JPS6331287B2 - - Google Patents

Info

Publication number
JPS6331287B2
JPS6331287B2 JP15626381A JP15626381A JPS6331287B2 JP S6331287 B2 JPS6331287 B2 JP S6331287B2 JP 15626381 A JP15626381 A JP 15626381A JP 15626381 A JP15626381 A JP 15626381A JP S6331287 B2 JPS6331287 B2 JP S6331287B2
Authority
JP
Japan
Prior art keywords
load
tube
pipe
yield
internal pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15626381A
Other languages
Japanese (ja)
Other versions
JPS5858945A (en
Inventor
Takashi Shimaguchi
Hideaki Kanbara
Juji Yoshitomi
Yasukata Tamai
Shinobu Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15626381A priority Critical patent/JPS5858945A/en
Publication of JPS5858945A publication Critical patent/JPS5858945A/en
Publication of JPS6331287B2 publication Critical patent/JPS6331287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D1/00Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling
    • B21D1/06Removing local distortions
    • B21D1/08Removing local distortions of hollow bodies made from sheet metal

Description

【発明の詳細な説明】 本発明はゴム等の弾性体を軸方向に圧縮するこ
とにより生じる圧力を用いて配管端部の真円矯正
を行う方法に係り、特に材料強度不明の管を微少
の拡管量で精度良く真円矯正するに好適な方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for straightening the end of a pipe using pressure generated by compressing an elastic body such as rubber in the axial direction. The present invention relates to a method suitable for accurately rounding a pipe with the amount of expansion.

従来の管端の真円矯正法を第1図a,bに示
す。この方法はa図に示すように、数個の拡管用
コマ1とテーパつきのスリーブ2を管3に挿入し
た後、スリーブ2を軸方向に移動させてコマ1を
管内面に押付けながらb図に示すように拡管、真
円にするものである。なお、4はコマ押え治具で
ある。この方法の欠点は、拡管量が管径の3〜10
%と大きなことであり、また真円矯正後の残留応
力が高いことおよび管の内面に加工傷が残る等の
ため信頼性が低下する問題がある。
A conventional method for straightening the end of a tube into a perfect circle is shown in FIGS. 1a and 1b. This method involves inserting several tube expansion pieces 1 and a tapered sleeve 2 into a tube 3, as shown in figure a, and then moving the sleeve 2 in the axial direction to press the pieces 1 against the inner surface of the tube, as shown in figure b. As shown, the tube is expanded and made into a perfect circle. Note that 4 is a piece holding jig. The disadvantage of this method is that the amount of pipe expansion is 3 to 10 times the pipe diameter.
%, and there is also the problem of lower reliability due to high residual stress after rounding and machining scratches remaining on the inner surface of the tube.

以上の欠点を補う真円矯正法としてゴム等の軟
質弾性体に軸方向に荷重を付与した時に生じる弾
性体の円周方向への変形力を利用して拡管、真円
にする方法がある。この方法の詳細を第2図a〜
bに示す。矯正されようとする管5はほぼ楕円に
変形していることが多い。ここで管の初期形状を
測定し最大に変形している部分すなわち楕円の長
径部を外部荷重Pで拘束し、管5を仮真円形状に
する。この後、管内部にゴム等の軟質弾性体を挿
入し、この弾性体に荷重Fを付加して、弾性体の
円周方向への膨出力を利用し、管に内圧を付与す
る。この内圧は管5の降伏圧力Pyの1.1倍まで付
与され、この時点で外部拘束荷重Pを除去する。
その後、内圧をさらに上昇させ管5の降伏圧力
Pyの1.3〜1.4倍まで付与した後、内圧を除去して
矯正を終了する。ここで楕円の長径部を外部荷重
Pにより拘束し、内圧Pを与える理由は次の通り
である。すなわち楕円形状で内圧を与えた場合、
楕円の長径部と短径部で内圧に比例した曲げモー
メントが発生するため均一な矯正ができない。一
方、外部荷重Pにより仮真円化した状態で内圧を
付与すると外部荷重Pに比例した曲げモーメント
が同様に発生するが、内圧が増加し管がほぼ降伏
状態になると内圧による膜応力が支配的になる。
このため内圧を除去しても均一な残留応力分布に
なり、真円が保たれる。また、外部荷重Pを管の
降伏内圧Pyの1.1倍で除去する理由は1.1Py以下で
は内圧を除去した時に楕円形状に戻り1.1Py以上
では拘束によりひようたん形になるためである。
また外部拘束を除去した後、1.3〜1.4倍で押える
のは矯正後の管径の増加を1%以内に抑えるため
である。
As a rounding method that compensates for the above-mentioned drawbacks, there is a method of expanding and rounding a soft elastic body such as rubber by utilizing the deformation force in the circumferential direction of the elastic body that is generated when a load is applied to the soft elastic body in the axial direction. The details of this method are shown in Figure 2 a~
Shown in b. The tube 5 to be straightened is often deformed into a substantially elliptical shape. Here, the initial shape of the tube is measured, and the most deformed portion, that is, the longer diameter portion of the ellipse, is restrained by an external load P to make the tube 5 into a temporary perfect circular shape. Thereafter, a soft elastic body such as rubber is inserted into the tube, a load F is applied to this elastic body, and internal pressure is applied to the tube by utilizing the expansion force of the elastic body in the circumferential direction. This internal pressure is applied up to 1.1 times the yield pressure P y of the pipe 5, and at this point the external restraint load P is removed.
After that, the internal pressure is further increased and the yield pressure of the tube 5 is increased.
After applying up to 1.3 to 1.4 times P y , the internal pressure is removed to complete the correction. Here, the reason why the long diameter part of the ellipse is restrained by the external load P and the internal pressure P is applied is as follows. In other words, when applying internal pressure to an elliptical shape,
Uniform correction cannot be achieved because a bending moment proportional to the internal pressure occurs at the major and minor diameters of the ellipse. On the other hand, if internal pressure is applied to a state in which the pipe is temporarily rounded by an external load P, a bending moment proportional to the external load P will similarly occur, but when the internal pressure increases and the pipe becomes almost in a yield state, the membrane stress due to the internal pressure becomes dominant. become.
Therefore, even if the internal pressure is removed, the residual stress distribution is uniform, and a perfect circle is maintained. Also, the reason why the external load P is removed at 1.1 times the yield internal pressure P y of the pipe is that below 1.1P y , when the internal pressure is removed, it returns to an elliptical shape, and above 1.1P y , it becomes a gourd shape due to restraint. .
Furthermore, after removing the external restraint, the pressure is increased by 1.3 to 1.4 times in order to suppress the increase in the tube diameter after correction to within 1%.

一方、この真円矯正方法では管の降伏内圧Py
が重要である。すなわち、外部荷重を除去する時
期、最終内圧の決定は管の内圧Pyにより決まる。
ここで、薄肉円筒に内圧Pを与えた時に、管に生
じる円周応力σは次の式により与えられる。
On the other hand, in this roundness straightening method, the yield internal pressure P y
is important. That is, the time to remove the external load and the final internal pressure are determined by the internal pressure P y of the pipe.
Here, when the internal pressure P is applied to the thin cylinder, the circumferential stress σ generated in the tube is given by the following equation.

σ=Pr/t …(1) σ;円周応力 P;内圧 r;管の内径 t;管の厚さ 真円矯正方法で必要とする管の降伏内圧Pyは、
(1)式のσに管の材料強度の一つである降伏強さσy
を代入することにより求まる。例えば降伏強さ38
Kg/mm2の直径406.4mm、厚さ9.5mmの板巻溶接管を
第2図で示した真円矯正方法で加工したところ、
最終圧力1.38Py、拡管量1.0mm以内(0.24%)で良
好な真円矯正ができた。また本法はゴム等の軟質
弾性体による少量の拡管であるため残留応力が小
さく、管内面も無傷で加工できるので信頼性も十
分に維持できる。しかし降伏内圧(Py)を設定
するために矯正されようとする管の降伏強さ
(σy)をその都度、明らかにしなければならない
欠点がある。すなわち、矯正されようとする管は
成分や規格で材料強度が異なるため管から引張試
験片などを得て、σyを求めなければならない。ま
た特に、板巻溶接管では、曲げて溶接するため素
材強度とも異なる問題がある。そこで管を切断す
ることなくPyに相当する圧力を知る方法が要求
されていた。
σ=Pr/t...(1) σ; Circumferential stress P; Internal pressure r; Inner diameter t of the tube; Thickness of the tube The yield internal pressure P y of the tube required for the rounding method is:
In equation (1), σ is the yield strength σ y , which is one of the material strengths of the pipe.
It can be found by substituting . For example, yield strength 38
When a plate-wound welded tube with a diameter of 406.4 mm and a thickness of 9.5 mm, weighing Kg/mm 2 , was processed using the rounding method shown in Figure 2, the results were as follows.
Good roundness correction was achieved with a final pressure of 1.38P y and an amount of tube expansion within 1.0mm (0.24%). In addition, since this method involves a small amount of tube expansion using a soft elastic material such as rubber, residual stress is small, and the inner surface of the tube can be processed without any damage, so reliability can be maintained sufficiently. However, there is a drawback that the yield strength (σ y ) of the pipe to be straightened must be determined each time in order to set the yield internal pressure (P y ). That is, since the material strength of the pipe to be straightened varies depending on its composition and specifications, it is necessary to obtain a tensile test piece from the pipe and find σ y . In particular, plate-wound welded pipes have problems that differ from the strength of the material because they are bent and welded. Therefore, there was a need for a method to determine the pressure equivalent to P y without cutting the pipe.

本発明の目的は矯正する管の材料強度を求める
ことなく配管端部の真円矯正をすることができる
方法を提供することになる。
An object of the present invention is to provide a method that can straighten the roundness of the end of a pipe without determining the material strength of the pipe to be straightened.

本発明による配管端部の真円矯正方法は、弾性
体に軸方向荷重を付与した時に生じる弾性体の円
周方向への変形力を用いて拡管し、配管端部を真
円に矯正する方法において、矯正しようとする配
管端部の周方向に変位計を配設し、管の初期形状
の楕円長径部を外部荷重により拘束して仮真円化
した後に拡管し、拡管途中で、拡管荷重と管の変
位から管の降伏荷重を決定し、その降伏荷重の
1.1倍の時点で外部拘束荷重を除荷してその後、
降伏荷重の1.3〜1.4倍まで拡管し、しかる後除荷
することを特徴とする。
The method of straightening the end of a pipe into a perfect circle according to the present invention is a method of expanding the pipe using the deformation force in the circumferential direction of the elastic body that occurs when an axial load is applied to the elastic body, and straightening the end of the pipe into a perfect circle. In this process, a displacement meter is installed in the circumferential direction of the end of the pipe to be straightened, and the initial shape of the elliptical long-diameter part is restrained by an external load and the pipe is expanded after being temporarily rounded. Determine the yield load of the pipe from the displacement of the pipe and
After unloading the external restraint load at the time of 1.1 times,
It is characterized by expanding the pipe to 1.3 to 1.4 times the yield load and then unloading it.

本発明において弾性体に荷重を付与し、その時
の弾性体の変形力を利用して管の真円矯正する場
合に弾性体に加える荷重Fは次式で与えられる。
In the present invention, when a load is applied to the elastic body and the deformation force of the elastic body at that time is used to straighten the tube, the load F to be applied to the elastic body is given by the following equation.

F=p×s/η …(2) s;弾性体の断面積 η;弾性体の圧力を伝達する効率 p;発生した内圧 従つて荷重Fは真円矯正に必要な圧力pを最初
に求めねばならない。内圧pは管の形状により異
なりその値は(1)式から求まる。すなわち、同じ形
状においても材料の降伏応力が異なると必要内圧
も大幅に変化することになる。このため管から実
体の引張試験片を得て、降伏応力値を確認する必
要がある。
F=p×s/η …(2) s; Cross-sectional area of the elastic body η; Efficiency of transmitting the pressure of the elastic body p; Generated internal pressure Therefore, the load F is calculated by first finding the pressure p necessary for straightening the roundness. Must be. The internal pressure p varies depending on the shape of the pipe, and its value can be found from equation (1). In other words, even if the shape is the same, if the yield stress of the material differs, the required internal pressure will change significantly. For this reason, it is necessary to obtain an actual tensile test piece from the pipe and confirm the yield stress value.

一般に金属材料の引張試験を行うと、第3図に
示す応力一ひずみ線図を描く。ここで弾性領域で
は σ=E・ε …(3) E;縦弾性係数 ε;ひずみ が成立し、第3図におけるAB間は理論的には(3)
式に従つた直線性を示す。応力をさらに増加し、
(3)式は成立しなくなる。すなわち応力を除荷した
時にひずみがA点に戻らない限界応力を降伏応力
と呼ぶが、この降伏応力は材料の履歴により異な
り、例えば第3図に示すように種々の降伏応力値
σy2,σy3を示す。
Generally, when a metal material is subjected to a tensile test, the stress-strain diagram shown in FIG. 3 is drawn. Here, in the elastic region, σ=E・ε...(3) E: longitudinal elastic modulus ε: strain holds, and the distance between AB in Figure 3 is theoretically (3)
It shows linearity according to Eq. further increasing the stress,
Equation (3) no longer holds true. In other words, the critical stress at which the strain does not return to point A when the stress is unloaded is called the yield stress, but this yield stress varies depending on the history of the material, and for example, as shown in Figure 3, various yield stress values σ y2 , σ Indicates y3 .

本発明の原理は管に内圧を付与した時に生じる
管表面に実際に生ずるひずみと(3)式で示す理論計
算から求まるひずみを比較し、両者の相違量から
降伏強さを決定するものである。内圧を与えるた
めの荷重Fは(2)式にて与えられ、また内圧Pとひ
ずみεの関係(1),(3)式から求まる。従つて荷重と
ひずみの関係は次のようになる。
The principle of the present invention is to compare the strain that actually occurs on the pipe surface when internal pressure is applied to the pipe and the strain obtained from the theoretical calculation shown in equation (3), and determine the yield strength from the difference between the two. . The load F for applying internal pressure is given by equation (2), and can be determined from equations (1) and (3), which are the relationships between internal pressure P and strain ε. Therefore, the relationship between load and strain is as follows.

F=α・ε …(4) α;s/η・t/r・E 管の形状、ゴムの形状により決まる定数 この関係は第3図における応力―ひずみ線図の
直線AB部と本質的には同じものとなる。このた
め管表面に実際に発生するひずみは弾性領域では
(4)式を満足し、管の降伏が始まると理論値より大
きくなる。すなわち管の降伏荷重は実際に発生す
るひずみと荷重の相互に正比例関係を失つた時点
である。実際には発生ひずみと荷重の関係を作図
するなどの方法により管理する。具体的な方法を
第4図を用いて説明する。
F=α・ε …(4) α; s/η・t/r・E Constant determined by the shape of the tube and the shape of the rubber This relationship is essentially the straight line AB part of the stress-strain diagram in Figure 3. will be the same. Therefore, the strain that actually occurs on the tube surface is in the elastic region.
When formula (4) is satisfied and the tube begins to yield, it becomes larger than the theoretical value. In other words, the yield load of the tube is the point at which the actually occurring strain and load lose their direct proportionality to each other. In practice, this is managed by methods such as drawing the relationship between generated strain and load. A specific method will be explained using FIG. 4.

本方法の基体は真円矯正を行うための拡管部分
と拡管中の管の変位、拡管荷重を制御する部分と
からなる。真円矯正のプロセスは第2図に示した
ものと同じであり、仮真円化した管にゴムなど弾
性体6を装着したシリンダ7が挿入される。ここ
で円周方向の4ケ所に配設されたセンサ8からの
信号を演算部9が受け、管の初期形状を記録部1
0が記憶する。次いで油圧源11によりピストン
12をゆるやかに引く。弾性体6はバツクアツプ
リング13により変形が拘束されるため管14に
内圧pが発生する。この間のピストン12の動き
から生じる荷重Fと管14の変位は演算部9によ
り記録部10に荷重と変位の関係で記録される。
この動作を繰返すうち内圧pが大きくなると荷重
Fと管14の変位の相互に一定の正比例関係を失
う時期がくる。これが管14の降伏が始まつた時
点を示し、その荷重を降伏荷重Fyと定める。次
いでピストン12をゆるやかに動かせ、降伏荷重
Fyの1.1倍まで荷重を与える。この時、管14の
内圧Pyは、降伏圧力の1.1倍となつている。従つ
てこの時点で管14の最大変形部を拘束していた
外部荷重Pを除去する。この後、さらにシリンダ
荷重を降伏荷重Fyの1.3〜1.4倍まで増加させて拡
管を終了し、次いで荷重Pを除去すると管14は
真円となる。
The basic structure of this method consists of a tube expansion section for correcting the roundness and a section for controlling the displacement of the tube during tube expansion and the tube expansion load. The rounding process is the same as that shown in FIG. 2, in which a cylinder 7 equipped with an elastic body 6 such as rubber is inserted into the temporarily rounded tube. Here, a calculation section 9 receives signals from sensors 8 disposed at four locations in the circumferential direction, and a recording section 1 records the initial shape of the tube.
0 remembers. Next, the piston 12 is gently pulled by the hydraulic power source 11. Since the deformation of the elastic body 6 is restrained by the back-up spring 13, an internal pressure p is generated in the tube 14. During this period, the load F and the displacement of the tube 14 resulting from the movement of the piston 12 are recorded by the calculating section 9 in the recording section 10 in the relationship between load and displacement.
As this operation is repeated, as the internal pressure p increases, there comes a time when the load F and the displacement of the tube 14 lose their constant direct proportionality to each other. This indicates the point at which the tube 14 begins to yield, and the load is defined as the yield load F y . Next, the piston 12 is moved slowly to reach the yield load.
Apply a load up to 1.1 times F y . At this time, the internal pressure P y of the pipe 14 is 1.1 times the yield pressure. Therefore, at this point, the external load P restraining the maximum deformation portion of the tube 14 is removed. Thereafter, the cylinder load is further increased to 1.3 to 1.4 times the yield load F y to complete the pipe expansion, and then the load P is removed, and the pipe 14 becomes a perfect circle.

つぎに本発明の具体的実施例を述べる。 Next, specific examples of the present invention will be described.

実施例 1 公称外径127mm、肉厚4.5mm、長さ60mmのボイ
ラ・熱交換器用炭素鋼鋼管(STB42)を用いた。
真円矯正する前の管は楕円形状を示し、長径と短
径の差は1.8mmであつた。第4図に示す方法と、
第2図で示したプロセスで真円矯正を行つた。こ
の時、拡管に用いた荷重と管に発生した円周方向
のひずみを記録した結果を第5図に示す。荷重が
小さい段階では荷重とひずみの関係はほぼ直線と
なる。発生ひずみが0.09%の時、荷重とひずみの
正比例関係が崩れる。この時の荷重を降伏荷重
Fyとし、その1.1倍まで荷重を増加させた時点で、
最大変形部を拘束していた荷重を除去し、さらに
拡管荷重を1.31倍まで付与した後、荷重を除去し
た。この後、管径の分布を測定した結果、最大径
と最小径の差は0.15mmで極めて良好な真円度を得
た。この時の降伏荷重はFy=14.2tonであり、ま
た真円矯正後の拡管量は0.9mmの増加であつた。
Example 1 Carbon steel tubes for boilers and heat exchangers (STB42) with a nominal outer diameter of 127 mm, wall thickness of 4.5 mm, and length of 60 mm were used.
The tube before straightening had an elliptical shape, and the difference between the major axis and the minor axis was 1.8 mm. The method shown in FIG.
The roundness was corrected using the process shown in Figure 2. At this time, the load used for tube expansion and the circumferential strain generated in the tube were recorded and the results are shown in FIG. At the stage where the load is small, the relationship between load and strain becomes almost a straight line. When the generated strain is 0.09%, the direct proportional relationship between load and strain breaks down. The load at this time is the yield load
When the load is increased to 1.1 times F y ,
The load restraining the maximum deformation part was removed, and the tube expansion load was further applied to 1.31 times, and then the load was removed. After this, the distribution of tube diameters was measured, and as a result, the difference between the maximum diameter and the minimum diameter was 0.15 mm, and extremely good roundness was obtained. The yield load at this time was F y =14.2 tons, and the amount of tube expansion after rounding was increased by 0.9 mm.

実施例 2 公称外径406.4mm、厚さ9.5mm、長さ5mの板巻
溶接鋼管の真円矯正を実施例1と同じ方法にて行
つた。真円矯正前の管は楕円形状であり、その長
径と短径の差は7.6mmであつた。この場合、拡管
荷重として48.5ton付与した時に発生ひずみと荷
重の関係で直線性が失われたため、この荷重を降
伏荷重とし、以後の矯正を行つた結果、最大、最
小径の差が0.38mmと極めて優れた真円度が得られ
た上、拡管量も0.8mmであつた。
Example 2 A plate-wound welded steel pipe having a nominal outer diameter of 406.4 mm, a thickness of 9.5 mm, and a length of 5 m was straightened by the same method as in Example 1. The tube before roundness correction had an elliptical shape, and the difference between its major axis and minor axis was 7.6 mm. In this case, when 48.5 tons was applied as the tube expansion load, linearity was lost due to the relationship between the generated strain and the load, so this load was taken as the yield load, and subsequent corrections were made. As a result, the difference between the maximum and minimum diameters was 0.38 mm. Not only was extremely excellent roundness obtained, but the amount of tube expansion was also 0.8 mm.

実施例 3 実施例2と同じ形状で別の板巻溶接鋼管を用い
て実施例1と同じ方法で真円矯正を行つた。真円
矯正前の管は楕円形状であり、その長径と短径の
差は7.75mmであつた。この場合、管のひずみと拡
管荷重の直線関係が失われたのは拡管荷重
65.0tonであり、この荷重を降伏荷重とした。従
つて拡管荷重72tonで最大変形部を拘束していた
外部荷重を除去し、88ton(1.35Fy)で拡管を終了
した。この時、矯正後の管の長径、短径の差は
0.5mmであり、拡管量も0.9mmとなり、少量の拡管
で優れた真円矯正ができた。
Example 3 Using another plate-wound welded steel pipe having the same shape as in Example 2, rounding was performed in the same manner as in Example 1. The tube before roundness correction had an elliptical shape, and the difference between its major axis and minor axis was 7.75 mm. In this case, the linear relationship between pipe strain and pipe expansion load was lost due to pipe expansion load.
65.0 tons, and this load was taken as the yield load. Therefore, the external load restraining the maximum deformation area was removed at a tube expansion load of 72 tons, and the tube expansion was completed at a tube expansion load of 88 tons (1.35 F y ). At this time, the difference between the long and short diameters of the tube after straightening is
The diameter was 0.5mm, and the amount of tube expansion was 0.9mm, making it possible to achieve excellent roundness correction with a small amount of tube expansion.

以上説明したように本発明によれば、矯正しよ
うとする管の材料強度が不明でも極めて精度の高
い真円矯正ができるので、従来の実体管からの強
度試験片の採取とその試験を省くことができ、こ
のため工程上、極めて時間を短縮できる。
As explained above, according to the present invention, even if the material strength of the pipe to be straightened is unknown, it is possible to straighten the pipe with extremely high accuracy, thereby eliminating the need for collecting strength test pieces from conventional solid pipes and testing them. Therefore, the time required for the process can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の真円矯正方法の縦断面図、第2
図は弾性体を利用した真円矯正手順、第3図は材
料の引張試験時の応力一ひずみ曲線、第4図は本
発明の真円矯正方法を実施するための装置の説明
図、第5図は本発明の実施例における円周方向の
ひずみと荷重との関係の説明図である。 6…弾性体、7…シリンダ、8…センサ、9…
演算部、10…記録部、12…ピストン、13…
バツクアツプリング、14…管。
Figure 1 is a vertical cross-sectional view of the conventional roundness correction method;
The figure shows a roundness straightening procedure using an elastic body, Figure 3 is a stress-strain curve during a tensile test of the material, Figure 4 is an explanatory diagram of an apparatus for carrying out the roundness straightening method of the present invention, and Figure 5 The figure is an explanatory diagram of the relationship between circumferential strain and load in an embodiment of the present invention. 6...Elastic body, 7...Cylinder, 8...Sensor, 9...
Arithmetic unit, 10... Recording unit, 12... Piston, 13...
Backup spring, 14...tube.

Claims (1)

【特許請求の範囲】[Claims] 1 弾性体に軸方向荷重を付与した時に生じる弾
性体の円周方向への変形力を用いて拡管し、配管
端部を真円に矯正する方法において、矯正しよう
とする配管端部の周方向に変位計を配設し、管の
初期形状の楕円長径部を外部荷重により拘束して
仮真円化した後に拡管し、拡管途中で拡管荷重と
管の変位から管の降伏荷重を決定し、その降伏荷
重の1.1倍の時点で外部拘束荷重を除荷してその
後、降伏荷重の1.3〜1.4倍まで拡管し、しかる後
除荷することを特徴とする配管端部の真円矯正方
法。
1 In a method of expanding a pipe and straightening the end of a pipe to a perfect circle by using the deformation force in the circumferential direction of the elastic body that occurs when an axial load is applied to the elastic body, the circumferential direction of the end of the pipe to be straightened is A displacement meter is installed at the tube, and the initial shape of the ellipse is restrained by an external load to temporarily make it circular, and then the tube is expanded.During the expansion, the yield load of the tube is determined from the tube expansion load and the displacement of the tube. A method for straightening the end of a pipe into a perfect circle, characterized by removing an external restraining load at a time point of 1.1 times the yield load, then expanding the pipe to 1.3 to 1.4 times the yield load, and then removing the load.
JP15626381A 1981-10-02 1981-10-02 Out-of-roundness correcting method for end of piping Granted JPS5858945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15626381A JPS5858945A (en) 1981-10-02 1981-10-02 Out-of-roundness correcting method for end of piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15626381A JPS5858945A (en) 1981-10-02 1981-10-02 Out-of-roundness correcting method for end of piping

Publications (2)

Publication Number Publication Date
JPS5858945A JPS5858945A (en) 1983-04-07
JPS6331287B2 true JPS6331287B2 (en) 1988-06-23

Family

ID=15623975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15626381A Granted JPS5858945A (en) 1981-10-02 1981-10-02 Out-of-roundness correcting method for end of piping

Country Status (1)

Country Link
JP (1) JPS5858945A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105537321A (en) * 2016-01-25 2016-05-04 天津工业大学 Finishing device for barrel body
CN106694631A (en) * 2016-12-19 2017-05-24 新乡市振英机械设备有限公司 Spin vibration sieve frame correcting device

Also Published As

Publication number Publication date
JPS5858945A (en) 1983-04-07

Similar Documents

Publication Publication Date Title
Scott et al. Hydraulically expanded tube-to-tubesheet joints
US4134287A (en) Method for mechanical removal of tensile stresses in a tube which has been expanded in a support
GB2069897A (en) Tube-bending machine
JPH10175026A (en) Hydroforming method of tube
WO2007114176A1 (en) Metal tube end correcting apparatus and metal tube end correcting method
JP5367558B2 (en) How to improve residual stress in piping
JPS6331287B2 (en)
CA2177643C (en) Process for the production of pipes by the uoe process
JPH07290170A (en) Head for mechanical pipe expander
Memon et al. Effect of Pre-Bending on Formability of DQ Steel and Al 5182
JPH0116567B2 (en)
JP7092200B2 (en) Manufacturing method of steel pipe
CN1042673A (en) Large-diameter steel pipe pipe-end straightening method and device
JP2008307594A (en) Uoe steel tube for line pipe excellent in deformability
JPH08117855A (en) Method for correcting bore at end of steel pipe
JP2640111B2 (en) How to connect metal tubes
JPH08141643A (en) Large tube shape correcting method and device for measuring dimension and shape of large tube
CN112561147A (en) Thin-wall steel pipe explosion pressure prediction method
JPH08117856A (en) Method for correcting bore at end of steel pipe
JPH01192405A (en) Manufacture of metal tube
JPH05177257A (en) Device for straightening complete roundness of tube end of steel tube pile and the like
JPH09327732A (en) Tube end expanding die and tube end expanding method
KR810001378B1 (en) Method for mechanical removal of tensile stresses in a tube shich has been expanded in a support
RU2156448C1 (en) Process of manufacture of bourdon springs
JPS58221616A (en) Manufacture of welded steel pipe with uneven thickness