JPS63313826A - Vapor phase epitaxy method - Google Patents

Vapor phase epitaxy method

Info

Publication number
JPS63313826A
JPS63313826A JP15042987A JP15042987A JPS63313826A JP S63313826 A JPS63313826 A JP S63313826A JP 15042987 A JP15042987 A JP 15042987A JP 15042987 A JP15042987 A JP 15042987A JP S63313826 A JPS63313826 A JP S63313826A
Authority
JP
Japan
Prior art keywords
gas
substrate
concentration
raw material
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15042987A
Other languages
Japanese (ja)
Inventor
Kenji Maruyama
研二 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15042987A priority Critical patent/JPS63313826A/en
Publication of JPS63313826A publication Critical patent/JPS63313826A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable an epitaxial layer in high quality and stable composition to be formed by a method wherein multiple gas leading-in pipes are provided while the positions of outlet ends are differentiated along the shifting direction and then the concentration or flow rate of gas is varied. CONSTITUTION:Three each of mercury gas leading-in pipes 11A-11C are provided while the positions P1-P3 of outlet ends are respectively differentiated along the gas shifting direction as shown by arrow D. Then, the concentration or flow rate of a material gas is varied so that the concentration of gas reaching the surface of a substrate 13 from respective outlet ends of the gas leading-in pipes 11A-11C may be made even and then the gas is led in the gas leading-in pipes 11A-11C. Through these procedures, the mercury gas can be fed to all positions along the gas shifting direction on the substrate 13 in even concentration to form epitaxial crystal in even concentration to form epitaxial crystal in even composition on the substrate 13.

Description

【発明の詳細な説明】 〔概要〕 化合物半導体の気相エピタキシャル成長方法であって、
水銀ガスおよびジエチルテルル、ジメチルカドミウム等
の原料をそれぞれキャリアガスに担持させてサセプタ上
に設置した基板上に導入し、サセプタを加熱することで
、基板上で原料ガスどうしを反応させて基板上にエピタ
キシャル層を形成する方法であって、原料ガスのガス導
入管を複数本配設し、該ガス導入管の反応管内に於ける
出口端部の位置をそれぞれ異ならせ、各々のガス導入管
から基板上にガス移動方向に沿って異なる位置に到達し
たガスの濃度が一定となるように、各々のガス導入管よ
りそれぞれ濃度の異なるガス、或いは濃度は一定で流量
の異なるガスを導入して基板上に均一な組成のエピタキ
シャル層が形成されるようにする。
[Detailed Description of the Invention] [Summary] A method for vapor phase epitaxial growth of a compound semiconductor, comprising:
Mercury gas and raw materials such as diethyl tellurium and dimethyl cadmium are each carried by a carrier gas and introduced onto a substrate placed on a susceptor, and by heating the susceptor, the raw material gases react with each other on the substrate and are transferred onto the substrate. A method for forming an epitaxial layer, in which a plurality of gas introduction tubes for raw material gas are provided, the positions of the outlet ends of the gas introduction tubes in the reaction tube are different, and the substrate is removed from each gas introduction tube. In order to maintain a constant concentration of the gases that reach different positions along the gas movement direction, gases with different concentrations or gases with a constant concentration and different flow rates are introduced from each gas introduction pipe onto the substrate. so that an epitaxial layer with a uniform composition is formed.

〔産業上の利用分野〕[Industrial application field]

本発明は気相エピタキシャル成長方法の改良に係り、特
に水銀を原料ガスとして用いる化合物半導体結晶の気相
エピタキシャル成長方法の改良に関する。
The present invention relates to improvements in vapor phase epitaxial growth methods, and particularly to improvements in vapor phase epitaxial growth methods for compound semiconductor crystals using mercury as a source gas.

赤外線検知素子の材料として、水銀・カドミウム・テル
ル(Hg+−XCdXTe)の結晶が用いられており、
このような水銀・カドミウム・テルルの結晶を素子形成
に都合が良いように薄層状態にかつ大面積に形成するた
めに、気相エピタキシャル成長方法が用いられている。
Mercury-cadmium-tellurium (Hg+-XCdXTe) crystals are used as materials for infrared sensing elements.
A vapor phase epitaxial growth method is used to form such crystals of mercury, cadmium, and tellurium in a thin layer and over a large area so as to be convenient for device formation.

このような水銀・カドミウム・テルルのエピタキシャル
結晶を形成する場合、水銀ガスとジエチルテルル等の有
機金属ガスとをエピタキシャル層の形成用の原料ガスと
して用いており、このガスが基板上に到達して反応する
以前に気相中で他の原料ガスと反応する現象を除去する
方法が要望されている。
When forming epitaxial crystals of mercury, cadmium, and tellurium, mercury gas and organic metal gas such as diethyl tellurium are used as raw material gases for forming the epitaxial layer. There is a need for a method that eliminates the phenomenon of reacting with other source gases in the gas phase before reacting.

〔従来の技術〕[Conventional technology]

このような気相エピタキシャル成長方法を用いて水銀・
カドミウム・テルルの結晶を基板上に形成する場合、従
来は第3図に示すように、平板状で導入ガスの方向に対
してテーパを有するグラファイトよりなるサセプタ1の
上にカドミウムテルル(Cd Te)の基板2を設置し
た状態で、反応管3内に導入した後、反応管内部を排気
する。
Using this vapor phase epitaxial growth method, mercury and
When forming cadmium tellurium crystals on a substrate, conventionally, as shown in FIG. After the substrate 2 is introduced into the reaction tube 3, the inside of the reaction tube is evacuated.

次いでガス導入管4より反応管3内にジメチルカドミウ
ムを担持した水素ガス、ジエチルテルルを担持した水素
ガスをそれぞれ原料ガスとして導入するとともに、水素
ガスをキャリアガスとして反応管内に導入する。更に反
応管3内に於いて基板2の近傍に延びたガス導入管5よ
り水銀を担持した水素ガスを反応管3内に導入する。
Next, hydrogen gas carrying dimethyl cadmium and hydrogen gas carrying diethyl tellurium are introduced into the reaction tube 3 through the gas introduction pipe 4 as raw material gases, and hydrogen gas is introduced into the reaction tube as a carrier gas. Further, hydrogen gas carrying mercury is introduced into the reaction tube 3 through a gas introduction tube 5 extending near the substrate 2 in the reaction tube 3 .

次いで反応管3の周囲に設けた高周波誘導加熱コイル6
に高周波電圧を印加することで、サセプタ1を高周波誘
導加熱し、それによって基板2の温度を上昇させると共
に、基板2の周囲の反応管内部の温度を上昇させ、この
温度上昇によって反応管3内に導入された水銀、ジメチ
ルカドミウム、ジエチルテルルガスよりなる原料ガスを
分解し、その分解した成分を互いに反応させて基板上に
水銀・カドミウム・テルルの結晶層をエピタキシャル成
長させている。
Next, a high frequency induction heating coil 6 installed around the reaction tube 3
By applying a high frequency voltage to the susceptor 1, the susceptor 1 is heated by high frequency induction, thereby increasing the temperature of the substrate 2 and the temperature inside the reaction tube around the substrate 2. A source gas consisting of mercury, dimethyl cadmium, and diethyl tellurium introduced into the substrate is decomposed, and the decomposed components are reacted with each other to epitaxially grow a crystalline layer of mercury, cadmium, and tellurium on the substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで従来の方法に於いて反応管内に於ける水銀ガス
導入管5の出口端部の位置Pは、基板2の方向に延びて
設置しているが、それでも基板の表面より寸法lを隔て
て設置されている。
Incidentally, in the conventional method, the position P of the outlet end of the mercury gas inlet tube 5 in the reaction tube is installed extending in the direction of the substrate 2, but it is still installed at a distance l from the surface of the substrate. has been done.

第4図に示すように、このようなガス導入管5より反応
管内に水銀ガスを導入する場合、均一な厚さのエピタキ
シャル層を得るために、ガスの流れの状態が層流の形で
ガス導入管より流出されるようにしているため、その層
流のガスは、ガス導入管5より流出すると、反応管3内
に於いて四方の方向に拡散して拡がり、そのため基板の
ガスの導入方向側の各位置^、B、Cの単位面積に到達
するガスの濃度勾配は各々異なり、組成の均一なエピタ
キシャル結晶は得られない問題がある。
As shown in FIG. 4, when mercury gas is introduced into the reaction tube through the gas introduction tube 5, the gas flow is laminar in order to obtain an epitaxial layer of uniform thickness. Since the laminar flow gas flows out from the gas introduction tube 5, it diffuses and spreads in all directions within the reaction tube 3, so that the gas is introduced into the substrate in the same direction. The concentration gradient of the gas that reaches the unit area at each position ^, B, and C on the side is different, and there is a problem that an epitaxial crystal with a uniform composition cannot be obtained.

本発明は上記した問題点を解決し、化学的に活性な原料
ガスが基板に到達する際、基板に到達したガスの濃度が
、ガスの移動方向に沿った基板の各位置に於いて濃度勾
配が均一となるようにした気相エピタキシャル成長方法
の提供を目的とする。
The present invention solves the above problems, and when a chemically active raw material gas reaches a substrate, the concentration of the gas that reaches the substrate has a concentration gradient at each position on the substrate along the direction of gas movement. The purpose of the present invention is to provide a vapor phase epitaxial growth method that allows uniform growth.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するための本発明の気相エピタキシャル
成長方法は、反応管内に基板を設けたサセプタを設置し
、該反応管内に気相中で化学的に活性な複数の原料ガス
をキャリアガスに担持させて導入し、前記サセプタを加
熱することで前記原料ガスどうしを前記基板上で反応さ
せて前記複数の原料ガスの成分を含むエピタキシャル層
を形成する方法に於いて、 前記原料ガスのガス導入管を複数個配設するともに、該
ガス導入管の前記反応管内に於ける出口端部の位置をそ
れぞれ異ならせ、該ガス導入管のそれぞれの出口端部よ
り基板表面に到達したガス濃度が一定となるように原料
ガスの濃度、或いはガス流量を変動させて各々のガス導
入管内に導入する。
The vapor phase epitaxial growth method of the present invention for achieving the above object includes installing a susceptor provided with a substrate in a reaction tube, and carrying a plurality of raw material gases chemically active in the gas phase in the reaction tube as a carrier gas. In the method of forming an epitaxial layer containing components of the plurality of raw material gases by causing the raw material gases to react with each other on the substrate by heating the susceptor, In addition to arranging a plurality of gas inlet tubes, the positions of the outlet ends of the gas inlet tubes in the reaction tube are different from each other, so that the concentration of the gas reaching the substrate surface from each outlet end of the gas inlet tubes is constant. The raw material gas is introduced into each gas introduction pipe while changing its concentration or gas flow rate so that

〔作用〕[Effect]

本発明の気相エピタキシャル成長方法は、原料ガスのガ
ス導入管を複数個設け、その反応管内に於ける出口端部
の位置をガスの移動方向に沿って異ならせ、かつ複数の
ガス導入管内に導入されるガスの濃度、或いはガスの流
量を異ならせることで、基板のガスの移動方向に沿った
複数の位置で供給されるガスの濃度が均一に成るように
して基板表面に組成変動のない、組成の安定した高品位
のエピタキシャル層を形成するようにする。
In the vapor phase epitaxial growth method of the present invention, a plurality of gas introduction tubes for the raw material gas are provided, the positions of the outlet ends in the reaction tube are varied along the moving direction of the gas, and the source gas is introduced into the plurality of gas introduction tubes. By varying the concentration of the gas supplied or the flow rate of the gas, the concentration of the gas supplied at a plurality of positions along the direction of gas movement of the substrate is made uniform, so that there is no compositional variation on the substrate surface. A high-quality epitaxial layer with a stable composition is formed.

〔実施例〕〔Example〕

以下、図面を用いながら本発明の一実施例につき詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の方法に用いる装置の概略図である。FIG. 1 is a schematic diagram of the apparatus used in the method of the invention.

第1図に示すように本発明の方法は、形成されるエピタ
キシャル層の組成変動に最も影響を及ぼし、水銀ガスの
ガス導入管を11A、 11B、 11Cの如く3本設
け、その出口端部の位置をPlI P2. P3のよう
に矢印りに示すガスの移動方向に沿ってそれぞれ異なら
せている。
As shown in FIG. 1, the method of the present invention has the greatest influence on the compositional variation of the epitaxial layer formed. Set the position to PlI P2. As shown in P3, they are made to vary along the gas movement direction shown by the arrows.

ここでサセプタ12上に設置されたCdTe基板13の
ガスの移動方向に沿った位置をA、B、Cとする。
Here, the positions of the CdTe substrate 13 placed on the susceptor 12 along the gas movement direction are designated as A, B, and C.

反応管14内に導入される水銀ガス、ジメチルカドミウ
ムガスおよびジエチルテルルガス等の原料ガス、および
水素ガスより成るキャリアガスのそれぞれの分圧の和の
全圧を1気圧とし、ガス導入管11Aより導入される水
銀ガスの分圧を200torrとする。
The total pressure, which is the sum of the partial pressures of raw material gases such as mercury gas, dimethyl cadmium gas and diethyl telluride gas, and carrier gas consisting of hydrogen gas, introduced into the reaction tube 14 is 1 atmosphere, and the gas is introduced from the gas introduction tube 11A. The partial pressure of the mercury gas introduced is set to 200 torr.

そして第1図および第2図(a)に示すように、ガス導
入管11Aより導出された水銀ガスが、基板13の位置
Aに到達した時のガスの濃度を、ガス導入管に導入され
た時の濃度の1710の濃度の20 torrの濃度に
なるようにし、水銀ガスが基板13の位置Bに到達した
時のガスの濃度が最初の1/100の濃度の2torr
の濃度に成るようにし、水銀ガスが基板13の位置Cに
到達した時のガスの濃度が最初の17200の濃度の1
 torrに成るようにする。この状態を第2図(a)
の直線21に示すようにする。
As shown in FIGS. 1 and 2(a), the concentration of mercury gas led out from the gas introduction tube 11A when it reaches position A on the substrate 13 is set to When the mercury gas reaches position B of the substrate 13, the gas concentration is 2 torr, which is 1/100 of the initial concentration.
When the mercury gas reaches the position C of the substrate 13, the concentration of the gas is 1 of the initial concentration of 17200.
torr. This state is shown in Figure 2(a).
as shown by straight line 21.

図で縦軸は水銀ガスの濃度、横軸は基板の位置を示す。In the figure, the vertical axis shows the concentration of mercury gas, and the horizontal axis shows the position of the substrate.

また第1図および第2図(ロ)に示すように、ガス導入
管11Bより導出された水銀ガスが基板13の位置へに
到達した時のガスの濃度が零で、基板13の位i&Bに
到達した時のガスの濃度が最初の濃度の1/10の濃度
の18torrの濃度になるようにし、水銀ガスが基板
の位置Cに到達した時のガスの濃度が最初の濃度の17
20の濃度の9 torrの濃度になるようにする。こ
の状態を第2図(b)の曲線22に示す。
Furthermore, as shown in FIGS. 1 and 2 (B), when the mercury gas led out from the gas introduction pipe 11B reaches the position of the substrate 13, the concentration of the gas is zero, and the concentration of the gas is zero at the position of the substrate 13 i&B. When the mercury gas reaches position C on the substrate, the gas concentration is set to 18 torr, which is 1/10 of the initial concentration, and the gas concentration is set to 17 torr, which is 1/10 of the initial concentration.
The concentration should be 9 torr, which is 20 torr. This state is shown by curve 22 in FIG. 2(b).

更に第1図および第2図(C)に示すように、ガス導入
管11Cより導出された水銀ガスが基板13の位置Aお
よびBでは濃度が零に成るようにし、水銀ガスが基板の
位置Cに到達した時のガスの濃度が最初の濃度の1/1
0の濃度の10torrになるようにする。この状態を
第2図(d)の曲線23に示す。
Further, as shown in FIGS. 1 and 2(C), the concentration of the mercury gas led out from the gas introduction pipe 11C is zero at positions A and B on the substrate 13, and the mercury gas is brought out at position C on the substrate. When the gas concentration reaches 1/1 of the initial concentration
The concentration is set to 10 torr, which is 0. This state is shown by curve 23 in FIG. 2(d).

そして第2図(d)に示すように、ガス導入管11A。And as shown in FIG. 2(d), the gas introduction pipe 11A.

11B、 11Cの総てのガス導入管よりガスが反応管
内に導出された場合の基板の位置A、B、Cの総ての位
置に於けるガスの濃度曲線を曲線24に示す。このよう
にして更にガス導入管の数量を増加させると、基板13
の位置^、B、Cに於けるガスの濃度は均一な濃度とな
る。
A curve 24 shows the gas concentration curve at all positions A, B, and C of the substrate when gas is led into the reaction tube from all the gas introduction pipes 11B and 11C. If the number of gas introduction pipes is further increased in this way, the substrate 13
The gas concentrations at positions ^, B, and C are uniform.

この状態を第1表にまとめて示す。This state is summarized in Table 1.

第1表 第1表に於ける各々の数値は、基板の位置A、B。Table 1 Each value in Table 1 corresponds to position A and B on the board.

Cに於いてガス導入管11A、11B、 11Gより導
出されるガスの濃度を分圧(torr)で示し、このよ
うにすれば、基板13の位置^、B、Cの総ての位置に
於いて、ガスの濃度が総て20torrの値となり、基
板上に均一な濃度の水銀のガスが供給されるので、均一
な組成のエピタキシャル層が得られるようになる。
At C, the concentration of the gas led out from the gas introduction pipes 11A, 11B, and 11G is expressed in partial pressure (torr). Since the gas concentration is all 20 torr and mercury gas with a uniform concentration is supplied onto the substrate, an epitaxial layer with a uniform composition can be obtained.

以上述べたように本発明の方法によれば、水銀ガスが基
板上の総ての位置にわたって均一な濃度で供給されるた
め、均一な組成のエピタキシャル層が基板上に形成され
る。
As described above, according to the method of the present invention, mercury gas is supplied at a uniform concentration over all positions on the substrate, so that an epitaxial layer with a uniform composition is formed on the substrate.

なおガス導入管をガス導入方向に沿って、或いはガス導
入方向に対して垂直方向に沿って、ガス導入端部を異な
らせて更に多数設けると更に基板上にガスの濃度が均一
な状態で供給される。
Note that if a larger number of gas introduction tubes are provided along the gas introduction direction or in a direction perpendicular to the gas introduction direction, with different gas introduction ends, the gas can be supplied to the substrate with a more uniform concentration. be done.

〔発明の効果〕〔Effect of the invention〕

以−ヒ述べたように、基板上のガス移送方向に沿った総
ての位置に水銀ガスが均一な濃度で供給されるため、均
一な組成のエピタキシャル結晶が基板上に形成される効
果がある。
As mentioned above, mercury gas is supplied at a uniform concentration to all positions along the gas transport direction on the substrate, which has the effect of forming epitaxial crystals with a uniform composition on the substrate. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、 第2図(a)、第2図(b)、第2図(C)、第2図(
d)は本発明の方法に於ける水銀ガスの濃度分布図、第
3図は従来の方法の説明図、 第4図は従来の方法に於ける不都合な状態の説明図であ
る。 図に於いて、 11A、 11B、 11Cはガス導入管、12はサセ
プタ、13は基板、14は反応管、21,22,23.
24は反応管内に於ける水銀ガス濃度分布曲線、A、B
、Cは基板の位置、PI、 Pg、 P3はガス導入管
の出力端部を示す。 本発明め方述内tJt口R図 第1図 牟応朗め方法1;於け5水鎧力”又^鷹贋皺併自4第2
図 従来−1ジ「タヨ5−ウ診j巴萌をンI第3図 従来−不郡番7社゛匙n杖明回 第4図
Figure 1 is a detailed explanatory diagram of the present invention, Figure 2 (a), Figure 2 (b), Figure 2 (C), Figure 2 (
d) is a concentration distribution diagram of mercury gas in the method of the present invention, FIG. 3 is an explanatory diagram of the conventional method, and FIG. 4 is an explanatory diagram of disadvantageous conditions in the conventional method. In the figure, 11A, 11B, 11C are gas introduction tubes, 12 is a susceptor, 13 is a substrate, 14 is a reaction tube, 21, 22, 23.
24 is the mercury gas concentration distribution curve in the reaction tube, A, B
, C indicates the position of the substrate, and PI, Pg, and P3 indicate the output end of the gas introduction pipe. The method of the present invention is shown in Figure 1.
Figure Conventional-1 ``Tayo 5-U Medical Examination Tomoe Moe-on I Figure 3 Conventional-Fugunban 7 Company ゛n Cane Meiji Figure 4

Claims (1)

【特許請求の範囲】  反応管(14)内に基板(13)を設けたサセプタ(
12)を設置し、該反応管(14)内に気相中で化学的
に活性な複数の原料ガスをキャリアガスに担持させて導
入し、前記サセプタ(12)を加熱することで前記原料
ガスどうしを前記基板(13)上で反応させて前記複数
の原料ガスの成分を含むエピタキシャル層を形成する方
法に於いて、 前記原料ガスのガス導入管(11A、11B、11C)
を複数個配設するともに、該ガス導入管の前記反応管(
14)内に於ける出口端部の位置を導入されるガスの移
動方向に沿ってそれぞれ異ならせ、該ガス導入管(11
A、11B、11C)のそれぞれの出口端部より基板(
13)表面に到達したガス濃度勾配が一定となるように
原料ガスの濃度、或いはガス流量を変動させて各々のガ
ス導入管内に導入することを特徴とする気相エピタキシ
ャル成長方法。
[Claims] A susceptor (with a substrate (13) provided inside a reaction tube (14)
12) is installed, a plurality of raw material gases that are chemically active in the gas phase are introduced into the reaction tube (14), supported by a carrier gas, and the raw material gases are heated by heating the susceptor (12). In the method of forming an epitaxial layer containing components of the plurality of raw material gases by reacting them on the substrate (13), gas introduction pipes (11A, 11B, 11C) for the raw material gases;
A plurality of are arranged, and the reaction tube (
The position of the outlet end in the gas introduction pipe (11) is varied along the moving direction of the introduced gas.
A, 11B, 11C) from the respective outlet ends of the substrate (
13) A vapor phase epitaxial growth method characterized in that the concentration of the raw material gas or the gas flow rate is varied and introduced into each gas introduction pipe so that the gas concentration gradient reaching the surface is constant.
JP15042987A 1987-06-16 1987-06-16 Vapor phase epitaxy method Pending JPS63313826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15042987A JPS63313826A (en) 1987-06-16 1987-06-16 Vapor phase epitaxy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15042987A JPS63313826A (en) 1987-06-16 1987-06-16 Vapor phase epitaxy method

Publications (1)

Publication Number Publication Date
JPS63313826A true JPS63313826A (en) 1988-12-21

Family

ID=15496733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15042987A Pending JPS63313826A (en) 1987-06-16 1987-06-16 Vapor phase epitaxy method

Country Status (1)

Country Link
JP (1) JPS63313826A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118669A (en) * 1974-03-01 1975-09-17
JPS5480071A (en) * 1977-12-09 1979-06-26 Hitachi Ltd Vapor growth method for semiconductor layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118669A (en) * 1974-03-01 1975-09-17
JPS5480071A (en) * 1977-12-09 1979-06-26 Hitachi Ltd Vapor growth method for semiconductor layer

Similar Documents

Publication Publication Date Title
US5593497A (en) Method for forming a deposited film
JPH0639357B2 (en) Method for growing element semiconductor single crystal thin film
JPH04287312A (en) Device and method for vapor phase epitaxial growth
JPS63313826A (en) Vapor phase epitaxy method
US4873125A (en) Method for forming deposited film
JPH03263818A (en) Metal organic vapor growth apparatus
AU632204B2 (en) Method for forming a deposited film
JPS62113419A (en) Vapor phase epitaxial growth equipment
JPS6136372B2 (en)
JPS58176196A (en) Apparatus for growing crystal from compound
JPS62128518A (en) Vapor growth equipment
JPH01201926A (en) Vapor phase epitaxial growth
JP2577543B2 (en) Single crystal thin film growth equipment
JPS60109222A (en) Device for vapor growth of compound semiconductor of iii-v group
JPS63313825A (en) Vapor phase epitaxy method
JPH02219246A (en) Vapor epitaxial growth method
JPS61294811A (en) Semiconductor crystal manufacturing equipment
JPH01152734A (en) Evaporator
JPS62182195A (en) Method for growing iii-v compound semiconductor
JPS6131394A (en) Vapor phase growth process
JPH02181938A (en) Vapor phase epitaxial growth apparatus
JPS6369794A (en) Vapor phase epitaxy device
JPS6285426A (en) Apparatus for manufacturing epitaxial crystal
JPH069191B2 (en) Semiconductor manufacturing equipment by vapor phase growth method
JPS63266816A (en) Growing method for iii-v compound semiconductor crystal