JPS63314232A - Epoxy prepreg composition - Google Patents

Epoxy prepreg composition

Info

Publication number
JPS63314232A
JPS63314232A JP14920587A JP14920587A JPS63314232A JP S63314232 A JPS63314232 A JP S63314232A JP 14920587 A JP14920587 A JP 14920587A JP 14920587 A JP14920587 A JP 14920587A JP S63314232 A JPS63314232 A JP S63314232A
Authority
JP
Japan
Prior art keywords
resin
epoxy
epoxy resin
anhydride
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14920587A
Other languages
Japanese (ja)
Inventor
Hisafumi Sekiguchi
関口 尚史
Seiichi Kitazawa
北沢 清一
Yoshinori Shimane
島根 義憲
Munekazu Hayashi
宗和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP14920587A priority Critical patent/JPS63314232A/en
Publication of JPS63314232A publication Critical patent/JPS63314232A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition excellent in workability in impregnation and compression moldability, by impregnating a reinforcing fiber with a specified curable resin composition. CONSTITUTION:100-30wt.% total of 100-200pts.wt. solventless liquid epoxy resin (a) of an average epoxy equivalent of 100-400, 5-200pts.wt. powdered epoxy resin (b) of an average epoxy equivalent >=100, an average particle diameter of 50-300mum and an m.p. >=50 deg.C, a polybasic acid anhydride (c) (e.g., methylhexahydrophthalic anhydride) and a cure accelerator (d) (e.g., diethylamine) is mixed with 0-70wt.% resin obtained by dissolving 40-80wt.% epoxy vinyl ester resin and/or unsaturated polyester resin (e) in a polymerizable vinyl monomer to obtain a curable resin composition (A) in which component (b) is dispersed. A reinforcing fiber (B) (e.g., glass fiber) is impregnated with component A and aged at room temperature or higher to dissolve the component B and to thicken it into B-stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は改良された有用なるエポキシプリプレグ組成物
(以下、グリシレグと略す)に関し、更に詳細には、粉
末状のエポキシ樹脂が分散されている特定の硬化性樹脂
組成物を繊維質強化材に含浸させて成る、特に含浸作業
性、圧縮成形性が良好で諸物性にも優れるシリプレグに
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improved and useful epoxy prepreg composition (hereinafter abbreviated as glycileg), and more particularly, to a composition in which a powdered epoxy resin is dispersed. The present invention relates to Silipreg, which is obtained by impregnating a fibrous reinforcing material with a specific curable resin composition, and which has particularly good impregnation workability, compression moldability, and excellent physical properties.

〔従来の技術〕[Conventional technology]

一般にエポキシ樹脂とガラス繊維や炭素繊維などの繊維
強化材とより成るグリシレグは、その硬化物が耐熱性、
耐薬品性、耐水性、接着性、電気特性、機械的特性等の
諸物性に優れ、しかも硬化収縮が小さいこと、他方、グ
リシレグ自体が成形材料として取扱い易いことから、プ
リント回路基板や航空、宇宙ないし車輛関連の構造材料
として用いられている。
Glyshireg, which is generally made of epoxy resin and fiber reinforcement such as glass fiber or carbon fiber, has a cured product that is heat resistant and
It has excellent physical properties such as chemical resistance, water resistance, adhesion, electrical properties, and mechanical properties, and has low curing shrinkage.Glyshireg itself is easy to handle as a molding material, so it is used for printed circuit boards, aviation, and space. It is also used as a structural material for vehicles.

これらのうち、プリント回路基板用のプリプレグは、基
材としてはガラス繊維が、一方、樹脂としては溶剤を含
んだエポキシ樹脂が、主として用いられているが、経済
性の改良と低公害化とのために無溶剤化が望まれている
Among these, prepregs for printed circuit boards mainly use glass fiber as the base material and epoxy resin containing a solvent as the resin. For this reason, a solvent-free solution is desired.

また、構造材料用のグリシレグにあっても、ガラス繊維
や炭素繊維などに含浸させ易く、しかも圧縮成形性およ
び諸物性に優れる無溶剤型エポキシ樹脂マトリックスが
望まれている。
Furthermore, in the case of glycilegs for structural materials, a solvent-free epoxy resin matrix is desired, which can be easily impregnated into glass fibers, carbon fibers, etc., and which has excellent compression moldability and various physical properties.

ところで、無溶剤凰エポキシ樹脂マトリックスとしでは
ポリアミン硬化エポキシ樹脂系、ジシアンノアミド硬化
エポキシ樹脂系、二塩基酸ヒドラジット硬化エポキシ樹
脂系、多塩基酸無水物硬化エポキシ樹脂系またはエポキ
シ基を開環させて硬化せしめる、いわゆる開環重合硬化
エポキシ樹脂系などが挙げられるが、かがるプリプレグ
用マトリックスとしてのエポキシ樹脂系に望まれる要件
は、均一であること、繊維質強化材に含浸される樹脂が
、まず含浸用粘度に適合して充分に低粘度であること、
次にポットライフの長いこと、プリプレグそれ自体の安
定性が良好なること、しかもこのプリプレグの成形時に
おける硬化速度が大であることである。
By the way, as the solvent-free epoxy resin matrix, polyamine-cured epoxy resins, dicyanamide-cured epoxy resins, dibasic acid hydrazide-cured epoxy resins, polybasic acid anhydride-cured epoxy resins, or cured by ring-opening of epoxy groups are used. , so-called ring-opening polymerization cured epoxy resin systems, etc., but the requirements for the epoxy resin system as a matrix for bending prepregs are that it be uniform, and that the resin impregnated into the fibrous reinforcing material must first be impregnated. The viscosity must be sufficiently low to match the viscosity of the product.
Secondly, it has a long pot life, the prepreg itself has good stability, and the prepreg has a high curing speed during molding.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、一般に、ポリアミン硬化エポキシ樹脂系
の中で、脂肪族ポリアミンを硬化剤とする系では樹脂の
ポットライフも短く、プリプレグの安定性も悪いし、ま
た芳香族ポリアミン硬化系ではポットライフは長いもの
の、樹脂系が不均一であったり、均一であっても粘度が
高かったりして好ましくない。
However, among polyamine-cured epoxy resin systems, those that use aliphatic polyamine as a curing agent generally have a short resin pot life and poor prepreg stability, while aromatic polyamine-cured systems have a long pot life but This is not preferable because the resin system may be non-uniform, or even if it is uniform, the viscosity may be high.

ジシアンノアミド硬化系や二塩基酸ヒドラジット硬化系
では、硬化剤と樹脂とが不均一な系となり易く、加えて
繊維質強化材の含浸にさいしての低粘度化も困難であっ
て好ましくない。
Dicyanamide curing systems and dibasic acid hydrazide curing systems are undesirable because the curing agent and resin tend to be non-uniform systems, and in addition, it is difficult to reduce the viscosity when impregnating the fibrous reinforcing material.

また、エポキシ基の開環重合による硬化系では、安定な
り一ステージ状態を得ることも、繊維質強化材の含浸に
必要な低粘度化もまた困難であって好ましくない。
Further, in a curing system based on ring-opening polymerization of an epoxy group, it is difficult to obtain a stable one-stage state and to reduce the viscosity necessary for impregnating a fibrous reinforcing material, which is not preferable.

さらに、多塩基酸無水物硬化系の中で、かかるエポキシ
樹脂用の硬化剤として広く用いられている液状酸無水物
を使用した場合には、比較的低粘度物を与え、しかも樹
脂とは均一に混ざり合い、その上に長いポットライフと
安定なり一ステーノ状態のものが得られるので、当該硬
化系はシリプレグ用マトリックスとして好ましいものと
いえるが、それでも繊維質強化材の含浸に好適なように
充分に低い粘度のものとするには、特に低粘度の液状エ
ポキシ樹脂のみに限られるし、特に低粘度の液状エポキ
シ樹脂にしても、これと液状多塩基酸無水物との樹脂組
成物をマトリックスとして用いた場合には、一般に、反
応速度が小さいために加熱圧縮成形時の溶融粘度が低く
なり過ぎてマトリックスが流出して歩留も悪く、しがも
加熱圧縮成形時間も長くなって生産性が悪くなるといっ
た難点がある。
Furthermore, among polybasic acid anhydride curing systems, when a liquid acid anhydride, which is widely used as a curing agent for such epoxy resins, is used, it gives a relatively low viscosity product and is uniform in composition with the resin. Although the curing system is preferred as a matrix for silipregs because of its long pot life and stable, one-steno state, it is still not sufficient to be suitable for the impregnation of fibrous reinforcements. In order to obtain a low viscosity, it is necessary to use a particularly low viscosity liquid epoxy resin, and even if a particularly low viscosity liquid epoxy resin is used, a resin composition of this and a liquid polybasic acid anhydride is used as a matrix. When using molding, the reaction rate is generally low, so the melt viscosity during hot compression molding becomes too low and the matrix flows out, resulting in poor yield, and the hot compression molding time becomes longer, reducing productivity. The problem is that it gets worse.

また、諸物性上からすれば好ましいものといえる高粘度
または固形のエポキシ樹脂を使用するには、こうした低
粘度化のために、いわゆる希釈剤を併用することが絶対
に必要になってくる。ところが、かかる希釈剤の使用に
よれば低粘度化こそ可能とはなるけれども、その反面で
、耐熱性、耐湿性および機械特性などといった物性が悪
化することになる。
Furthermore, in order to use a high viscosity or solid epoxy resin, which is preferable from the viewpoint of various physical properties, it is absolutely necessary to use a so-called diluent in order to lower the viscosity. However, although the use of such a diluent makes it possible to lower the viscosity, on the other hand, physical properties such as heat resistance, moisture resistance, and mechanical properties deteriorate.

〔問題点を解決するための手段〕[Means for solving problems]

しかるに、本発明者らは上述した如き技術的背景から、
多塩基酸無水物硬化系、とくに無溶剤盤の多塩基酸無水
物硬化エポキシ樹脂系をマトリックスとして用いたプリ
プレグについて鋭意研究した結果、多塩基酸無水物硬化
エポキシ樹脂系に、好ましくはこのニーキシ樹脂系とエ
ポキシビニルエステル樹脂および/又は不飽和ポリエス
テル樹脂系との、いわゆるポリマー・アロイに、粉末状
のエポキシ樹脂を分散させた硬化性樹脂組成物をプリプ
レグのマトリックスとして含浸作業に用いると、含浸作
業が容易であり、次いで室温ないしそれより高い温度で
熟成し、該粉末状ニーキシ樹脂をマトリ、ジス中に溶解
させてなるプリプレグは圧縮成形性が良好で諸物性にも
優れることを見い出し、本発明を完成するに至った。
However, from the technical background as described above, the present inventors
As a result of extensive research into prepregs using polybasic acid anhydride-cured epoxy resin systems, especially solvent-free polybasic acid anhydride-cured epoxy resin systems as matrices, we have found that polybasic acid anhydride-cured epoxy resin systems, preferably this Nyxy resin When a curable resin composition in which a powdered epoxy resin is dispersed in a so-called polymer alloy of a polyester resin and an epoxy vinyl ester resin and/or an unsaturated polyester resin is used as a prepreg matrix for the impregnation operation, the impregnation operation can be improved. They found that the prepreg prepared by dissolving the powdered Nixy resin in matrices and dissolving materials, which was then aged at room temperature or higher temperature, had good compression moldability and excellent physical properties, and the present invention I was able to complete it.

すなわち、本発明は、無溶剤液状エポキシ樹脂(A)と
融点が50℃以上の粉末状エポキシ樹脂(B)と多塩基
酸無水物(C)と硬化促進剤(ロ)とエポキシビニルエ
ステル樹脂および/又は不飽和ポリエステル樹脂(ト)
)とを、[: (A) + (B) + (C) + 
(D) ) / @)の重量比が10010〜30/7
0となる割合で配合してなり、かつ粉末状エポキシ樹脂
(B)が分散している硬化性樹脂組成物(I)を、繊維
強化材(II)に含浸させてなるプリプレグを提供する
ものである。
That is, the present invention comprises a solvent-free liquid epoxy resin (A), a powdered epoxy resin (B) having a melting point of 50° C. or higher, a polybasic acid anhydride (C), a curing accelerator (B), an epoxy vinyl ester resin, and /or unsaturated polyester resin (g)
) and [: (A) + (B) + (C) +
(D) ) / @) weight ratio is 10010 to 30/7
The present invention provides a prepreg in which a fiber reinforcing material (II) is impregnated with a curable resin composition (I) in which powdered epoxy resin (B) is mixed in a ratio of 0. be.

本発明で用いる上記工Iキシ樹脂囚としては、常温で無
溶剤液状のエポキシ樹脂の単独又は混合物がいずれも使
用できるが、通常は平均エポキシ商量が100〜400
、好ましくは100〜250のものを使用する。その代
表例を挙げると、いずれも常温で無溶剤液状のエビクロ
ルヒドリ/とビスフェノールA、ビスフェノールF、レ
ゾルシンなど2価フェノールとから得られるエポキシ樹
脂;エチレングリコール、フロピレンゲリコール、&リ
エチレングリコール、ポリプロピレングリコール、ネオ
ペンチルグリコール、グリセリン、トリメチロールエタ
ン、トリメチロールプロパンまたは2価フェノールのエ
チレンオキサイドもしくはプロピレンオキサイド付加物
の如キ多価アルコールのポリグリシジルエーテル類;ア
ノビン酸、7タル酸、テトラヒドロフタル酸、ヘキサヒ
ドロフタル酸またはダイコー酸の如きポリカルボン酸の
ポリグリシジルエステル類;シクロヘキセンtたはその
誘導体を過酢酸などでエポキシ化させることにより得ら
れるシクロヘキセン系のエポキシ化合物類(3,4−エ
ポキシ−6−メチル−シクロヘキシル−3,4−zyp
キシ−6−メチルシクロヘキサンカルボキシレート、3
.4−エポキシシクロヘキシルメチル−3,4−エポキ
シシクロヘキサンカルボキシレート、1−エポキシエチ
ル−3,4−エポキシシクロヘキサンなど);シクロイ
ンタジエンもしくはジシクロペンタジェンまたはそれら
の誘導体を過酢酸などでエポキシ化させることにより得
られるシクロペンタジェン系のエポキシ化合物類(シク
ロペンタノエンオキサイド、ジシクロペンタツエンオキ
サイド、2,3−エポキシシクロペンチルエーテルなど
);リモネンノオキサイド;あるいはヒドロキシ安息香
酸のグリシジルエーテルエステルなどがあり、なかでも
性能上のバランスが良好で価格が安い点でエピクロルヒ
ドリンとビスフェノール人とから得られる無溶剤液状エ
ポキシ樹脂が、また低粘度が得られる点で無溶剤液状の
シクロヘキセン系エポキシ化合物類が好ましい。尚、必
要ならば上記の如き無溶剤液状エポキシ樹脂の単独又は
混合物に更に常温固型のエポキシ樹脂を溶解せしめた液
状混合物をエポキシ樹脂(A)として用いてもよい。
As the above-mentioned epoxy resin used in the present invention, any one or a mixture of epoxy resins that are solvent-free liquid at room temperature can be used, but usually the average epoxy commercial amount is 100 to 400.
, preferably 100 to 250. Typical examples include epoxy resins obtained from shrimp chlorhydride, all of which are solvent-free liquid at room temperature, and dihydric phenols such as bisphenol A, bisphenol F, and resorcinol; Polyglycidyl ethers of polyhydric alcohols such as polypropylene glycol, neopentyl glycol, glycerin, trimethylolethane, trimethylolpropane or ethylene oxide or propylene oxide adducts of dihydric phenols; anovic acid, heptalacid, tetrahydrophthalic acid , polyglycidyl esters of polycarboxylic acids such as hexahydrophthalic acid or dichoic acid; cyclohexene-based epoxy compounds (3,4-epoxy- 6-methyl-cyclohexyl-3,4-zyp
xy-6-methylcyclohexanecarboxylate, 3
.. 4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 1-epoxyethyl-3,4-epoxycyclohexane, etc.); Epoxidizing cyclointadiene or dicyclopentadiene or their derivatives with peracetic acid etc. cyclopentadiene-based epoxy compounds (cyclopentanoene oxide, dicyclopentatsuene oxide, 2,3-epoxycyclopentyl ether, etc.); limonene oxide; or glycidyl ether ester of hydroxybenzoic acid, etc. Among these, solvent-free liquid epoxy resins obtained from epichlorohydrin, bisphenols, and esters are preferred because they have a good balance in performance and are inexpensive, and solvent-free liquid cyclohexene epoxy compounds are preferred because they provide low viscosity. If necessary, a liquid mixture obtained by dissolving an epoxy resin solid at room temperature in the above solvent-free liquid epoxy resin alone or in a mixture may be used as the epoxy resin (A).

本発明で用いるエポキシ樹脂(B)としては、融点が5
0℃以上で粉末状のエポキシ樹脂の単独又は混合物がい
ずれも使用できるが、通常は平均エポキシ当量が100
以上で平均粒径が50〜300μm、好ましくは平均エ
ポキシ当量が170以上で平均粒径が100〜200μ
mの粉末状エポキシ樹脂を用いる。その代表的なものを
挙げると、いずれも融点が50℃以上で粉末状のエピク
ロルヒドリンとビスフェノールA、ビスフェノールF、
レゾルシン、テトラブロモビスフェノールA、テトロブ
ロモビスフェノールF、ビスフェノールSなど2価フェ
ノールとから得られるエポキシ樹脂;フェノール、アル
キルフェノールまたはブロム化フェノール・ノボラック
樹脂の如き多価フェノールのポリグリシジルエーテル;
2価フェノールとノボラック樹脂とから成る共線エポキ
シ樹脂;前述の多価アルコールのポリグリシジルエーテ
ル、ポリカルボン酸のポリグリシジルエステル、アニリ
ン、p−(またはm−)アミンフェノール、ジアミノジ
フェニルメタンの如き多価アミンのポリグリジノルアミ
ンおよびヒドロキシ安息香酸のグリシジルエーテルエス
テルと2価フェノール/おjび1 価フェノールとの共
線エポキシmJ]I?;トリグリシツルイソシアヌレー
トなどがあり、なかでもエピクロルヒドリンとビスフェ
ノールAとから得られる粉末状エポキシ樹脂が性能上の
バランスが良好で価格が安い点で、また粉末状の多価フ
ェノールポリグリシジルエーテルが耐熱性に優れる点で
、更にエピクロルヒドリンとテトラブロモビスフェノー
ルAとから得られる粉末状エポキシ樹脂と粉末状のブロ
ム化多価フェノールポリグリシジルエーテルが難燃性に
優れる点でそれぞれ好ましい。
The epoxy resin (B) used in the present invention has a melting point of 5
Epoxy resins that are powdered at 0°C or higher can be used alone or as a mixture, but usually those with an average epoxy equivalent of 100
The average particle size is 50 to 300 μm, preferably the average epoxy equivalent is 170 or more and the average particle size is 100 to 200 μm.
m powdered epoxy resin is used. Typical examples include powdered epichlorohydrin, bisphenol A, bisphenol F, and all have melting points of 50°C or higher.
Epoxy resins obtained from dihydric phenols such as resorcinol, tetrabromobisphenol A, tetrabromobisphenol F, and bisphenol S; polyglycidyl ethers of polyhydric phenols such as phenol, alkylphenols, or brominated phenol/novolac resins;
Collinear epoxy resin consisting of dihydric phenol and novolac resin; polyhydric epoxy resins such as polyglycidyl ethers of the aforementioned polyhydric alcohols, polyglycidyl esters of polycarboxylic acids, aniline, p- (or m-) amine phenols, and diaminodiphenylmethane. Collinear epoxy mJ of polyglydinolamine of amine and glycidyl ether ester of hydroxybenzoic acid with dihydric phenol/monohydric phenol]I? There are triglycitrus isocyanurates, among others, powdered epoxy resins obtained from epichlorohydrin and bisphenol A have a good balance of performance and are inexpensive, and powdered polyhydric phenol polyglycidyl ethers are heat resistant. In addition, a powdered epoxy resin obtained from epichlorohydrin and tetrabromobisphenol A and a powdered brominated polyhydric phenol polyglycidyl ether are preferable because they have excellent flame retardancy.

次いで、本発明で用いる多塩基酸無水物(C)として代
表的なものを挙げれば、無水7タル酸、ヘキサヒドロ無
水フタル酸、テトラヒドロ無水フタル酸、メチルへキサ
ヒドロ無水7タル酸、メチルテトラヒドロ無水フタル酸
、無水ナノツク酸、無水メチルナジック酸、無水トリメ
リット酸、無水ビロメリット酸、無水マレイン酸、無水
コハク酸、無水イタコン酸、無水シトラコン酸、ドデセ
ニル無水:、2、り酸、無水クロレンディック酸、無水
ペンゾフェノンテトラカルゲン酸、無水シフローンタテ
トラカルポン酸、5− (2,5−ジオキンテトラヒド
ロフリル)−3−メチル−3−シクロヘキセ7−1.2
−ジカルがン酸、エチレンクリコールビストリメリテー
ト無水物またはグリセリントリメリテート無水物などが
あり、これらは単独で、あるいは二種以上の混合物の形
で用いられる。なかでも好ましいものとしては、液状の
ものが挙げられ、例えばメチルへキサヒドロ無水フタル
酸、無水ナジック酸、無水メチルナジック酸等が挙げら
れる。
Typical examples of the polybasic acid anhydride (C) used in the present invention are 7-thalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methyltetrahydrophthalic anhydride. Acid, nanotuccinic anhydride, methylnadic anhydride, trimellitic anhydride, biromellitic anhydride, maleic anhydride, succinic anhydride, itaconic anhydride, citraconic anhydride, dodecenyl anhydride:, 2, phosphoric acid, chlorendic anhydride Acid, penzophenonetetracargenic anhydride, sifuronetatetracarboxylic anhydride, 5-(2,5-dioquinetetrahydrofuryl)-3-methyl-3-cyclohexe 7-1.2
- Dicarnic acid, ethylene glycol bistrimelitate anhydride, glycerin trimellitate anhydride, etc., and these can be used alone or in the form of a mixture of two or more types. Among them, liquid ones are preferred, such as methylhexahydrophthalic anhydride, nadic anhydride, methylnadic anhydride, and the like.

また、本発明で用いる硬化促進剤(ロ)として代表的な
ものには、ジエチルアミン、トリエチルアミン、タイツ
プロビルアミン、モノエタノールアミン、ジェタノール
アミン、トリエタノールアミン、メチルエタノールアミ
ン、メチルジェタノールアミン、モノイソグロノ母ノー
ルアミン、ノニルアミン、ジメチルアミノプロピルアミ
ン、ジメチルアミノプロピルアミン、α−ペンノルジエ
タノールアミン; 2,4.6−ドリスージメチルアミ
ノメチルフエノールもしくはそのトリー2−エチルヘキ
シル酸塩;2−ジメチルアミノメチルフェノール、ピリ
ジン、ピペリジン、N−アミノプロピルモルホリン、1
,8−ジアザビシクロ(5,4,0)ウンデセン−7ま
たはそれとフェノール、2−エチルヘキサン酸、オレイ
ン酸、ノフェニル亜燐酸もしくは有機含燐酸類との塩類
の如き各種アミン類;2−メチルイミダゾール、2−イ
ソプロピルイミダゾール、2−ウンデシルイミダゾール
、2−フェニルイミタソール、2−フェニル−4−メチ
ルイミダゾール、1−ベンジル−2−メチルイミダゾー
ル、イミダゾールとCu、NiもしくはCoなどの金属
塩錯体;2−メチルイミダゾールをアクリロニトリルと
反応させて得られるシアノエチレーション・タイプのイ
ミダゾールまたはそれらとトリメリット酸との付加物も
しくはジシアンジアミドとの反応物の如きイミダゾール
類: BF、−モノエタノールアミン、 BF3−ペン
ノルアミン、BF、 −ツメチルアニリン、BF、 −
トリエチルアミン、BF3− n −ヘキシルアミン、
BF’、−2,6−ジエチルアミン/、BF、−アニリ
ンもしくはBF、−ピペリジンの如きBF、−アミン錯
体類:1,1−ジメチルヒドラジンを出発原料とするア
ミンイミド化合物;トリフェニルホスファイトの如き燐
化合物またはオクチル酸錫の如き有機酸金属塩類などが
ある。
Further, typical curing accelerators (b) used in the present invention include diethylamine, triethylamine, tightusprobylamine, monoethanolamine, jetanolamine, triethanolamine, methylethanolamine, methyljetanolamine, Monoisoglonomotherolamine, nonylamine, dimethylaminopropylamine, dimethylaminopropylamine, α-pennoldiethanolamine; 2,4.6-dolysudimethylaminomethylphenol or its tri-2-ethylhexylate; 2-dimethylaminomethylphenol, Pyridine, piperidine, N-aminopropylmorpholine, 1
, 8-diazabicyclo(5,4,0)undecene-7 or various amines such as salts thereof with phenol, 2-ethylhexanoic acid, oleic acid, nophenylphosphorous acid, or organic phosphorous acids; 2-methylimidazole, 2 - Isopropylimidazole, 2-undecylimidazole, 2-phenylimitasol, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, imidazole and metal salt complexes such as Cu, Ni or Co; 2- Imidazoles such as cyanoethylation type imidazoles obtained by reacting methylimidazole with acrylonitrile or their adducts with trimellitic acid or reactants with dicyandiamide: BF, -monoethanolamine, BF3-pennolamine, BF , -tumethylaniline, BF, -
Triethylamine, BF3-n-hexylamine,
BF', -amine complexes such as BF', -2,6-diethylamine/, BF, -aniline or BF, -piperidine: amine imide compounds starting from 1,1-dimethylhydrazine; phosphorus such as triphenyl phosphite; compounds or organic acid metal salts such as tin octylate.

更に本発明で樹脂■として用いることが好ましいエポキ
シビニルエステル樹脂トしては、エポキシ樹脂囚および
(B)として前掲した如き各種のエポキシ樹脂の、好ま
しくはビスフェノール・タイプ又はノゲラック・タイツ
のエポキシ樹脂の、それぞれ単独又は混合物と、下記の
如き不飽和−塩基酸とを、エステル化触媒の存在下で反
応させて得られるエポキシビニルエステルを、重合性ビ
ニルモノマーに溶解せしめた樹脂が挙げられる。
Furthermore, the epoxy vinyl ester resin preferably used as the resin (2) in the present invention includes epoxy resins and various epoxy resins as listed above as (B), preferably bisphenol type or nogelac tights epoxy resins. Examples include resins in which an epoxy vinyl ester obtained by reacting each of them alone or as a mixture with an unsaturated basic acid as described below in the presence of an esterification catalyst is dissolved in a polymerizable vinyl monomer.

ここにおいて、不飽和−塩基酸として代表的なものには
アクリル酸、メタクリル酸、桂皮酸、クロトン酸、モノ
メチルマレート、モツプチルマレート、モツプチルマレ
ート、ンルビン酸またはモノ(2−エチルヘキシル)マ
レートナトー1)Z’l>ルが、これらは単独でも二種
以上の混合においても用いることができる。
Here, typical unsaturated basic acids include acrylic acid, methacrylic acid, cinnamic acid, crotonic acid, monomethyl maleate, motsputil maleate, motsputyl maleate, undrubic acid, and mono(2-ethylhexyl). These can be used alone or in a mixture of two or more.

また、重合性ビニルモノマーのうちでも代表的なものと
しては、スチレン、ビニルトルエン、を−ブチルスチレ
ン、クロルスチレンもLljジビニルベンゼンの如きス
チレンおよびその誘導体;2−エチルヘキシル(メタ)
アクUV−1,ラウリル(メタ)アクリレート、2−ヒ
ドロキシエチル(メタ)アクリレートもしくは2−ヒド
ロキシプロピル(メタ)アクリレートの如き(メタ)ア
クリル酸の低沸点エステルモノマー類;またはトリメチ
ロールグロパントリ(メタ)アクリレート、ジエチレン
グリ;−ルジ(メタ)アクリレート、1.4−ブタンジ
オールジ(メタ)アクリレートもしくは1.6−ヘキサ
ンシオールジ(メタ)アクリレートの如き多価アルコー
ルの(メタ)アクリレート類などが挙げられ、これらは
単独であるいは二種以上の混合物として、通常エポキシ
ヒニルエステル40〜80Xt%に対して60〜20重
量%(合計100重t%)の割合で使用される口また・
本発明で樹脂(ト))として用いることが好ましい不飽
和ポリエステル樹脂としては、不飽和二塩基酸を含む二
塩基酸類と多価アルコール類トノ反応で得られる不飽和
ポリエステルを、重合性とニルモノマーで溶解せしめた
ものが挙げられる口ここで用いる重合性ビニルモノマー
としては、上記と同様の重合性ビニルモノマーが挙げら
れ、これらは単独であるいは二種以上の混合物として、
通常不飽和ポリエステル40〜80重量優に対して60
〜20重fチ(合計100重量%)の割合で使用される
Typical polymerizable vinyl monomers include styrene, vinyltoluene, -butylstyrene, chlorstyrene, styrene and its derivatives such as divinylbenzene; 2-ethylhexyl (meth)
AkuUV-1, low boiling ester monomers of (meth)acrylic acid such as lauryl (meth)acrylate, 2-hydroxyethyl (meth)acrylate or 2-hydroxypropyl (meth)acrylate; or trimethylolglopantri(meth)acrylate; ) acrylate, di(meth)acrylate of polyhydric alcohols such as di(meth)acrylate, 1,4-butanediol di(meth)acrylate, or 1,6-hexanediol di(meth)acrylate. These are usually used alone or as a mixture of two or more in a ratio of 60 to 20% by weight (total 100% by weight) based on 40 to 80% by weight of epoxy vinyl ester.
In the present invention, the unsaturated polyester resin preferably used as the resin (g)) is an unsaturated polyester obtained by the reaction of dibasic acids containing unsaturated dibasic acids and polyhydric alcohols. Examples of the polymerizable vinyl monomer used here include the same polymerizable vinyl monomers as mentioned above, and these can be used alone or as a mixture of two or more.
Usually 60 to 40 to 80% by weight of unsaturated polyester
It is used in a proportion of ~20% by weight (total 100% by weight).

不飽和二塩基酸として代表的なものにはマレイン酸、m
水マレイン酸、7マル酸、ハロゲン化無水マレイン酸な
どがあり、これら以外の飽和二塩基酸ともいうべき酸類
として代表的なものには7タル酸、無水7タル酸、ノ1
0グy化無水フタル酸、イン7タル酸、テレフタル酸、
テトラヒドロ無水フタル酸、コハク酸、アジピン酸、セ
バシン酸などがあり、他方、多価アルコール類として代
表的なものにはエチレングリコール、ジエチレングリコ
ール、トリエチレングリコール、プロピレングリコール
、ジエチレングリコール、1,3−ブチレングリコール
、1.4−ブチレングリコール、ネオペンチルグリコー
ル、水添ビスフェノ−/l/A、1.6−ヘキサンジオ
ール、ビスフェノールAとエチレンオキサイドもしくは
プロピレンオキサイドとの付加物、グリセリン、トリメ
チロールグロパンなどがある。
Typical unsaturated dibasic acids include maleic acid, m
Hydromaleic acid, 7-malic acid, halogenated maleic anhydride, etc. Other typical acids that can be called saturated dibasic acids include 7-talic acid, 7-talic anhydride, 7-talic anhydride, and halogenated maleic anhydride.
Ogylated phthalic anhydride, in-7thalic acid, terephthalic acid,
Examples include tetrahydrophthalic anhydride, succinic acid, adipic acid, and sebacic acid, while typical polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, diethylene glycol, and 1,3-butylene glycol. , 1,4-butylene glycol, neopentyl glycol, hydrogenated bisphenol/l/A, 1,6-hexanediol, adducts of bisphenol A and ethylene oxide or propylene oxide, glycerin, trimethylolglopane, etc. .

これらの各原料を用いてエポキシビニルエステル樹脂と
不飽和ポリエステル樹脂を得るには、従来公知の方法に
従えばよく、本発明における前記樹脂(6)を構成する
これら両樹脂を調製するにさいしては、樹脂調製中のダ
ル化を防止する目的や、生成樹脂の保存安定性あるいは
硬化性の調整の目的でそれぞれ重合禁止剤を使用するこ
とが推奨されるが、かかる重合禁止剤として代表的なも
のを挙げればハイドロキノン、p−t−ブチルカテコー
ル、モノ−t−ブチルハイドロキノンの如キハイドロキ
ノン類;ハイドロキノンモノメチルエーテル、ジ−t−
p−クレゾールの如きフェノール類;p−ベンゾキノン
、ナフトキノン、l)−トルキノンの如きキノン類;ま
たはす7テン酸銅の如き銅塩などである。
In order to obtain an epoxy vinyl ester resin and an unsaturated polyester resin using each of these raw materials, conventionally known methods may be followed. It is recommended to use a polymerization inhibitor for the purpose of preventing dulling during resin preparation and for adjusting the storage stability or curability of the resulting resin. Examples include hydroquinones such as hydroquinone, pt-butylcatechol, and mono-t-butylhydroquinone; hydroquinone monomethyl ether, di-t-butylhydroquinone;
These include phenols such as p-cresol; quinones such as p-benzoquinone, naphthoquinone, and l)-torquinone; and copper salts such as copper heptenoate.

ところで、このようにして得られる両(6)成分樹脂は
触媒を使用することなく、単に加熱するだけで充分硬化
させることもできるが、必要ならば、ベンゾイル/4’
−オキサイド、p−メンタンハイド1:I /” −、
オキサイド、t−ブチルパーベンゾエート、1.1−ノ
ーt−ブチルパーオキシ−3,3,5−)リメチルシク
ロヘキサノンなどの有機過酸化物を重合開始剤として用
いることができ、こうした場合本発明における当該の)
成分は樹脂と重合開始剤とから成る樹脂組成物として観
念できる。
By the way, both (6) component resins obtained in this way can be sufficiently cured by simply heating without using a catalyst, but if necessary, benzoyl/4'
- oxide, p-menthane hydride 1:I/” -,
Organic peroxides such as oxide, t-butylperbenzoate, 1,1-not-butylperoxy-3,3,5-)limethylcyclohexanone can be used as polymerization initiators; relevant)
The components can be thought of as a resin composition consisting of a resin and a polymerization initiator.

また、当該(6)成分を構成する樹脂としてはエポキシ
ビニルエステル樹脂または不飽和ポリエステル樹脂をそ
れぞれ単独で用いてもよければ、これら両タイプの樹脂
を併用してもよいことは勿論である。
Further, as the resin constituting the component (6), it goes without saying that epoxy vinyl ester resin or unsaturated polyester resin may be used alone, or both types of resin may be used in combination.

そして、無溶剤液状エポキシ樹脂(A)と融点が50℃
以上の粉末状エポキシ樹脂(B)と多塩基酸無水物(C
)と硬化促進剤(ロ)とから成るエポキシ樹脂組成物〔
(A)+(B) + (C) + (D) )と、エポ
キシビニルエステル樹脂および/または不飽和ポリエス
テル樹脂(ト)との、さらに必要ならば、重合開始剤を
も加えた形の樹脂組成物但)との重量比率は、要求され
る特性や作業上の条件などによって適宜選定すればよい
が、@:)成分の割合が大きくなりすぎるときは、エポ
キシビニルエステル樹脂や不飽和ポリエステル樹脂自体
の物性に近いものとなり、〔(5)+(B) + (C
)+(6)〕成分たる多塩基酸無水物硬化エポキシ樹脂
組成物の特性である、たとえば硬化収縮が小さいという
良さが損われる結果となる。
And the solvent-free liquid epoxy resin (A) has a melting point of 50°C.
The above powdered epoxy resin (B) and polybasic acid anhydride (C
) and a curing accelerator (b) [
(A) + (B) + (C) + (D) ), an epoxy vinyl ester resin and/or an unsaturated polyester resin (g), and if necessary, a polymerization initiator is also added. The weight ratio of the composition to the component) can be selected appropriately depending on the required properties and working conditions, but if the ratio of the component @:) becomes too large, use epoxy vinyl ester resin or unsaturated polyester resin. The physical properties are close to that of itself, and [(5) + (B) + (C
)+(6)] The characteristics of the polybasic acid anhydride-cured epoxy resin composition, such as low curing shrinkage, are impaired.

したがって、両成分〔囚+(B) + (C’) + 
CD) 〕/(ト))の重量比は10010〜30/7
0、好ましくは9515〜60/40なる範囲である。
Therefore, both components [prison + (B) + (C') +
The weight ratio of CD) ]/(g)) is 10010 to 30/7
0, preferably in the range of 9515 to 60/40.

ここで、無溶剤液状エポキシ樹脂(A)と融点が50℃
以上の粉末状エポキシ樹脂(B)の重量比CA)/■)
は、通常10015〜100/200、好ましくは10
015〜100150なる範囲である。ただし、該粉末
状エポキシ樹脂として難燃性のものを用いる場合・(A
)/(B)の重量比は100/100〜100/200
の範囲が好ましい。
Here, the solvent-free liquid epoxy resin (A) and the melting point are 50 ° C.
Weight ratio CA)/■) of the above powdered epoxy resin (B)
is usually 10015 to 100/200, preferably 10
The range is 015 to 100150. However, when using a flame-retardant powdered epoxy resin, (A
)/(B) weight ratio is 100/100 to 100/200
A range of is preferred.

上記成分C(A) + (B) +(C)+の)〕と成
分(ト))とは、それぞれ別々に調製されたのち混合し
てもよいし、あるいはエポキシ樹脂(A)または多塩基
酸無水物(C)に、1ず成分(E)たるエポキシビニル
エステル樹脂および/または不飽和ポリエステル樹脂、
必要ならば重合開始剤を混合したのち、次いで残余の成
分化合物を加えるという方法も採れるので、各成分化合
物の配合順序は限定されるものではない。
The above components C (A) + (B) + (C) An epoxy vinyl ester resin and/or an unsaturated polyester resin as component (E) to the acid anhydride (C),
If necessary, it is also possible to mix the polymerization initiator and then add the remaining component compounds, so the order of blending each component compound is not limited.

また、かくして得られる本発明グリプレグを構成する硬
化性樹脂組成物(I)中には、内部離型剤または顔料な
どの慣用の添加剤を添加することも可能である。
Further, it is also possible to add conventional additives such as internal mold release agents or pigments to the curable resin composition (I) constituting the grippreg of the present invention thus obtained.

他方、本発明のプリプレグを構成する繊維状強化材(I
N)として代表的なものを挙げれば、ガラ・ス繊維、炭
素繊維または芳香族ポリアミド系繊維などであるが、こ
れらのうちまずガラス繊維としては、その原料面から、
E−グラス、C−グラス、A−グラスおよびS−グラス
などが存在しているが、本発明においてはいずれの種類
のものも適用できる。
On the other hand, the fibrous reinforcing material (I
Typical examples of N) include glass fiber, carbon fiber, and aromatic polyamide fiber.
E-glass, C-glass, A-glass, S-glass, etc. exist, but any type can be applied in the present invention.

次に、炭素繊維としては?リアクリロニトリル系繊維、
セルローズ系繊維、ピッチ、芳香族炭化水素またはカー
ボンブラックなどを原料として製造されるものが挙げら
れるし、また芳香族ポリアミド系繊維とは多官能の芳香
族アミンと芳香族多塩基酸との反応によりアミド結合を
有する重合体から作られるものであり、代表的な重合体
としては、/ +) −p −フェニレンテトラフタル
アミドまたはポリ−p−アミノベンズアミドなどが挙げ
られる。
Next, what about carbon fiber? Liacrylonitrile fiber,
Examples include those manufactured using cellulose fibers, pitch, aromatic hydrocarbons, or carbon black as raw materials, and aromatic polyamide fibers are produced by the reaction of polyfunctional aromatic amines and aromatic polybasic acids. It is made from a polymer having an amide bond, and typical polymers include /+)-p-phenylenetetraphthalamide or poly-p-aminobenzamide.

これらの繊維質強化材(It)は、その形状によりロー
ビング、チョツプドストランドマット、コンティニアス
マット、クロス、ロービングクロス、サーフエシングマ
ットおよびチW7プドストランドがあるが、止揚した如
き覆類や形状は、目的とする成形物の用途および性能に
より適宜選択されるものであって、必要によっては二以
上の種類または形状からの混合使用であってもよい。
These fibrous reinforcement materials (It) are classified into rovings, chopped strand mats, continuous mats, cloths, roving cloths, surfaging mats, and chipped strands depending on their shape, but there are no coverings or shapes such as hoisted strands. They are appropriately selected depending on the intended use and performance of the molded product, and two or more types or shapes may be used in combination, if necessary.

本発明の!リプレグを得るにさいして、繊維質強化材(
II)の容積比率はプリプレグの30〜70%なる範囲
内が適当である。
The invention! In obtaining repreg, fibrous reinforcement (
The volume ratio of II) is suitably within the range of 30 to 70% of the prepreg.

そして、本発明のプリプレグを得るには、室温またはそ
れよりも高い温度で前記強化材(n)に前記樹脂組成物
Q)を含浸させてシート状にしたものを、離型用シート
でサンドイッチ物となし、同様に室温またはそれよりも
高い温度で熟成させて、該樹脂組成物(I)中に分散し
ている粉末状エポキシ樹脂を溶解せしめると共にB−ス
テージ状態まで増粘せしめるという方法によるのがよい
In order to obtain the prepreg of the present invention, the reinforcing material (n) is impregnated with the resin composition Q) at room temperature or higher temperature to form a sheet, and then sandwiched with a release sheet. Similarly, the resin composition (I) is aged at room temperature or a higher temperature to dissolve the powdered epoxy resin dispersed in the resin composition (I) and thicken it to a B-stage state. Good.

かかる手法で得られた本発明のプリプレグは、次いで加
熱圧縮成形させることにより所望の成形物を与えるが、
このさい、必要によっては、成形用金型から離型したの
ち、さらに後硬化を施すこともできる。
The prepreg of the present invention obtained by such a method is then heated and compression molded to give a desired molded product.
At this time, if necessary, post-curing may be further performed after release from the molding die.

〔実施例〕〔Example〕

次に、本発明を実施例および比較例により具体的に説明
する。以下において、部およびチは特に断りのない限り
は、すべて重量基準であるものとする。
Next, the present invention will be specifically explained using Examples and Comparative Examples. In the following, parts and parts are all based on weight unless otherwise specified.

実施例1 エポキシ当量が190なるビスフェノールA型液状エポ
キシ樹脂90部、エポキシ当量が2700で融点147
℃なる平均粒径130μmの粉末状のビスフェノールA
型エポキシ樹脂10部、メチルテトラヒドロ無水フタル
酸80部およびペンノルジメチルアミン0.6部と、更
にエポキシ当量が182なるフェノールノボラック型エ
ポキシ樹脂のメタクリレート(70%)とスチレンモノ
マー(30%)とより成るエポキシビニルエステル樹脂
46部、ラジカル開始剤としてのベンゾイル/’P−オ
キサイド0.9部および内部離型剤としてのステアリン
酸亜鉛2部を混合せしめて、粉末状ビスフェノールA型
エポキシ樹脂が分散している硬化性樹脂組成物を調製し
た。
Example 1 90 parts of bisphenol A liquid epoxy resin with an epoxy equivalent of 190, an epoxy equivalent of 2700 and a melting point of 147
Powdered bisphenol A with an average particle size of 130 μm at °C
10 parts of type epoxy resin, 80 parts of methyltetrahydrophthalic anhydride and 0.6 parts of pennoldimethylamine, and further methacrylate (70%) of a phenol novolak type epoxy resin having an epoxy equivalent of 182 and styrene monomer (30%). 46 parts of epoxy vinyl ester resin, 0.9 parts of benzoyl/'P-oxide as a radical initiator, and 2 parts of zinc stearate as an internal mold release agent were mixed to disperse a powdered bisphenol A type epoxy resin. A curable resin composition was prepared.

この硬化性樹脂組成物40部を、ポリエチレン製離型フ
ィルム(厚さ50 AuR)上に配したカット長が1イ
ンチのチ薗ツブトストランrグラス60部に室温で含浸
させ、プレスした後、40℃の電熱乾燥機中で30時間
熟成せしめると共に粉末状ビスフェノールA型エポキシ
樹脂を溶解せシメテ、タックフリーなるプリプレグ(チ
層ツブトストランPグラスの容積比率40%)を得た。
40 parts of this curable resin composition was impregnated at room temperature into 60 parts of Chizonotsubutsutran R glass with a cut length of 1 inch placed on a polyethylene release film (thickness: 50 AuR), and after pressing, the mixture was heated at 40°C. The mixture was aged in an electric heat dryer for 30 hours and the powdered bisphenol A type epoxy resin was dissolved to obtain a tack-free prepreg (volume ratio of 40% of the layered Tubbutsutran P glass).

このプリプレグをチャージ率が901fi、fi優とな
る様に3枚重ねて圧力50に9部cm  、温度160
℃。
Three sheets of this prepreg were stacked so that the charge rate was 901fi and fi excellent, and the pressure was 50%, 9 parts cm, and the temperature was 160%.
℃.

時間6分間の条件で加熱圧縮成形した後、170℃の電
熱乾燥機中で1時間後硬化を行りて厚さ3鱈の平板を得
次。また、チャーノ率80面!R影。
After heating and compression molding for 6 minutes, the product was cured for 1 hour in an electric dryer at 170°C to obtain a flat plate with a thickness of 3 mm. Also, the ciano rate is 80! R shadow.

70面槓チおよび60面積饅となる様にし次以外は上記
と同様にして平板金得た〇 第1表に硬化性樹脂組成物の物性(粘度およびチョツプ
ドストランド9グラスへの含浸性)、プリプレグの物性
(マトリックスの粘度およびタック性)、成形品の物性
(25℃と120℃におけるチf−ソ率90面檀鋒成形
品の曲げ強度ンおよび成形品のがラス含有率(チャージ
率90〜60面積チ成形品の中心部と周囲部のガラス含
有率の比較)の測定結果を示す。
A flat sheet metal was obtained in the same manner as described above except for the following, so that the area was 70 sided and 60 sided. Table 1 shows the physical properties of the curable resin composition (viscosity and impregnability into chopped strand 9 glass). , the physical properties of the prepreg (viscosity and tackiness of the matrix), the physical properties of the molded product (flexural strength of the 90-sided Danfeng molded product at 25°C and 120°C, and the lath content (charge rate) of the molded product) The measurement results are shown below (comparison of glass content in the center and periphery of molded products with an area of 90 to 60).

実施列2 エポキシ当量が190なるビスフェノールAW液状エポ
キシ樹脂60部、エポキシ当量が135な石3.4−エ
ポキシシクロヘキシルメチル−3,4−エポキシシクロ
ヘキサンカルフキシレー420部、エポキシ当量が45
00で融点155℃なる平均粒径150μmの粉末状の
ビスフェノール大型エポキシ樹脂20部、メチルテトラ
ヒドロ無水フタル酸90部お工び2−エチル−4−メチ
ルイミダゾール0.6部と、更に[ポリライトFG −
387J [大日本インキ化学工業(株)製の不飽和ポ
リエステル樹脂、スチレンモノマー含有量401:13
1部、ベンゾイル/母御オキサ420.9部およびステ
アリン酸亜鉛2部を混合せしめて、粉末状ビスフェノー
ルA型エポキシ樹脂が分散している硬化性樹脂組成物を
得た。
Example row 2 60 parts of bisphenol AW liquid epoxy resin with an epoxy equivalent of 190, 420 parts of stone 3.4-epoxycyclohexylmethyl-3,4-epoxycyclohexane calfoxylate with an epoxy equivalent of 135, and 420 parts of epoxy equivalent with 45
20 parts of a powdered bisphenol large epoxy resin with a melting point of 155° C. and an average particle size of 150 μm, 90 parts of methyltetrahydrophthalic anhydride, 0.6 parts of 2-ethyl-4-methylimidazole, and further [Polylite FG-
387J [Unsaturated polyester resin manufactured by Dainippon Ink and Chemicals Co., Ltd., styrene monomer content 401:13
420.9 parts of benzoyl/mother oxa and 2 parts of zinc stearate were mixed to obtain a curable resin composition in which powdered bisphenol A type epoxy resin was dispersed.

以後は、この硬化性樹脂組成物を用いた以外は実施例1
と同様にしてプリプレグと平板を得、次いで同様にして
各種物性とガラス含有率とを測定した。測定結果を第1
表に示す。
Hereinafter, Example 1 was repeated except that this curable resin composition was used.
A prepreg and a flat plate were obtained in the same manner as above, and then various physical properties and glass content were measured in the same manner. Measurement results first
Shown in the table.

実施例3 エポキシ当量が120なるレゾルシン屋液状エポキシ樹
脂70都、エポキシ当量が220で融点が95℃なる平
均粒径180μmの粉末状のクレゾールノボラック型エ
ポキシ樹脂30部、メチルへキサヒドロ無水7タル酸1
19部および2−エチル−4−メチルイミダゾール0.
6部と、更に実施例1で用いたエポキシビニルエステル
m脂94部、ベンゾイルパーオキサイド1部およびステ
アリン酸亜鉛2部を混合せしめて、粉末状クレゾールノ
ボラック型エポキシ樹脂が分散している硬化性樹脂組成
物40部。
Example 3 70 resorcinol liquid epoxy resins with an epoxy equivalent of 120, 30 parts of a powdered cresol novolac type epoxy resin with an average particle size of 180 μm and an epoxy equivalent of 220 and a melting point of 95°C, 7 parts of methyl hexahydro anhydride, 1 part of talic acid
19 parts and 0.2-ethyl-4-methylimidazole.
6 parts of the epoxy vinyl ester m fat used in Example 1, 1 part of benzoyl peroxide, and 2 parts of zinc stearate were mixed to obtain a curable resin in which powdered cresol novolak type epoxy resin was dispersed. 40 parts of composition.

以後は、この硬化性樹脂組成物を用いた以外は実施例1
と同様にしてプリプレグと平板を得、次いで同様にして
各種物性とガラス含有率とを測定し九。測定結果を第1
表に示す。
Hereinafter, Example 1 was repeated except that this curable resin composition was used.
A prepreg and a flat plate were obtained in the same manner as above, and then various physical properties and glass content were measured in the same manner. Measurement results first
Shown in the table.

実施例4 エポキシ当量が190なるビスフェノールA型液状エポ
キシ樹脂39部、エポキシ当量が665で融点が100
℃なる平均粒径130μmの粉末状のテトラブロモビス
フェノールA型エポキシ樹脂61部、メチルテトラヒド
ロ無水フタルwI50部および2−エチル−4−メチル
イミダゾール0.6部と、エポキシ当量が370なるテ
トラブロモビスフェノールA型エポキシ樹脂のメタクリ
レート(73%)トスチレンモノマ−(27%)、!:
より成るエポキシビニルエステル樹脂64部、ベンゾイ
ルパーオキサイド1部およびステアリン酸亜鉛2部を混
合せしめて粉末状テトラブロモビスフェノールA型エポ
キシ樹脂が分散している硬化性樹脂組成物を得た。
Example 4 39 parts of bisphenol A liquid epoxy resin with an epoxy equivalent of 190, an epoxy equivalent of 665 and a melting point of 100
61 parts of a powdered tetrabromobisphenol A type epoxy resin with an average particle size of 130 μm, 50 parts of methyltetrahydrophthalanhydride wI and 0.6 parts of 2-ethyl-4-methylimidazole, and tetrabromobisphenol A with an epoxy equivalent of 370. Type epoxy resin methacrylate (73%) tostyrene monomer (27%),! :
64 parts of epoxy vinyl ester resin, 1 part of benzoyl peroxide, and 2 parts of zinc stearate were mixed to obtain a curable resin composition in which powdered tetrabromobisphenol A type epoxy resin was dispersed.

以後は、この硬化性樹脂組成物を用いた以外は実施例1
と同様にしてプリプレグと平板を得、次いで同様にして
各種物性とがラス含有率とを測定した。測定結果を第1
表に示す。
Hereinafter, Example 1 was repeated except that this curable resin composition was used.
A prepreg and a flat plate were obtained in the same manner as above, and then various physical properties and lath content were measured in the same manner. Measurement results first
Shown in the table.

比較例1 エポキシ当量が190なるビスフェノールA型液状エポ
キシ樹脂90部とエポキシ当量が2700で融点が14
7℃なる平均粒径130μmの粉末状ビスフェノールA
型エポキシflt脂lo部トtxo。
Comparative Example 1 90 parts of bisphenol A liquid epoxy resin with an epoxy equivalent of 190 and a melting point of 14 with an epoxy equivalent of 2700
Powdered bisphenol A with an average particle size of 130 μm at 7°C
Type epoxy flt fat lo part to txo.

℃で2時間混合し、該粉末状エポキシ樹脂を溶解させた
後、常温まで冷却して均一なエポキシ樹脂混合物として
用いた以外は実施例1と同様にして粉末状エポキシ樹脂
が溶解している均一な硬化性樹脂組成物を得た。
A homogeneous mixture in which the powdered epoxy resin was dissolved was prepared in the same manner as in Example 1, except that the powdered epoxy resin was mixed at ℃ for 2 hours, and then cooled to room temperature and used as a uniform epoxy resin mixture. A curable resin composition was obtained.

この硬化性樹脂組成物は粘度が高く、この組成物40部
をカット長が1インチなるチ、ツブトストランドグラス
60部に均一に含浸させることは困難であった。それで
も作製したプリプレグを40℃で約30時間熟成せしめ
て、一部含浸不良のみられるタック・フリーなるプリプ
レグを得た。以後は実施例1と同様にして平板金得、次
いで同様にして各種物性とがラス含有率とを測定した。
This curable resin composition had a high viscosity, and it was difficult to uniformly impregnate 60 parts of rhubarb strand glass with a cut length of 1 inch with 40 parts of this composition. Nevertheless, the prepared prepreg was aged at 40° C. for about 30 hours to obtain a tack-free prepreg with some poor impregnation. Thereafter, a flat sheet metal was obtained in the same manner as in Example 1, and then various physical properties and lath content were measured in the same manner.

測定結果を第1表に示す。The measurement results are shown in Table 1.

比較例2 平均粒径130μmの粉末状ビスフェノールA型エポキ
シ樹脂10部の使用を省略した以外は実施PJ 1と同
様にして均一な硬化性樹脂組成物を得た。
Comparative Example 2 A uniform curable resin composition was obtained in the same manner as in PJ 1 except that 10 parts of powdered bisphenol A type epoxy resin having an average particle size of 130 μm was omitted.

以後は、この硬化性樹脂組成物を用いた以外は実施例1
と同様にしてプリプレグと平板を得、次いで同様にして
各種物性とガラス含有率とを測定した。測定結果′f、
第1表に示す。
Hereinafter, Example 1 was repeated except that this curable resin composition was used.
A prepreg and a flat plate were obtained in the same manner as above, and then various physical properties and glass content were measured in the same manner. Measurement result'f,
Shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明のグリシレグは、上記第1表の結果からも明らか
な様に、常温固型のエポキシ樹脂を用いているにもかか
わらす含浸作業性が良好で容易に製造でき、しかも成形
時の粘度が高く、圧縮成形性に優れるので、チャージ率
が低くても各部位で繊維強化材含有率が一定で諸物性に
優れる成形品が得られるという利点を有する。
As is clear from the results in Table 1 above, the Glyshireg of the present invention has good impregnating workability and is easy to manufacture, even though it uses an epoxy resin that is solid at room temperature, and has a low viscosity during molding. This has the advantage that even if the charge rate is low, a molded article with a constant fiber reinforcing material content in each region and excellent physical properties can be obtained.

代理人 弁理士 高 橋 勝 利 手続補正書(自発) 昭和62年7月29を日 特許庁長官 小 川 邦 夫 殿 1、事件の表示 昭和62年特許願第149205号 2、発明の名称 エポキシプリグレグ組成物 3、補正をする者 事件との関係  特許出願人 〒174 東京都板橋区坂下三丁目35番58号(28
8)  大日本イン中化学工業株式会社代表者川村茂邦 4、代 理 人 〒103  東京都中夫区日本橋三丁目7Tj20号大
日本インキ化学工業株式会社内 電話 東京(03)272−4511 (大代表)箇−
7゜5、補正の対象               −
゛ −6、補正の内容 (I)明細書第9頁下から4行〜tJlo頁4行の「前
述の〜共線エポキシ樹脂:」を 「アニリン、p(ま九はm−)アミンフェノール、ジア
ミノジフェニルメタンの如き多価アミンのポリグリシジ
ルアミン、前述の多価アルコールのポリグリシジルエー
テル、/+7カルゴン酸のポリグリシゾルエステルまた
はヒドロキシ安息香酸のグリシジルエーテルエステルと
、2価フェノールの単独またはとれと1価フェノールの
混合物との共線エポキシ樹脂;」 に訂正する。
Attorney: Patent Attorney Katsutoshi Takahashi Procedural Amendment (spontaneous) July 29, 1985 Director General of the Japan Patent Office Kunio Ogawa 1, Indication of the case, Patent Application No. 149205 No. 149205 of 1988, 2, Name of the invention: EpoxyPri Greg Composition 3, Relationship with the Amended Person Case Patent applicant: 35-58 Sakashita, Itabashi-ku, Tokyo 174 (28
8) Dainippon Ink Chemical Industry Co., Ltd. Representative Shigekuni Kawamura 4, Representative Address: 103 Tj20, Nihonbashi 3-chome, Nakao-ku, Tokyo, Japan Dainippon Ink Chemical Industry Co., Ltd. Phone: Tokyo (03) 272-4511 (Dainippon Ink Chemical Industry Co., Ltd.) representative)
7゜5, subject of correction −
゛-6. Contents of amendment (I) From line 4 from the bottom of page 9 of the specification to line 4 of page tJlo, “the above-mentioned ~collinear epoxy resin:” has been changed to “aniline, p(m-)aminephenol, A polyglycidyl amine of a polyhydric amine such as diaminodiphenylmethane, a polyglycidyl ether of the above-mentioned polyhydric alcohol, a polyglycidyl sol ester of /+7 cargonic acid or a glycidyl ether ester of hydroxybenzoic acid, and a dihydric phenol alone or in combination. Corrected to ``collinear epoxy resin with mixture of hydric phenols;''.

Claims (1)

【特許請求の範囲】 無溶剤液状エポキシ樹脂(A)と融点が50℃以上の粉
末状エポキシ樹脂(B)と多塩基酸無水物(C)と硬化
促進剤(D)とエポキシビニルエステル樹脂および/又
は不飽和ポリエステル樹脂(E)とを、〔(A)+(B
)+(C)+(D)〕/(E)の重量比が100/0〜
30/70となる割合で配合してなり、かつ粉末状エポ
キシ樹脂(B)が分散している硬化性樹脂組成物( I
)を、繊維強化材(II)に含浸させてなるエポキシプリ
プレグ組成物。
[Scope of Claims] A solvent-free liquid epoxy resin (A), a powdered epoxy resin with a melting point of 50°C or higher (B), a polybasic acid anhydride (C), a curing accelerator (D), an epoxy vinyl ester resin, and / or unsaturated polyester resin (E), [(A)+(B
)+(C)+(D)]/(E) weight ratio is 100/0~
A curable resin composition (I
) is impregnated into a fiber reinforcing material (II).
JP14920587A 1987-06-17 1987-06-17 Epoxy prepreg composition Pending JPS63314232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14920587A JPS63314232A (en) 1987-06-17 1987-06-17 Epoxy prepreg composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14920587A JPS63314232A (en) 1987-06-17 1987-06-17 Epoxy prepreg composition

Publications (1)

Publication Number Publication Date
JPS63314232A true JPS63314232A (en) 1988-12-22

Family

ID=15470122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14920587A Pending JPS63314232A (en) 1987-06-17 1987-06-17 Epoxy prepreg composition

Country Status (1)

Country Link
JP (1) JPS63314232A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2259915A (en) * 1991-09-27 1993-03-31 Wytwornia Zwiazkow Organicznyc Epoxide composition
JP2006052385A (en) * 2004-07-13 2006-02-23 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2259915A (en) * 1991-09-27 1993-03-31 Wytwornia Zwiazkow Organicznyc Epoxide composition
JP2006052385A (en) * 2004-07-13 2006-02-23 Toray Ind Inc Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material

Similar Documents

Publication Publication Date Title
KR101294713B1 (en) Resin composition for fiber-reinforced composite materials, cured product thereof, fiber-reinforced composite materials, moldings of fiber-reinforced resin, and process for production thereof
US4954304A (en) Process for producing prepreg and laminated sheet
US20130131217A1 (en) Toughening agent for epoxy resin compositions
US4791154A (en) Epoxy resin composition
JP2016518469A (en) Reinforced epoxy thermosetting material containing core shell rubber and polyol
US4503200A (en) Heat curable polyepoxide resin blends
US4873309A (en) Stabilized flame-retardant epoxy resin composition from a brominated epoxy resin and a vinyl monomer diluent
EP0339635B1 (en) Resin composition and fiberreinforced composite material produced therefrom
JPS63314232A (en) Epoxy prepreg composition
JP2013100562A (en) Resin composition for fiber-reinforced composite material, cured material of the same, fiber-reinforced composite material, fiber-reinforced resin molded article, and method for producing the same
JPS648649B2 (en)
JPH0129816B2 (en)
JPH02283718A (en) Epoxy resin composition, prepreg and laminate
JPS60203625A (en) Thermosettable polyepoxide-(meth)acrylate ester composition
JPH02212544A (en) Impregnating resin composition, and production of both prepreg and laminate
JPH0551432A (en) Production of thermosetting resin composition and laminated sheet
JPH0129815B2 (en)
JPH02212506A (en) Impregnating resin composition, production of prepreg and laminate
JPH05140264A (en) Production of thermosetting resin composition and laminated board
JPH02227416A (en) Resin composition for impregnation, prepreg and laminate
JPH02127415A (en) Epoxy resin composition and production of prepreg and laminated sheet
JPH0288626A (en) Epoxy resin composition, and production of prepreg and laminate therefrom
JPH01200951A (en) Preparation of laminated sheet
JPH02206614A (en) Resin composition for impregnation and production of laminated board and intermediate material thereof
JP2011038049A (en) Resin composition for fiber-reinforced composite materials, cured product of the same, fiber-reinforced composite material, fiber-reinforced resin molded article, method for producing the same