JPS63314296A - Reformer - Google Patents
ReformerInfo
- Publication number
- JPS63314296A JPS63314296A JP62150178A JP15017887A JPS63314296A JP S63314296 A JPS63314296 A JP S63314296A JP 62150178 A JP62150178 A JP 62150178A JP 15017887 A JP15017887 A JP 15017887A JP S63314296 A JPS63314296 A JP S63314296A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- steam
- catalyst
- evaporator
- condensed water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000002994 raw material Substances 0.000 claims description 12
- 238000002407 reforming Methods 0.000 claims description 7
- 239000012530 fluid Substances 0.000 abstract description 7
- 238000001704 evaporation Methods 0.000 abstract description 6
- 230000008020 evaporation Effects 0.000 abstract description 5
- 230000005494 condensation Effects 0.000 abstract 1
- 238000009833 condensation Methods 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Industrial Gases (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は熱伝達率が大きく、触媒の使用量が少いコンパ
クトな改質装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a compact reformer that has a high heat transfer coefficient and uses a small amount of catalyst.
第4図によシ従来の改質装置くついて説明する。 A conventional reforming device will be explained with reference to FIG.
第4図の矢印で示されるように原料ガスaは入口ヘッダ
13及び入口分岐管14を通って反応管11に流入する
。反応管11の内部には触媒12が充填されており、原
料ガスaが通過する間に吸熱を伴った化学反応を起こし
て改質される。As shown by the arrow in FIG. 4, the raw material gas a flows into the reaction tube 11 through the inlet header 13 and the inlet branch pipe 14. The inside of the reaction tube 11 is filled with a catalyst 12, and while the raw material gas a passes therethrough, a chemical reaction accompanied by endotherms occurs and the raw material gas a is reformed.
反応管11は複数個加熱炉5内に挿入されておシ、側壁
面に取付けられているバーナ16によって加熱される。A plurality of reaction tubes 11 are inserted into the heating furnace 5 and heated by burners 16 attached to the side wall surface.
改質ガス(生成ガス)bは出口分岐管17及び出口ヘッ
ダ18を通って取出される。The reformed gas (product gas) b is taken out through the outlet branch pipe 17 and the outlet header 18.
この種の触媒は通常ベレット状あるいはラシヒリング状
等で用いられることが多いが、有効熱伝導″4が低回の
で、触媒が加熱側から原料ガスへの熱伝達を阻害してい
る一因となっている。This type of catalyst is often used in the form of pellets or Raschig rings, but since the effective heat conduction rate is low, this is one of the reasons why the catalyst obstructs heat transfer from the heating side to the raw material gas. ing.
このことは一定の改質ガス流量を得るのに多くの触媒(
反応管)を必要とし、さらに均一に加熱するためには反
応管を疎らに配置しなければならず、改質装置は非常に
大きくなっている。This means that many catalysts (
Furthermore, in order to achieve uniform heating, the reaction tubes must be sparsely arranged, making the reformer very large.
本発明はか\る現状に鑑みなされ友もので、伝熱性に優
れ、使用触媒量が少なくコンパクトな改質装置を提供す
ることを目的とし念ものである。The present invention was developed in view of the current situation, and is intended to provide a compact reforming device that has excellent heat transfer properties and uses a small amount of catalyst.
本発明は原料ガス入口と改質ガス出口とを有する反応容
器本体と、同反応容器本体内部に近接してほぼ平行く配
置され九複数個の中空の伝熱エレメントと、同伝熱エレ
メント間の空隙忙充填された触媒と、前記伝熱エレメン
ト内に蒸気を導入する管路と同伝熱エレメントと同伝熱
エレメント内で生じ之凝細氷を流通させる管路と前記凝
縮水から蒸気を発生させるための蒸気発生手段とで虜成
され之循環回路とを、備えたことを特徴とする改質装置
を提案するものである。The present invention provides a reaction vessel body having a raw material gas inlet and a reformed gas outlet, a plurality of hollow heat transfer elements disposed close to each other in parallel inside the reaction vessel body, and a plurality of hollow heat transfer elements between the heat transfer elements. A catalyst filled with voids, a pipe for introducing steam into the heat transfer element, a pipe for circulating the condensed ice produced in the heat transfer element, and generating steam from the condensed water. The present invention proposes a reforming apparatus characterized by comprising a circulation circuit formed with a steam generating means for producing steam.
反応容器本体内で複数の伝熱エレメントによって多層に
分割された薄い触媒の層と原料ガスにはそれを挟む伝熱
エレメントの表面から熱が伝えられる。その熱はサーモ
サイフオンによって伝えられる。すなわち、外部の加熱
流体からの熱が循環回路の蒸気発生手段でp搾水に伝え
られ、その熱によシ蒸気が発生し、その基気が伝熱エレ
メントに導入される。伝熱エレメント内では蒸気が凝縮
し、潜熱の形で熱が放出され、触媒と原料ガスに伝達さ
れる。Heat is transferred to the thin catalyst layer and the raw material gas, which are divided into multiple layers by a plurality of heat transfer elements within the reaction vessel main body, from the surfaces of the heat transfer elements that sandwich them. The heat is transferred by a thermosiphon. That is, heat from the external heating fluid is transferred to the p-squeezer by the steam generating means of the circulation circuit, the heat generates steam, and the base air is introduced into the heat transfer element. Inside the heat transfer element, steam condenses and heat is released in the form of latent heat, which is transferred to the catalyst and feed gas.
第1図〜第3図によシ本発明の一実施例について説明す
る。An embodiment of the present invention will be described with reference to FIGS. 1 to 3.
第1図は本発明の一実施例の改質装置全体の側断面図、
第2図は第1図のII−II線に沿う矢視図、第3図(
a)は反応器の縦断面図、第3図(b)は反応器の要部
拡大図である。FIG. 1 is a side sectional view of the entire reforming device according to an embodiment of the present invention;
Figure 2 is a view taken along the line II-II in Figure 1, and Figure 3 (
3(a) is a longitudinal sectional view of the reactor, and FIG. 3(b) is an enlarged view of the main parts of the reactor.
第1図〜第3図において、1は反応器20の反応容器本
体3内部に複数個近接して平行に配置された板状中空の
伝熱エレメント、2は伝熱エレメント10間の空隙に充
填され念触媒、4は反応容器本体3内部の下部に設けら
れ触媒を保持するとともに原料ガスの流入口となる多孔
板、5は伝熱エレメント1が取付けられ、伝熱ニレメン
)1の中空部と連通しかつ蒸気管7に連通している反応
器入口ヘッダ、6は伝熱エレメント1に取付けられ伝熱
エレメント1の中空部と連通し凝縮水管8に連通し九反
応器出ロヘッダ、7は蒸発′f!10の上部に取付けら
れた蒸発器出口ヘッダ9と反応器入口ヘッダ5に連結さ
れ伝熱エレメント1に蒸気を導入するための蒸気管、8
は反応器出口ヘッダ6と蒸発管10の下部に取付けられ
た蒸発器入口ヘッダ11とに連結され伝熱エレメント1
からの凝縮水を蒸発管10に流すための凝縮水管、10
は蒸発器21の蒸発容器12に内股され外部加熱流体と
#細氷とを間接熱交換させ蒸気を発生させる蒸発管で、
21は外部からの加熱流体との熱交換によシ伝熱エレメ
ント1からの凝縮水を蒸発させ、伝熱エレメントIK送
る蒸気を発生させるための蒸発器である。In FIGS. 1 to 3, reference numeral 1 indicates a plurality of hollow plate-shaped heat transfer elements arranged close to each other in parallel inside the reaction vessel main body 3 of the reactor 20, and reference numeral 2 indicates filling in the gaps between the heat transfer elements 10. 4 is a perforated plate provided at the lower part of the inside of the reaction vessel main body 3 to hold the catalyst and serve as an inlet for the raw material gas; 5 is a hollow part to which the heat transfer element 1 is attached; A reactor inlet header 6 is attached to the heat transfer element 1 and communicates with the hollow part of the heat transfer element 1 and communicates with the condensate water pipe 8. A reactor outlet header 7 is connected to the evaporator. 'f! a steam pipe 8 connected to the evaporator outlet header 9 and the reactor inlet header 5 for introducing steam into the heat transfer element 1;
The heat transfer element 1 is connected to the reactor outlet header 6 and the evaporator inlet header 11 attached to the lower part of the evaporator tube 10.
a condensate pipe 10 for flowing condensed water from the evaporator to the evaporation pipe 10;
is an evaporation tube that is inserted into the evaporation container 12 of the evaporator 21 and generates steam by indirectly exchanging heat between the external heating fluid and #fine ice;
Reference numeral 21 denotes an evaporator for evaporating condensed water from the heat transfer element 1 by heat exchange with a heated fluid from the outside to generate steam to be sent to the heat transfer element IK.
第1図、第2図の蒸発器21で蒸発管10内の凝縮水d
は高温加熱流体eKよって加熱され蒸発し、蒸気Cとな
って蒸発器出口ヘッダ9及び蒸気管7を通って反応器2
0内部の伝熱エレメント間内に流入する。蒸気Cは伝熱
エレメント1内で熱を触媒2及び原料ガスaに与へ、凝
縮して反応器出口ヘッダ6及び凝縮水管8を通り、凝縮
水dとなって蒸発器21の蒸発器入口ヘッダ11に戻る
。Condensed water d in the evaporator tube 10 in the evaporator 21 in FIGS. 1 and 2
is heated and evaporated by the high-temperature heating fluid eK, becomes steam C, and passes through the evaporator outlet header 9 and the steam pipe 7 to the reactor 2.
0 flows between the heat transfer elements inside. Steam C imparts heat to catalyst 2 and raw material gas a within heat transfer element 1, condenses, passes through reactor outlet header 6 and condensed water pipe 8, becomes condensed water d, and is transferred to evaporator inlet header of evaporator 21. Return to 11.
第3図の反応器20内では、原料ガスaは多孔板4を通
って、伝熱エレメント1に挟まれた触媒2を通過する間
に吸熱反応によって変換し改質ガスbとなり反応器20
外に流出する。In the reactor 20 of FIG. 3, the raw material gas a passes through the perforated plate 4 and the catalyst 2 sandwiched between the heat transfer elements 1, and is converted by an endothermic reaction to become the reformed gas b.
leak outside.
反応器内においては、触媒が、近接して平行に配置され
念板状の中空の伝熱エレメントによって多数の薄い層に
分割された形となっておシ、また伝熱面積も広くしたが
って熱伝達性にすぐれておシ、その結果、触媒の使用量
も少くてすみ装置がコンパクトになる。In the reactor, the catalyst is arranged close to each other in parallel and divided into many thin layers by a hollow heat transfer element in the form of a plate. As a result, the amount of catalyst used can be reduced and the equipment can be made more compact.
また伝熱エレメント内の凝縮伝熱によって、伝熱面全面
にわたって均一な加熱が行なわれる。Further, due to condensed heat transfer within the heat transfer element, uniform heating is performed over the entire heat transfer surface.
さらにまたサーモサイフオンを活用しているので外部加
熱流体からの熱が速かに触媒及び原料ガスに伝えられる
利点がある。Furthermore, since a thermosiphon is utilized, there is an advantage that heat from the externally heated fluid can be quickly transferred to the catalyst and the raw material gas.
(1) 触媒層を多層にして薄くすることによって、
実効熱伝達率が大きくなり、効率良い加熱が可能となシ
、触媒の使用量を少なくして装置のコンパクト化、コス
ト低減ができる。(1) By making the catalyst layer thinner with multiple layers,
The effective heat transfer coefficient increases, enabling efficient heating, and reducing the amount of catalyst used, making the device more compact and reducing costs.
(2)伝熱エレメント内の凝縮伝熱によって、伝熱面全
面にわたって均一な加熱が可能である。(2) Condensed heat transfer within the heat transfer element enables uniform heating over the entire heat transfer surface.
(3) サーモサイフオンの働きによって加熱流体か
ら触媒及び原料ガスに速やかに熱を伝えることができる
。(3) Heat can be rapidly transferred from the heating fluid to the catalyst and raw material gas by the action of the thermosiphon.
第1図は本発明の一実施例の改質装置全体の側断面図、
第2図は第1図の■−■線に沿う矢視図、第3図(a)
は反応器の縦断面図、第3図(b)は反応器の要部拡大
図、第4図は従来の改質装置の説明図である。
1・・・伝熱エレメント、2・・・触媒、3・・・反応
容器本体、4・・・多孔板、7・・・蒸気管、8・・・
凝縮水管、10・・・蒸発管、20・・・反応器、21
・・・蒸発器。
代理人 弁理士 坂 間 暁 外2名肩1閃
A2罠FIG. 1 is a side sectional view of the entire reforming device according to an embodiment of the present invention;
Figure 2 is a view taken along the line ■-■ in Figure 1, Figure 3 (a)
3(b) is an enlarged view of the main parts of the reactor, and FIG. 4 is an explanatory diagram of a conventional reforming apparatus. DESCRIPTION OF SYMBOLS 1... Heat transfer element, 2... Catalyst, 3... Reaction vessel main body, 4... Perforated plate, 7... Steam pipe, 8...
Condensed water pipe, 10... Evaporation pipe, 20... Reactor, 21
···Evaporator. Agent: Patent Attorney Akira Sakama, 2 people, 1 shoulder, 1 flash, A2 trap
Claims (1)
、同反応容器本体内部に近接してほぼ平行に配置された
複数個の中空の伝熱エレメントと、同伝熱エレメント間
の空隙に充填された触媒と、前記伝熱エレメント内に蒸
気を導入する管路と同伝熱エレメントと同伝熱エレメン
ト内で生じた凝縮水を流通させる管路と前記凝縮水から
蒸気を発生させる蒸気発生手段とで構成された循環回路
とを、備えたことを特徴とする改質装置。A reaction vessel body having a raw material gas inlet and a reformed gas outlet, a plurality of hollow heat transfer elements arranged close to each other in parallel inside the reaction vessel body, and gaps between the heat transfer elements filled. a catalyst, a pipe for introducing steam into the heat transfer element, a pipe for circulating condensed water generated in the heat transfer element, and a steam generating means for generating steam from the condensed water. A reforming device comprising: a circulation circuit consisting of;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62150178A JPS63314296A (en) | 1987-06-18 | 1987-06-18 | Reformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62150178A JPS63314296A (en) | 1987-06-18 | 1987-06-18 | Reformer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63314296A true JPS63314296A (en) | 1988-12-22 |
Family
ID=15491210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62150178A Pending JPS63314296A (en) | 1987-06-18 | 1987-06-18 | Reformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63314296A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4934052A (en) * | 1972-08-02 | 1974-03-29 | ||
JPS59102802A (en) * | 1982-11-30 | 1984-06-14 | Mitsubishi Heavy Ind Ltd | Device for converting fuel composition |
-
1987
- 1987-06-18 JP JP62150178A patent/JPS63314296A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4934052A (en) * | 1972-08-02 | 1974-03-29 | ||
JPS59102802A (en) * | 1982-11-30 | 1984-06-14 | Mitsubishi Heavy Ind Ltd | Device for converting fuel composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2835851B2 (en) | Reformer for fuel cell | |
JP4634038B2 (en) | Chemical reactor | |
KR20050110635A (en) | Three-fluid evaporative exchanger | |
JP4504016B2 (en) | Highly efficient and compact reformer unit for producing hydrogen from gaseous hydrocarbons in the low power range | |
EP1784259A2 (en) | Device for cooling and humidifying reformate | |
JP2010059050A (en) | Evaporator and fuel reformer | |
JP5461756B2 (en) | Evaporator | |
JPS6233269A (en) | Heat exchanger utilizing hydrogen storage alloy | |
CN110864287A (en) | Flat-plate micro heat pipe wall surface catalytic combustor | |
JPS63314296A (en) | Reformer | |
SA99200123B1 (en) | Horizontal ammonia converter adapted for high efficiency catalyst | |
JP2920860B2 (en) | Heating device | |
US7104314B2 (en) | Multi-pass heat exchanger | |
JP2601707B2 (en) | Catalytic reactor | |
JP2607644B2 (en) | Methanol reforming method | |
CA2641802C (en) | Vaporizer and methods relating to same | |
US7219628B1 (en) | Vaporizer and methods relating to same | |
JP2004010376A (en) | Co-removing apparatus and fuel cell system | |
JP2000055300A (en) | Hydrogen storage container | |
JPS6298151A (en) | Heat storage apparatus | |
JP2733307B2 (en) | Apparatus and method for producing reformed gas | |
JP2003185366A (en) | Heat exchanger | |
JPH05105403A (en) | Plate type reformer | |
JP2002295798A (en) | Hydrogen transport vessel | |
JP2004299924A (en) | Shell-and-tube heat exchanger type reaction apparatus |