JPS6331200B2 - - Google Patents

Info

Publication number
JPS6331200B2
JPS6331200B2 JP55074968A JP7496880A JPS6331200B2 JP S6331200 B2 JPS6331200 B2 JP S6331200B2 JP 55074968 A JP55074968 A JP 55074968A JP 7496880 A JP7496880 A JP 7496880A JP S6331200 B2 JPS6331200 B2 JP S6331200B2
Authority
JP
Japan
Prior art keywords
callus
sterine
chrysanthemine
plant
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55074968A
Other languages
Japanese (ja)
Other versions
JPS572697A (en
Inventor
Yoshikazu Yamamoto
Ryuzo Mizuguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP7496880A priority Critical patent/JPS572697A/en
Publication of JPS572697A publication Critical patent/JPS572697A/en
Publication of JPS6331200B2 publication Critical patent/JPS6331200B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はナヌホルビア属怍物のハナキリンの怍
物組織から誘導したカルスを培逊しおステリンお
よび赀色色玠クリサンテミンシアニゞン−−
グルコシドを䜵産させる方法に関する。 ステリンは怍物成分ずしお怍物䞭に広汎に含た
れおいる成分の䞀぀であ぀お、近幎、コルチコス
テロむド又はピル等のステロむドホルモンの合成
原料に䜿甚され、たた化粧品、界面掻性剀などの
フアむンケミカル品の合成原料ずしお脚光を济び
぀぀ある。䞀方、色玠は食品着色剀などずしお食
品に矎感などを付䞎するため倚甚されおいるが、
合成着色剀はその毒性、䟋えば突然倉異原性等の
点で発ガン性物質ずしおいろいろ問題を起しおい
る。埓぀お、食品等に甚いられる着色剀ずしおは
その安党性の面から倩然物に由来する色玠の䜿甚
が望たれおいる。しかしながら、倩然栜培は季
節、気候、枩床、緯床等の自然環境の制玄を受け
易いために、倩然怍物からの採取では安定した䟛
絊を続けるこずができない。たた、耕地を利甚し
た倧量の栜培は、圓然食糧生産ず拮抗するのでそ
の䟛絊に限界があり、しかもその生産性にも自か
ら限界があり著しく高䟡なものずなる。 然るに、近幎、怍物成分を生産する手法ずし
お、怍物现胞培逊の研究が進められおいる。怍物
现胞培逊は、幎単䜍又は月単䜍で生育する倩然怍
物に比べ、はるかに速い速床で生育するので短時
間に目的ずする成分を生産するこずができ、たた
倩然栜培ず違぀お倩候等の圱響を受けず、採取に
も倚くの人手を煩わすこずなく、しかも工業的芏
暡で蚈画生産するこずができるずいう利点を有す
る。 本発明者等は先きにハギク゜り以倖のナヌホル
ビア属およびたたはナヌカリ属の怍物組織培逊
カルスからステリンを分離採取するこずに成功し
特開昭55−26813号公報参照、たた最近ナヌホ
ルビア属のハナキリンの怍物組織から誘導したカ
ルスを−などを怍物ホルモンずしお含む
培地䞭で培逊せしめるこずによ぀お赀色倩然色玠
クリサンテミンを生産させるこずに成功した。 本発明者等はかかる芳点から怍物现胞培逊によ
り䞊蚘ステリンおよび倩然赀色色玠クリサンテミ
ンを工業的に有利に䜵産するこずを可胜にすべく
曎に研究を進めた結果、ここにナヌホルビア属怍
物のハナキリンの怍物組織から誘導したカルスを
α−ナフタレン酢酞NAAを10-4〜10-7M、
奜たしくは10-4〜10-6Mの濃床で含む培地䞭で培
逊せしめるこずにより前蚘ステリンおよび倩然赀
色色玠クリサンテミンを高収量で䜵産できるこず
を芋出し本発明をするに至぀た。 本発明によ぀おステリンず共に生産される赀色
色玠は䞋蚘構造匏をも぀クリサンテミンシアニ
ゞン−−グルコシドであり、しかも倚成分系
の色玠ではなく、色玠ずしおはクリサンテミン䞀
皮のみであるので生産された色玠の抜出粟補操䜜
も容易である。 本発明においお䜿甚する怍物培逊现胞はナヌホ
ルビア属怍物ハナキリンを原料ずしお、これから
垞法に埓぀お誘導するこずによ぀お埗られる。以
䞋にその䞀䟋を説明する。 先ず、ハナキリンの葉を脱むオン氎で充分掗浄
した埌、70゚チルアルコヌルに〜10分間、次
いで10さらし粉溶液に〜10分間浞挬しお衚面
に付着しおいる雑菌を殺菌した埌、無菌蒞留氎で
残存殺菌剀を掗浄陀去する。 次に、殺菌した葉を適圓な倧きさに滅菌メスで
切断しお小片ずし、−ゞクロルプノキシ
酢酞−、α−ナフタレン酢酞
NAAなどのオヌキシン䜜甚物質を含む合成
培地䟋えば、ムラシゲヌスクヌグ培地䞊に眮
床する。 眮床埌、20〜30℃、奜たしくは28℃前埌の䞀定
枩床条件䞋の明所、奜たしくは100ルツクス以䞊、
曎に奜たしくは3000〜100000ルツクスの光照射䞋
においお培逊する。かかる培逊により䞀週間経過
埌頃にはハナキリンの葉から前蚘赀色色玠を生産
するカルスが圢成されるので、これを適圓な組成
の新しい寒倩培地䞊に移怍し、20〜30℃、奜たし
くは28℃前埌の䞀定枩床䞋、明所、奜たしくは
100ルツクス以䞊、曎に奜たしくは3000〜100000
ルツクスの光照射䞋においお培逊を぀づける。な
お、工業的芏暡でカルスを埗るには、䞊蚘カルス
を䞀般埮生物の培逊ず同じ操䜜で静眮培逊法又は
液䜓培逊法によ぀お培逊増殖させればよい。液䜓
培逊法ずしおは、䟋えば振ずう匏培逊機䞊で培逊
する振ずう培逊法、或いはガラス、金属等の密閉
した槜に無菌空気を通気しお培逊する方法などを
目的に応じお適宜遞択するこずができる。 本発明に埓぀お前蚘カルスを培逊するのに甚い
られる培地ずしおは、各皮既知の無機合成寒倩培
地を基本ずし、これにビタミン等の埮量有機物、
炭玠源、怍物ホルモンおよび各皮倩然抜出物質を
添加したものを甚いる。 前蚘無機合成寒倩培地の代衚䟋ずしおは、ホワ
むト培地、ヒルデブランド培地、リンスマむダヌ
−スクヌグ培地、ムラシゲ−スクヌグ培地等があ
げられる。その他、これらの培地の組成を改良し
たものも䜿甚するこずができる。 前蚘ビタミン等の埮量有機物ずしおは、チアミ
ン塩酞塩、ピリドキシン塩酞塩、ニコチン酞等の
ビタミングリシン、アスパラギン等のアミノ
酞むノシツト、゜ルビツト等の䟡アルコヌル
をあげるこずができるが、これらの埮量有機物は
培地に添加しなくおも良奜な生育を瀺す堎合があ
る。 前蚘炭玠源ずしおは、シペ糖、ブドり糖、麊芜
糖などの炭氎化物酢酞などの有機酞メタノヌ
ル、グリセリンなどのアルコヌルなどを䜿甚する
こずができるが、特にシペ糖の䜿甚が色玠生産性
が高く奜たしい。䜿甚濃床は〜10、奜
たしくは〜である。 怍物ホルモンずしおは、カルスを誘導する際は
−ゞクロルプノキシ酢酞−、
β−むンドヌル酢酞IAA、α−ナフタレン酢
酞NAAなどのオヌキシン䜜甚物質やカむネ
チシなどのサむトカむニン類などを䜿甚するこず
ができるが、クリサンテミンの生産性及び遞択性
などの点からみれば、−の䜿甚が奜たし
く、奜たしい濃床は10-4〜10-7M、曎に奜たしく
は10-6〜10-7Mである。しかしながら、誘導した
カルスを培逊しお本発明の目的に埓぀おステリン
及びクリサンテミンを高収量で䜵産させるために
は、前述の劂く、α−ナフタレン酢酞NAA
を䜿甚しなければならない。NAAの䜿甚濃床は
10-4〜10-7M、奜たしくは10-4〜10-6Mであり、
この濃床が高過ぎるず、カルスが生育しないので
奜たしくなく、逆に䜎過ぎる堎合には緑化した
り、生育しなか぀たりするので奜たしくない。 前蚘各皮倩然抜出物質ずしおは、䟋えばカれむ
ン加氎分解物〜、ココナツツミ
ルク〜25、酵母゚キス〜
、麊芜゚キス〜などを
単独又は任意に組み合せお䜿甚するこずができ
る。 本発明方法においおは前述の劂くカルスの培逊
は、カルスを内蔵した培逊噚を100ルツクス以䞊、
奜たしくは3000〜100000ルツクスの光照射䞋に蚭
眮しお実斜する。光源ずしおは、倪陜光、螢光
灯、癜熱電灯、氎銀灯などを甚いるこずができ
る。光照射を実斜しない堎合には色玠が生産され
ない。 このようにしお培逊したカルスからステリンお
よび赀色色玠クリサンテミンを分離採取するに
は、公知の方法、䟋えば溶媒抜出法によ぀お行な
うこずができる。以䞋にその䞀䟋を説明する。 先ず、塩酞、酢酞、ギ酞などの酞を0.01〜重
量皋床の濃床で含む溶媒、奜たしくは氎又はメ
タノヌル、゚タノヌルなどのアルコヌル系溶媒に
培逊现胞、奜たしくは垞法に埓぀お凍結也燥した
培逊现胞を−〜10℃の枩床においお浞挬し、生
産されたステリンおよび赀色色玠を抜出する。次
に埗られた抜出液を、ロ過などの操䜜で固圢分を
陀去した埌、40℃以䞋の枩床この枩床が高過ぎ
るず赀色色玠が分解しやすくなるので奜たしくな
いで枛圧濃瞮し、この濃瞮液を分液ロヌトに移
し、䟋えば゚ヌテル゚ヌテルに代えおヘキサ
ン、ヘプタン、石油゚ヌテル、クロロホルム、二
塩化メチレン、酢酞゚チルなどを甚いるこずもで
きるで数回抜出しお濃瞮液䞭に含たれるステリ
ンを抜出する。゚ヌテル抜出埌の残液を枛圧也燥
するこずによ぀お目的ずする赀色色玠クリサンテ
ミンを埗るこずができ、曎にセルロヌス薄局クロ
マトグラフむヌ、セルロヌスカラムクロマトグラ
フむヌ、ペヌパヌクロマトグラフむヌなどによ぀
お粟補するこずができる。なお埗られたクリサン
テミンは以䞋の実斜䟋に瀺したようにペヌパヌク
ロマトやUV吞収スペクトルによ぀お暙品クリサ
ンテミンず比范するこずによ぀お同定できる。䞀
方、゚ヌテル抜出したステリンは、゚ヌテル抜出
局から゚ヌテルを留去し、残枣を䟋えば−ヘキ
サンで再結晶するこずによ぀お目的ずするステリ
ンの結晶を埗るこずができる。なお、再結晶に代
えお、䟋えばカラムクロマトグラフむヌ、薄局ク
ロマトグラフむヌなどを甚いるこずもできる。埗
られたステリンは玄137℃の融点をもち、たた各
皮溶媒系を展開溶媒ずする薄局クロマトグラフむ
ヌや赀倖吞収スペクトル、栞磁気共鳎スペクトル
によ぀お暙品ステリンず比范するこずによ぀お同
定するこずができる。 以䞊説明したように、本発明方法に埓えば、ナ
ヌホルビア属怍物のハナキリンの怍物組織から誘
導したカルスを特定の培地䞭で培逊させるこずに
よりフアむンケミカル品の合成原料ずしお貎重な
ステリンおよび食品着色剀などずしお奜適な倩然
赀色色玠クリサンテミンを玔粋な圢で䜵産するこ
ずができ、しかも倩然怍物から補造する堎合に比
范しお極めお効率よく生産するこずができる。 以䞋に本発明の実斜䟋を説明するが、本発明の
範囲を以䞋の実斜䟋に限定するものでないこずは
いうたでもない。 実斜䟋 ハナキリンの葉を充分に氎掗し、広さcm2皋床
に切断した。次いで、これらの切片を70゚チル
アルコヌルに分間浞挬し、曎に10さらし粉溶
液に10分間浞挬しお殺菌凊理した埌、無菌箱内で
無菌蒞留氎䞭に数回浞挬しお掗蒞し、充分に残存
殺菌剀を陀去した。これらの葉切片を枛菌メスを
甚いお広さcm2皋床の小片に切断し、埗られたハ
ナキリンの葉の小切片を以䞋の組成の合成寒倩培
地に無菌的に眮床した。 培地ずしおは、ムラシゲ−スクヌグの無機塩培
地に、シペ糖、麊芜゚キス0.2
、−D10-6M、チアミン塩酞塩0.1ppm、
ピリドキシン塩酞塩0.5ppm、ニコチン酞
0.5ppm、グリシン2ppmおよびむノシトヌル
100ppmを加えおPH6.0に調敎し、寒倩0.8
を加え垞法通り殺菌した培地を甚いた。 このような培地に眮床したハナキリンの葉の小
片を培逊枩床25℃で3000ルツクスの光照射䞋培逊
した。週間経過した頃から葉の切口呚蟺から赀
色のカルスが生じた。ケ月経過埌、倧きく生長
したカルスを现かく分割し、怍物ホルモン
−D10-6MをNAA10-5Mに替えた以倖は、䞊蚘
のカルス誘導の際に甚いたのず同䞀組成の培地に
無菌的に移怍し、培逊枩床25℃で3000ルツクスの
光照射䞋カルスの培逊を、同様の操䜜を〜週
間毎に繰返し乍ら、合蚈ケ月間実斜した。 このようにしお増殖したハナキリンの培逊现胞
を固圢培地から分離し、真空凍結也燥機においお
氎分を陀去し、也燥カルス10.6を埗た。この也
燥カルスを乳鉢で磚砕埌、塩酞性メタノヌル
に冷所においお24時間浞挬した。ロ過埌埗られた
抜出液を40℃以䞋の枩床で50ml皋床たで濃瞮し、
分液ロヌトに移した埌、埗られたステリンずクリ
サンテミンを分離するために100mlの゚ヌテルを
加え、充分振ずう埌゚ヌテル局ず分離したこの
゚ヌテル局にステリンが移る。かかる゚ヌテル
抜出操䜜を数回繰り返した埌、残存液を曎に40℃
以䞋で枛圧濃瞮しお也固させた。この也固物を少
量の0.01塩酞性メタノヌルに溶解し、セルロヌ
スTLC20cm×20cmに垯状に塗垃し、塩酞酢
酞氎の展開溶媒を甚いお展開させ
た。赀色のバンドをかき取り、塩酞性メタノ
ヌルに浞挬し、赀色色玠を抜出した。この抜出液
を40℃以䞋で枛圧也固しお黒赀色粉末87.5mgを埗
た。 この色玠のペヌパヌクロマト東掋ロ玙No.51、
以䞋同じ溶媒−ブタノヌル酢酞氎
䞊局、−ブタノヌル塩酞氎
䞊局、塩酞および酢酞塩酞氎
1582のRf倀は䞋蚘第衚に瀺す劂く
暙品クリサンテミンデラり゚ア皮ブドりより抜
出単離しお構造決定したものずよく䞀臎した。
The present invention cultivates callus derived from the plant tissue of Hanakirin, a plant belonging to the genus Euphorbia, and produces sterin and red pigment chrysanthemin (cyanidin-3-3-
This invention relates to a method for co-producing glucosides. Sterine is one of the components widely contained in plants.In recent years, it has been used as a synthetic raw material for steroid hormones such as corticosteroids and pills, and it is also used as a pharmaceutical ingredient in cosmetics, surfactants, etc. It is attracting attention as a synthetic raw material for chemical products. On the other hand, dyes are often used as food coloring agents to add aesthetic appeal to foods.
Synthetic coloring agents have caused various problems as carcinogens due to their toxicity, such as mutagenicity. Therefore, from the viewpoint of safety, it is desired to use pigments derived from natural products as coloring agents for foods and the like. However, since natural cultivation is easily subject to constraints of the natural environment such as season, climate, temperature, latitude, etc., it is not possible to maintain a stable supply by collecting from natural plants. In addition, large-scale cultivation using arable land naturally competes with food production, so there is a limit to its supply, and there is also a limit to its productivity, making it extremely expensive. However, in recent years, research on plant cell culture has been progressing as a method for producing plant components. Plant cell culture grows at a much faster rate than natural plants, which grow on a yearly or monthly basis, so it is possible to produce the desired ingredients in a short period of time, and unlike natural cultivation, it is less susceptible to the effects of weather etc. It has the advantage of being able to be produced in a planned manner on an industrial scale without the need for much labor for collection. The present inventors previously succeeded in separating and collecting sterin from plant tissue culture callus of the genus Euphorbia and/or the genus Eucalyptus (see Japanese Patent Application Laid-open No. 55-26813). By culturing callus derived from Hanakirin plant tissue in a medium containing 2,4-D as a plant hormone, we succeeded in producing the red natural pigment chrysanthemin. From this point of view, the present inventors have conducted further research to enable industrially advantageous co-production of the above-mentioned sterin and the natural red pigment chrysanthemine through plant cell culture. Callus derived from tissues was treated with α-naphthalene acetic acid (NAA) at 10 -4 to 10 -7 M.
The inventors have discovered that the above-mentioned sterin and the natural red pigment chrysanthemine can be co-produced in high yield by culturing in a medium containing preferably a concentration of 10 -4 to 10 -6 M, leading to the present invention. The red pigment produced together with sterine according to the present invention is chrysanthemine (cyanidin-3-glucoside) having the following structural formula, and it is not a multi-component pigment, but only one type of chrysanthemine. The extraction and purification operation of the pigment is also easy. The cultured plant cells used in the present invention are obtained by deriving Hanakirin, a plant of the genus Euphorbia, according to a conventional method. An example will be explained below. First, after thoroughly washing the leaves of Hanakirin with deionized water, they were immersed in 70% ethyl alcohol for 5 to 10 minutes, then in a 10% bleaching powder solution for 5 to 10 minutes to sterilize the bacteria attached to the surface. Wash away residual disinfectant with sterile distilled water. Next, the sterilized leaves are cut into small pieces with a sterile scalpel to an appropriate size and treated with auxin-active substances such as 2,4-dichlorophenoxyacetic acid (2,4-D) and α-naphthaleneacetic acid (NAA). The cells are placed on a synthetic medium containing (for example, Murashige-Skoog medium). After placing on the bed, store in a bright place under constant temperature conditions of 20 to 30℃, preferably around 28℃, preferably 100 lux or more,
More preferably, the culture is carried out under light irradiation of 3,000 to 100,000 lux. After one week of such culture, a callus that produces the red pigment is formed from the leaves of Hanakirin, which is then transplanted onto a new agar medium with an appropriate composition and incubated at 20 to 30°C, preferably at 28°C. Under constant temperature before and after, in a bright place, preferably
100 lux or more, more preferably 3000 to 100000
Continue culturing under lux light irradiation. In order to obtain callus on an industrial scale, the callus may be cultured and propagated by a static culture method or a liquid culture method in the same manner as in the culture of general microorganisms. As a liquid culture method, for example, a shaking culture method in which culture is performed on a shaking culture machine, or a method in which sterile air is aerated in a closed tank made of glass, metal, etc. may be selected as appropriate depending on the purpose. Can be done. The medium used for culturing the callus according to the present invention is based on various known inorganic synthetic agar media, and contains trace amounts of organic substances such as vitamins, etc.
A carbon source, plant hormones, and various natural extracts are added. Representative examples of the inorganic synthetic agar medium include White medium, Hildebrand medium, Linsmeyer-Skoog medium, Murashige-Skoog medium, and the like. In addition, these media with improved compositions can also be used. Examples of trace organic substances such as vitamins include vitamins such as thiamine hydrochloride, pyridoxine hydrochloride, and nicotinic acid; amino acids such as glycine and asparagine; and hexahydric alcohols such as inosite and sorbitol. It may show good growth even without being added to the medium. As the carbon source, carbohydrates such as sucrose, glucose, and maltose; organic acids such as acetic acid; and alcohols such as methanol and glycerin can be used. Among them, sucrose is particularly preferred because of its high pigment productivity. The concentration used is 1-10% w/v, preferably 4-7% w/v. As a plant hormone, when inducing callus, 2,4-dichlorophenoxyacetic acid (3,4-D),
Auxin-acting substances such as β-indoleacetic acid (IAA) and α-naphthaleneacetic acid (NAA) and cytokinins such as Kinetic can be used, but from the viewpoint of chrysanthemine productivity and selectivity, , 4-D, the preferred concentration being 10 -4 to 10 -7 M, more preferably 10 -6 to 10 -7 M. However, in order to co-produce sterine and chrysanthemine in high yield according to the purpose of the present invention by culturing the induced callus, α-naphthaleneacetic acid (NAA) must be used as described above.
must be used. The concentration of NAA used is
10 -4 to 10 -7 M, preferably 10 -4 to 10 -6 M,
If this concentration is too high, callus will not grow, which is undesirable; if it is too low, callus may turn green or not grow, which is undesirable. Examples of the various natural extracts include casein hydrolyzate (0-2% w/v), coconut milk (0-25% w/v), yeast extract (0-2%
w/v), malt extract (0 to 2% w/v), etc. can be used alone or in any combination. In the method of the present invention, as described above, the callus is cultured in a culture vessel containing callus at a temperature of 100 lux or more.
It is preferably carried out by installing under light irradiation of 3,000 to 100,000 lux. As a light source, sunlight, a fluorescent lamp, an incandescent lamp, a mercury lamp, etc. can be used. If no light irradiation is performed, no dye will be produced. Sterlin and the red pigment chrysanthemine can be separated and collected from the calli thus cultured by a known method, such as a solvent extraction method. An example will be explained below. First, cells are cultured in a solvent containing an acid such as hydrochloric acid, acetic acid, or formic acid at a concentration of about 0.01 to 5% by weight, preferably water or an alcoholic solvent such as methanol or ethanol, and the culture is preferably lyophilized according to a conventional method. The cells are soaked at a temperature of -5 to 10°C to extract the produced stelline and red pigment. Next, the obtained extract is subjected to an operation such as filtration to remove the solid content, and then concentrated under reduced pressure at a temperature of 40°C or lower (too high a temperature is not preferable because the red pigment easily decomposes). Transfer this concentrated solution to a separating funnel and extract it several times with, for example, ether (hexane, heptane, petroleum ether, chloroform, methylene dichloride, ethyl acetate, etc. can also be used instead of ether) to remove the Extract the sterine. The desired red pigment chrysanthemine can be obtained by drying the residual liquid after ether extraction under reduced pressure, and further purified by cellulose thin layer chromatography, cellulose column chromatography, paper chromatography, etc. be able to. The obtained chrysanthemine can be identified by comparing it with standard chrysanthemine using paper chromatography or UV absorption spectrum, as shown in the following examples. On the other hand, the desired sterine crystals can be obtained by distilling off the ether from the ether-extracted layer and recrystallizing the residue with, for example, n-hexane. Note that instead of recrystallization, for example, column chromatography, thin layer chromatography, etc. can also be used. The obtained sterine has a melting point of about 137°C, and it was determined by comparing it with standard sterine by thin layer chromatography using various solvent systems as a developing solvent, infrared absorption spectrum, and nuclear magnetic resonance spectrum. Can be identified. As explained above, according to the method of the present invention, by culturing callus derived from the plant tissue of Hanakirin, a plant belonging to the genus Euphorbia, in a specific medium, sterine and food colorants, which are valuable as synthetic raw materials for fine chemical products, can be produced. It is possible to co-produce chrysanthemine, a natural red pigment suitable as a natural red pigment, in pure form, and moreover, it can be produced extremely efficiently compared to the case where it is produced from natural plants. Examples of the present invention will be described below, but it goes without saying that the scope of the present invention is not limited to the following examples. Example The leaves of Hanakirin were thoroughly washed with water and cut into approximately 4 cm 2 pieces. Next, these sections were sterilized by immersing them in 70% ethyl alcohol for 5 minutes and then in a 10% bleaching powder solution for 10 minutes, and then immersed in sterile distilled water several times in a sterile box to wash and steam them thoroughly. Removed residual disinfectant. These leaf sections were cut into small pieces with a width of about 1 cm 2 using a sterile scalpel, and the obtained small pieces of Hanakirin leaves were placed aseptically on a synthetic agar medium having the following composition. The medium was Murashige-Skoog's inorganic salt medium, 3% w/v sucrose, and 0.2% w/v malt extract.
v, 2,4-D10 -6 M, thiamine hydrochloride 0.1 ppm,
Pyridoxine hydrochloride 0.5ppm, nicotinic acid
0.5ppm, glycine 2ppm and inositol
Add 100ppm and adjust to PH6.0, agar 0.8%w/
A medium was used which had been sterilized in a conventional manner by adding V. Small pieces of Hanakirin leaves placed on such a medium were cultured at a culture temperature of 25°C under light irradiation of 3000 lux. After one week, a red callus appeared around the cut end of the leaf. After one month, the callus that has grown large is divided into small pieces and treated with plant hormones 2 and 4.
-D10 -6 M was replaced with NAA10 -5 M, but the callus was transplanted aseptically into a medium with the same composition as used for callus induction above, and the callus was irradiated with light at 3000 lux at a culture temperature of 25°C. The culture was carried out for a total of 6 months, repeating the same operation every 4 to 6 weeks. The cultured Hanakirin cells grown in this way were separated from the solid medium, and water was removed in a vacuum freeze dryer to obtain 10.6 g of dry callus. This dried callus was ground in a mortar and then immersed in 2% hydrochloric methanol in a cold place for 24 hours. The extract obtained after filtration is concentrated to about 50ml at a temperature below 40℃,
After transferring to a separating funnel, 100 ml of ether was added to separate the obtained sterine and chrysanthemine, and after thorough shaking, the mixture was separated from the ether layer (sterine was transferred to this ether layer). After repeating this ether extraction operation several times, the remaining liquid was further heated at 40°C.
It was concentrated to dryness under reduced pressure. This dried product was dissolved in a small amount of 0.01% methanol with hydrochloric acid, applied in a strip on cellulose TLC (20 cm x 20 cm), and developed using a developing solvent of hydrochloric acid/acetic acid/water = 5/1/5. The red band was scraped off and immersed in 2% methanol with hydrochloric acid to extract the red pigment. This extract was dried under reduced pressure at 40° C. or lower to obtain 87.5 mg of black-red powder. Paper chromatography of this dye (Toyoro Paper No. 51,
Same below) (Solvent: n-butanol/acetic acid/water =
4/1/5 upper layer, n-butanol/hydrochloric acid/water=
The Rf values of 5/1/4 upper layer, 1% hydrochloric acid and acetic acid/hydrochloric acid/water = 15/3/82) are as shown in Table 1 below. ) was in good agreement.

【衚】 たた、埗られた色玠ず暙品クリサンテミンの
UV吞収スペクトルを枬定したずころ、第図
及びに瀺すように、䞊蚘赀色色玠のUV吞収ス
ペクトルは暙品クリサンテミンのものずよく䞀臎
した。 次に、䞊で埗た赀色色玠を20塩酞で分間煮
沞し、加氎分解しお埗たアグリコンのペヌパヌク
ロマト溶媒−ブタノヌル酢酞氎
䞊局、−ブタノヌル塩酞氎
䞊局、酢酞塩酞氎および
ギ酞塩酞氎のRf倀も䞋蚘第
衚に瀺すように暙品シアニゞン暙品クリサン
テミンを加氎分解しお埗たものの結果ずよく䞀
臎した。
[Table] Also, the obtained pigment and standard chrysanthemin
When we measured the UV absorption spectrum, we found that Figure 1A
As shown in and B, the UV absorption spectrum of the red dye was in good agreement with that of standard chrysanthemin. Next, the red pigment obtained above was boiled in 20% hydrochloric acid for 5 minutes, and the aglycone obtained by hydrolysis was subjected to paper chromatography (solvent: n-butanol/acetic acid/water = 4/
1/5 upper layer, n-butanol/hydrochloric acid/water = 5/
The Rf values of 1/4 upper layer, acetic acid/hydrochloric acid/water = 5/1/5 and formic acid/hydrochloric acid/water = 2/1/2) are also shown in Table 2 below. The results were in good agreement with those obtained by decomposition.

【衚】【table】

【衚】 曎に䞊蚘赀色色玠の糖郚分のペヌパヌクロマト
溶媒プノヌル氎およびピリゞ
ンブタノヌル氎の結果も、以
䞋の第衚に瀺すように、グルコヌスず䞀臎し
た。これらの結果から䞊で埗た赀色色玠がクリサ
ンテミンであるこずが同定できる。
[Table] Furthermore, the results of paper chromatography (solvent: phenol/water = 4/1 and pyridine/butanol/water = 3/6/1) of the sugar moiety of the red pigment are as shown in Table 3 below. Consistent with glucose. From these results, it can be identified that the red pigment obtained above is chrysanthemine.

【衚】 䞀方、ステリンを含む前蚘゚ヌテル抜出液はす
べお集合しお濃瞮し、゚ヌテルを留去し、゚ヌテ
ル抜出分を埗る。この゚ヌテル抜出分を少量のヘ
キサンに溶解させお再結晶し、ステリン970mgを
埗た。この結晶の融点は136.5℃であり、たたそ
の赀倖吞収スペクトルおよび栞磁気共鳎スペクト
ルは暙品ステリンシトステロヌルずスチグマス
テロヌルの混合物のスペクトルずよく䞀臎し
た。曎にこの結晶のクロロホルム酢酞゚チル
および−ヘキサン酢酞゚チル
の展開溶媒によるシリカゲル薄局プレヌトを硫
酞噎霧した埌105℃で分間させお生じたスポツ
トのRf倀第衚参照および発色も、以䞋の
第衚に瀺すように、暙品ステリンず䞀臎した。
これらの結果から䞊で埗た結晶がステリンである
こずが同定できる。
[Table] On the other hand, all the ether extracts containing sterine are collected and concentrated, and the ether is distilled off to obtain an ether extract. This ether extract was dissolved in a small amount of hexane and recrystallized to obtain 970 mg of sterine. The melting point of this crystal was 136.5°C, and its infrared absorption spectrum and nuclear magnetic resonance spectrum matched well with the spectrum of authentic sterin (a mixture of sitosterol and stigmasterol). Furthermore, this crystal of chloroform/ethyl acetate =
9/1 and n-hexane/ethyl acetate = 7/3
The Rf value (see Table 4) and color development of spots generated when a silica gel G thin layer plate was sprayed with sulfuric acid using a developing solvent of matched.
From these results, it can be identified that the crystals obtained above are sterine.

【衚】 比范䟋 䞊蚘実斜䟋においお、ハナキリンの葉から誘導
したカルスの培逊甚の怍物ホルモンずしお
NAA10-5Mに代えお−D10-6Mを甚いた
以倖は実斜䟋ず同様にしおカルスの培逊を行な
い、也燥カルス9.8を埗た。この也燥から実斜
䟋ず同様にしおクリサンテンミンずステリンを分
離したずころ、黒赀色粉末クリサンテミン79.4mg
を埗たが、ステリンは10.8mgに過ぎなか぀た。
[Table] Comparative example In the above example, as a plant hormone for culturing callus derived from Hanakirin leaves.
Callus was cultured in the same manner as in Example except that 2,4-D10 -6 M was used instead of NAA10 -5 M, and 9.8 g of dry callus was obtained. From this drying, chrysanthemin and sterine were separated in the same manner as in the example, and 79.4 mg of black-red powder chrysanthemin was found.
However, the amount of sterine was only 10.8 mg.

【図面の簡単な説明】[Brief explanation of drawings]

第図は実斜䟋でカルスから埗た赀色色玠ず暙
品クリサンテミンのUV吞収スペクトルのチダヌ
ト図であり、図がカルスの赀色色玠の吞収スペ
クトルを瀺し、図が暙品クリサンテミンの吞収
スペクトルを瀺す。
Figure 1 is a chart of the UV absorption spectra of the red pigment obtained from callus in the example and standard chrysanthemin. Figure A shows the absorption spectrum of the red pigment of callus, and Figure B shows the absorption spectrum of standard chrysanthemin. show.

Claims (1)

【特蚱請求の範囲】  ナヌホルビア属怍物のハナキリンの怍物組織
から誘導したカルスを、α−ナフタレン酢酞
NAAを10-4〜10-7Mの濃床で含む培地䞭で培
逊させおステリンおよび赀色色玠クリサンテミン
を䜵産させるこずを特城ずするステリンおよび赀
色色玠クリサンテミンの䜵産方法。  前蚘カルスの培逊を100ルツクス以䞊の光照
射䞋で実斜する特蚱請求の範囲第項蚘茉の方
法。  前蚘カルスの培逊を、シペ糖を〜10重量
の濃床で含む培地䞭で実斜する特蚱請求の範囲第
項又は第項蚘茉の方法。
[Scope of Claims] 1 Callus derived from the plant tissue of Hanakirin, a plant of the genus Euphorbia, is cultured in a medium containing α-naphthalene acetic acid (NAA) at a concentration of 10 -4 to 10 -7 M to produce sterine and red color. A method for co-producing sterine and red pigment chrysanthemine, characterized by co-producing the pigment chrysanthemine. 2. The method according to claim 1, wherein the callus is cultured under light irradiation of 100 lux or more. 3 The callus was cultured with 1 to 10% by weight of sucrose.
The method according to claim 1 or 2, which is carried out in a medium containing a concentration of .
JP7496880A 1980-06-05 1980-06-05 Simultaneous production of sterol with red dye chrysanthemin by tissual culture of euphorbia millii ch. des moulins Granted JPS572697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7496880A JPS572697A (en) 1980-06-05 1980-06-05 Simultaneous production of sterol with red dye chrysanthemin by tissual culture of euphorbia millii ch. des moulins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7496880A JPS572697A (en) 1980-06-05 1980-06-05 Simultaneous production of sterol with red dye chrysanthemin by tissual culture of euphorbia millii ch. des moulins

Publications (2)

Publication Number Publication Date
JPS572697A JPS572697A (en) 1982-01-08
JPS6331200B2 true JPS6331200B2 (en) 1988-06-22

Family

ID=13562595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7496880A Granted JPS572697A (en) 1980-06-05 1980-06-05 Simultaneous production of sterol with red dye chrysanthemin by tissual culture of euphorbia millii ch. des moulins

Country Status (1)

Country Link
JP (1) JPS572697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112796U (en) * 1989-02-21 1990-09-10

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126091A (en) * 1990-09-17 1992-04-27 Nippon Paint Co Ltd Production of quercetin glucuronide and cultured cell containing the same
CN103232513B (en) * 2013-05-09 2015-06-10 南京䞭医药倧孊 Method for preparing tirucallol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112796U (en) * 1989-02-21 1990-09-10

Also Published As

Publication number Publication date
JPS572697A (en) 1982-01-08

Similar Documents

Publication Publication Date Title
US5017562A (en) Crystalline saponin-containing complex
US4328309A (en) Method for producing tripdiolide, triptolide and celastrol
JPS6331200B2 (en)
US3710512A (en) Process for preparing licorice extract-like material for tobacco flavoring
EP0479459B1 (en) Production of quercetin glucuronide and cultured cells containing the same
JP2967532B2 (en) Method for producing taxane compound
JPH03262488A (en) Production of podophyllotoxin compound
JPS6141556B2 (en)
US5059531A (en) Process for the preparation of pilocarpine from in vitro cultures of pilocarpus
JPS62273A (en) Production of tissue culture product of cucurbitaceae plant and cosmetic compounded with extract of said tissue culture produce
JPH07215888A (en) Antityrosinase activity composition
JPS63240795A (en) Purple pigment and production thereof
JPS6314953B2 (en)
JPH062053B2 (en) Plant tissue culture method
JPH0420596B2 (en)
EP0206691A2 (en) Production of deuterium-containing chemical substances
EP0442537B1 (en) A mental disease therapeutic agent
JPH0414960B2 (en)
JP3274518B2 (en) Manufacturing method of medicinal carrot extract
JPS60199395A (en) Ferulic acid amide derivative and its preparation
JPS6321470B2 (en)
JPS61216684A (en) Production of gynostemma pentaphyllum by tissue culture
JPH02211891A (en) Production of rhododendrol glycoside using tissue of acer nikoense maxim.
JP2539339B2 (en) Antioxidant
JPS6034B2 (en) Tissue culture method for plants of the family Murasakiceae