B2 true JPS6331525B2 (en) 1988-06-24

Family

ID=16257223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19038185A Granted JPS6250403A (en) 1985-08-29 1985-08-29 Production of high-carbon chromium bearing steel

Country Status (1)

Country Link
JP (1) JPS6250403A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808062B (en) * 2012-07-19 2014-03-05 中国科学院金属研究所 Method for controlling A segregation of steel ingots by purification of molten steel
CN103667928B (en) * 2013-11-29 2016-04-27 莱芜钢铁集团有限公司 A kind of anti-low temperature brittleness N80 level oil tube steel and manufacture method thereof
CN109402327B (en) * 2018-11-22 2020-09-01 江阴兴澄特种钢铁有限公司 External refining production method of ultrapure high-carbon chromium bearing steel
CN109943685A (en) * 2019-02-20 2019-06-28 江阴兴澄特种钢铁有限公司 A kind of external refining production method of hypoxemia low titanium high-carbon-chromium bearing steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572813A (en) * 1980-06-07 1982-01-08 Nippon Steel Corp Production of decarbonized and melted stainless steel
JPS59104417A (en) * 1982-12-06 1984-06-16 Nippon Steel Corp Preparation of stainless steel
JPS60137560A (en) * 1983-12-27 1985-07-22 Kobe Steel Ltd Continuous casting method of high-carbon chromium bearing steel
JPS60190381A (en) * 1984-03-13 1985-09-27 Nippon Kogaku Kk <Nikon> Color border detector for ink sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572813A (en) * 1980-06-07 1982-01-08 Nippon Steel Corp Production of decarbonized and melted stainless steel
JPS59104417A (en) * 1982-12-06 1984-06-16 Nippon Steel Corp Preparation of stainless steel
JPS60137560A (en) * 1983-12-27 1985-07-22 Kobe Steel Ltd Continuous casting method of high-carbon chromium bearing steel
JPS60190381A (en) * 1984-03-13 1985-09-27 Nippon Kogaku Kk <Nikon> Color border detector for ink sheet

Also Published As

Publication number Publication date
JPS6250403A (en) 1987-03-05

Similar Documents

Publication Publication Date Title
US20080257106A1 (en) Process for Producing a High-Cleanliness Steel
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
CN110592461B (en) Smelting method of alloy structural steel 45CrNi
JPS6331525B2 (en)
JP2523516B2 (en) Method for manufacturing case-hardening steel with excellent rolling fatigue
JP2559692B2 (en) Anti-blurring defect prevention method for ultra low carbon cold rolled steel sheet
KR100368723B1 (en) Refining method of ultra low carbon aluminum deoxidized steel
JP3536461B2 (en) High carbon steel wire with excellent drawability and aging resistance
US3810753A (en) Process for casting molten aluminum killed steel continuously and the solidified steel shapes thus produced
CN115612912B (en) Refining method for controlling sulfur of structural steel for aluminum-containing shaft
JP3404115B2 (en) Refining method of austenitic stainless steel with excellent hot workability
JP2855334B2 (en) Modification method of molten steel slag
KR100402005B1 (en) A METHOD FOR REFINING ULTRA LOW CARBON Al-KILLED STEEL OF HIGH CLEANINESS
KR101952287B1 (en) Method for manufacturing stainless steel for cold heading quality wire rod
SU954440A1 (en) Method for vacuum treatment of molten steel
CN116042957A (en) Refining method for controlling sulfur content of heavy rail steel
CN117467822A (en) Low-cost RH ultra-low carbon silicon steel smelting method
RU2091494C1 (en) Method of smelting steel alloyed with chromium and nickel
JP3769628B2 (en) A method for producing ultrathin high silicon cast iron and ultrathin high alloy cast iron by degassing ladle degassing.
KR20010038889A (en) Method of deoxidize molten steel for hard steel wire rods at steel tapping
SU876730A1 (en) Method of killed steel production
CA1249724A (en) Si contained ferroalloy addition as a weak pre-deoxidation process in steelmaking
CN116287559A (en) Smelting control method for Ds-type inclusions in axle steel and axle steel
Hofer et al. Production of High-Grade and Special Steels by the Route KMS Converter/Secondary Metallurgy/Continuous Casting
Adamczyk et al. Effect of Ladle Refining on Ductility of Low Carbon Ferrite--Pearlite Steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees