JPS633149A - Solar pond - Google Patents

Solar pond

Info

Publication number
JPS633149A
JPS633149A JP61123777A JP12377786A JPS633149A JP S633149 A JPS633149 A JP S633149A JP 61123777 A JP61123777 A JP 61123777A JP 12377786 A JP12377786 A JP 12377786A JP S633149 A JPS633149 A JP S633149A
Authority
JP
Japan
Prior art keywords
layer
liquid
flow layer
convection
convection flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61123777A
Other languages
Japanese (ja)
Inventor
Haruhito Okamoto
晴仁 岡本
Akinobu Shinyashiki
新屋敷 昭信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYUUSHIYOU KIGYO JIGYODAN
Small Business Corp
Original Assignee
CHIYUUSHIYOU KIGYO JIGYODAN
Small Business Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYUUSHIYOU KIGYO JIGYODAN, Small Business Corp filed Critical CHIYUUSHIYOU KIGYO JIGYODAN
Priority to JP61123777A priority Critical patent/JPS633149A/en
Publication of JPS633149A publication Critical patent/JPS633149A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/10Solar heat collectors using working fluids the working fluids forming pools or ponds
    • F24S10/13Salt-gradient ponds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

PURPOSE:To provide a solar pond which is not subject to second diffusion or a change in the environmental conditions and which does not produce reduced function by making discontinuous the concentration distribution on the boundary of a convection flow layer and a non-convection flow layer and making the concentration at the lower section of the convection layer a little lower than the concentration at the non-convection layer. CONSTITUTION:The liquid concentration at the lower section of a non-convection flow layer 2 is made a little lower than that at the upper section of a convection flow layer 1. Because of this the liquid specific gravity at the lower section of the non-convection layer is a little smaller than that of the upper section of the convection flow layer, so that, even if the liquid 9 in the upper section of the convection flow layer moved downwards, the liquid 11 in the lower section of the non-convection flow layer does not follow the liquid 9. Consequently there is no mixture of the convection flow layer and the non-convection flow layer, and it is possible to suppress the phenomenon of a movement of the boundary face between the convection flow layer and the non-convection flow layer accompanying a decrease in the liquid concentration in the convection flow layer and it is also possible to prevent thoroughly reduced function of a solar pond.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はソーラポンドの濃度形成方法の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improvement in a method for forming concentration of solar ponds.

〔従来の技術〕[Conventional technology]

ソーラポンドは太陽熱の有効利用を図るために開発され
たもので、広く浅いポンドに塩水を貯留し、しかもその
塩分濃度を深さによって相違させ、底部は−様な塩水濃
度(約20重量%)の塩水層に、その上部は上方程塩分
濃度の低い密度勾配層に、最上部は清水層となるように
形成する。ポンドの広さは数千m′に達するが、深さは
塩水うが211密度勾配層が1.5m1清水層で0.2
−程度である。
Solar ponds were developed to effectively utilize solar heat. They store salt water in a wide shallow pond, and the salt concentration varies depending on the depth. A salt water layer is formed at the top, a density gradient layer with lower salinity toward the top, and a fresh water layer at the top. The width of the pond reaches several thousand m', but the depth is 1.5 m1 for the salt water gorge, 211 for the density gradient layer, and 0.2 m for the fresh water layer.
- It's about.

第3図はこのソーラポンドの断面図で、(1)は塩水層
、(2)は密度勾配層、(3)は清水層、(4)は濃度
分布線、(5)は温度分布線、(7)は塩水層(1)と
密度勾配層(2)との境界面である。なお、塩水層(1
)内では対流が生じているので、塩水層(1)は対流層
とも称せられるが、この部分に太陽熱が貯えられ、温度
は50〜60℃に達する。濃度勾配層(2)は対流を生
じない層で、非対流層とも称せられ、この部分は断熱層
として機能する。濃度、温度ともに上方に向かう程低く
なっていて、温度は下部の対流層と接するところは対流
層と同じ50〜60℃であるが、上部の清水層と接する
部分は10℃程度となる。
Figure 3 is a cross-sectional view of this solar pond, where (1) is the salt water layer, (2) is the density gradient layer, (3) is the fresh water layer, (4) is the concentration distribution line, (5) is the temperature distribution line, ( 7) is the interface between the salt water layer (1) and the density gradient layer (2). In addition, the salt water layer (1
), the saline layer (1) is also called the convection layer, and solar heat is stored in this layer, reaching a temperature of 50 to 60°C. The concentration gradient layer (2) is a layer in which no convection occurs, and is also called a non-convection layer, and this portion functions as a heat insulating layer. Both the concentration and temperature become lower as you go upwards; the temperature at the lower convection layer is 50 to 60°C, which is the same as the convection layer, but the upper part where it is in contact with the fresh water layer is about 10°C.

ソーラポンドは上記のように構成されていて、高温部分
の対!?、層を利用して、加熱や保温を行うのである。
The solar pond is constructed as described above, with a pair of high-temperature parts! ? , layers are used to heat and keep warm.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、対流層及び非対流層が常に第3図に示すよう
に濃度の均衡を保っていれば問題はないが、二次拡散あ
るいはポンド周辺の冷却による強制対流が原因となって
、第3図に示す濃度分布が乱れ、第4図に示すように、
対流層(1)の液濃度が低下し、濃度分布線(4)は(
6)のように変化し、対流層と非対流層との境界面(7
)は、−点鎖腺(8)の部分に移動する。
By the way, there is no problem if the convection layer and non-convection layer always maintain a balanced concentration as shown in Figure 3, but if forced convection due to secondary diffusion or cooling around the pond occurs, The concentration distribution shown in Figure 4 is disturbed, and as shown in Figure 4,
The liquid concentration in the convective layer (1) decreases, and the concentration distribution line (4) becomes (
6), and the interface between the convective layer and the non-convective layer (7
) moves to the - point chain gland (8).

これは例九ば二次拡散については、第5図にみろように
非対流層(2)の下部濃度が対流層の濃度と等しいため
、液比型も等しく、従って対流層内の液(9)が矢印の
ように下方に向かうとき、境界面の液α0)及び非対流
層の下部の液0υもそれにつれて下方に流れ、対流層内
に非対流層の液を巻込んでゆく。このため対流層の濃度
は次第に小さくなり、対流層の液量は増してくるので、
ポンドの液の濃度分布は第四図の(4)から(6)のよ
うに変化し、対流層と非対流層との境界面(7)は上方
(8)に移動する。
For example, regarding secondary diffusion, as shown in Figure 5, the lower concentration of the non-convective layer (2) is equal to the concentration of the convective layer, so the liquid ratio types are also equal, and therefore the liquid (9) in the convective layer is equal. ) flows downward as shown by the arrow, the liquid α0) at the interface and the liquid 0υ at the bottom of the non-convective layer also flow downward, entraining the liquid in the non-convective layer into the convective layer. For this reason, the concentration in the convective layer gradually decreases, and the amount of liquid in the convective layer increases.
The concentration distribution of the liquid in the pond changes as shown in (4) to (6) in Figure 4, and the interface (7) between the convective layer and the non-convective layer moves upward (8).

この結果、ソーラポンドはその機能を保持できなくなっ
てくるのである。
As a result, the solar pond will no longer be able to maintain its functionality.

本発明は上記問題点を解消するためになされたもので、
二次拡散や環境条件の変化をうけず、機能低下を起こさ
ないソーラポンドを提供しようとするものである。
The present invention was made to solve the above problems, and
The aim is to provide a solar pond that is not subject to secondary diffusion or changes in environmental conditions and does not deteriorate in functionality.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、本発明は係るソーラポンドに
おいては、対流層と非対m5との境界面におけろ濃度分
布を不連続とし、非対流層の下部の濃度を対流層の濃度
より若干小さくする。
In order to achieve the above object, the present invention makes the concentration distribution discontinuous at the interface between the convective layer and the non-convective layer in the solar pond, so that the concentration in the lower part of the non-convective layer is slightly lower than the concentration in the convective layer. do.

〔作用〕[Effect]

上記のように、ソーラポンドにおいて、非対流層の下部
の液の濃度を対流層の液の濃度より若干低くしているた
め、非対流層の下部の液の比重は対流層の上部の液の比
重より小さくなり、対流層内でその上部の液が下方へ移
動しても、非対流層の下部の枝がそれにつれて移動する
ことはない。
As mentioned above, in the solar pond, the concentration of the liquid at the bottom of the non-convective layer is slightly lower than that of the convective layer, so the specific gravity of the liquid at the bottom of the non-convective layer is the same as the specific gravity of the liquid at the top of the convective layer. Even if the liquid above it becomes smaller and moves downward in the convective layer, the lower branches of the non-convective layer do not move with it.

従って対流層の液の濃度の低下ならびにそれに伴う対2
i1と非対流層との境界面の上昇は起こらない。
Therefore, the concentration of liquid in the convective layer decreases and the concomitant
The interface between i1 and the non-convective layer does not rise.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例を示すソーラポンドの断面図
で、図中(1)は対流層、(2)は非対流層、(3)は
清水層、(7)は対流層と非対流層との境界面、■は対
流層(1)の濃度分布線、Cυは非対流層(2)の濃度
分布線である。
Figure 1 is a cross-sectional view of a solar pond showing an embodiment of the present invention, in which (1) is a convective layer, (2) is a non-convective layer, (3) is a fresh water layer, and (7) is a convective layer and a non-convective layer. At the interface with the convective layer, ■ is the concentration distribution line of the convective layer (1), and Cυ is the concentration distribution line of the non-convective layer (2).

図に示すように、非対流層(2)の下部の液濃度を、対
流層(1)の上部のそれより若干小さくしている。
As shown in the figure, the liquid concentration in the lower part of the non-convection layer (2) is made slightly lower than that in the upper part of the convection layer (1).

このため非対流層の下部の液比型は、対流層の上部の液
比型より若干小さくなるので、第2図に示すように対流
層の上部の液(9)が下方に移動しても、非対流層の下
部の液0υはそれに追随しないので、対流層と非対流層
の液の混合は行われず、従って対流層の液の濃度低下従
って境界面(7)の上方への移動は発生しない。
Therefore, the liquid ratio type in the lower part of the non-convective layer is slightly smaller than the liquid ratio type in the upper part of the convective layer, so even if the liquid (9) in the upper part of the convective layer moves downward, as shown in Figure 2, , since the liquid 0υ at the bottom of the non-convective layer does not follow it, the liquid in the convective layer and the non-convective layer do not mix, and therefore the concentration of the liquid in the convective layer decreases, and the upward movement of the boundary surface (7) occurs. do not.

〔発明の効果〕〔Effect of the invention〕

本発明はソーラポンドにおいて、非対流層の下部の液濃
度を対流層上部のそれより若干小さくしたので、対流層
と非対流層との液の混合は発生せず、従って対流層内の
液濃度の低下、それに伴う対流層と非対流層との境界面
の移動現象等の発生を抑止するとかできて、ソーラポン
ドの機能低下を完全に防止することが可能となった。
In the solar pond of the present invention, the liquid concentration in the lower part of the non-convective layer is made slightly lower than that in the upper part of the convective layer, so that mixing of liquid between the convective layer and the non-convective layer does not occur, and therefore the liquid concentration in the convective layer is reduced. It is possible to suppress the phenomenon of movement of the boundary surface between the convective layer and the non-convective layer due to the decrease in the temperature, and it has become possible to completely prevent the functional deterioration of the solar pond.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すソーラポンドの断固図
、第2図はボンド内の液の移動状況の説明図、第3図、
第4図は従来のソーラポンドの断面図、第5図は従来の
ソーラポンド内の液の移動状況の説明図である。 図中(1)は対流層、(2)は非対流層、(3)は清水
層、(4)は従来のソーラポンドの濃度分布線、(7)
は対流層と非対流層との境界面、(9)は対流層上部の
液の流れ、α■は境界面の液の流れ、αDは非対流層下
部の枝の流れ、■は対流層の濃度分布線、2υ(よ非対
流層の濃度分布線である。
Fig. 1 is a detailed diagram of a solar pond showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of the movement of liquid in the bond, Fig. 3,
FIG. 4 is a sectional view of a conventional solar pond, and FIG. 5 is an explanatory diagram of the movement of liquid within the conventional solar pond. In the figure, (1) is the convective layer, (2) is the non-convective layer, (3) is the fresh water layer, (4) is the concentration distribution line of the conventional solar pond, and (7)
is the boundary between the convective layer and the non-convective layer, (9) is the liquid flow in the upper part of the convective layer, α■ is the liquid flow in the boundary, αD is the branch flow in the lower part of the non-convective layer, and ■ is the flow in the convective layer. Concentration distribution line, 2υ (This is the concentration distribution line of the non-convective layer.

Claims (1)

【特許請求の範囲】[Claims] ソーラポンドにおいて、非対流層の下部の液濃度を、対
流層の上部の液濃度より若干小さくしたことを特徴とす
るソーラポンド。
A solar pond characterized in that the liquid concentration at the bottom of the non-convection layer is slightly lower than the liquid concentration at the top of the convection layer.
JP61123777A 1986-05-30 1986-05-30 Solar pond Pending JPS633149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61123777A JPS633149A (en) 1986-05-30 1986-05-30 Solar pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61123777A JPS633149A (en) 1986-05-30 1986-05-30 Solar pond

Publications (1)

Publication Number Publication Date
JPS633149A true JPS633149A (en) 1988-01-08

Family

ID=14869024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61123777A Pending JPS633149A (en) 1986-05-30 1986-05-30 Solar pond

Country Status (1)

Country Link
JP (1) JPS633149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886592A (en) * 1996-09-18 1999-03-23 Tdk Corporation Feedthrough ceramic capacitor having a grounding fitting for frictionally fixing the capacitor to a capacitor support

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911822A (en) * 1982-07-09 1984-01-21 株式会社タカラ洋行 Dust removing tool used in dusterand production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911822A (en) * 1982-07-09 1984-01-21 株式会社タカラ洋行 Dust removing tool used in dusterand production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886592A (en) * 1996-09-18 1999-03-23 Tdk Corporation Feedthrough ceramic capacitor having a grounding fitting for frictionally fixing the capacitor to a capacitor support

Similar Documents

Publication Publication Date Title
IT966138B (en) IMPROVEMENT IN THE RECIRCULATION CONTROL VALVES OF TEMPERATURE SENSITIVE FLUIDS
JPS633149A (en) Solar pond
JPS54116765A (en) Heat exchange tube
Wåhlin Topographic advection of dense bottom water
JPS5790550A (en) Solar pond
JPS5277997A (en) Crossed type joint
JPS5467210A (en) Labyrinth for multi-directioned flow
JPS52137753A (en) Refrigerator
JPS5911823B2 (en) solar pond
LIMONOV et al. Calculation of heat transfer in separation regions using local flow parameters at the limit of the wall boundary layer(Heat transfer in turbulent boundary layer separation zones ahead of step, using local flow parameters at wall boundary layer limit)
KAST The analogy of heat and mass transfer(Heat and mass transfer analogy based on coefficients ratio and boundary layer theory)
JPH01193537A (en) Thermal accumulation tank for air-conditioning
JPH02279937A (en) Feed-intake device of water of thermal stratification type heat storage tank
FR2305214A2 (en) Semipermeable membrane exchange appts. - partic. useful for blood purificn. by dialysis
Long Mass and salt transfers and halocline depths in an estuary
Perel'man et al. Scale of the convection cell structure in a horizontal layer of liquid with unsymmetrical boundary conditions for heat transfer
SU1397961A1 (en) Method of modeling interaction of stream phases
JPS55126789A (en) Method of constructing heat accumulating chamber
JPH0725569Y2 (en) Absorption refrigerator regenerator
DORFMAN et al. Approximate solutions of the equations of the dynamic and thermal boundary layers for non- Newtonian fluids with arbitrary pressure gradients and surface temperatures(Non-Newtonian liquids with arbitrary surface temperature and pressure gradients, solving dynamic and thermal boundary layers equations)
Imadojemu Convective heat transfer from a heated vertical plate surrounded by a saturated porous medium.
JPS6059367B2 (en) surface water intake device
Prasuhn et al. Reduction of River Heat Pollution by Turbulence Stimulation
JPS56102695A (en) Heat exchanger with formed fin
Burt Forecast of temperature conditions in the Oxbow and low Hells Canyon Reservoirs and in the Snake River below Hells Canyon Dam