JPS6331158B2 - - Google Patents

Info

Publication number
JPS6331158B2
JPS6331158B2 JP54036497A JP3649779A JPS6331158B2 JP S6331158 B2 JPS6331158 B2 JP S6331158B2 JP 54036497 A JP54036497 A JP 54036497A JP 3649779 A JP3649779 A JP 3649779A JP S6331158 B2 JPS6331158 B2 JP S6331158B2
Authority
JP
Japan
Prior art keywords
optical
input
light beam
signals
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54036497A
Other languages
Japanese (ja)
Other versions
JPS55129301A (en
Inventor
Masahiro Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3649779A priority Critical patent/JPS55129301A/en
Publication of JPS55129301A publication Critical patent/JPS55129301A/en
Publication of JPS6331158B2 publication Critical patent/JPS6331158B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 この発明は光フアイバーを伝送路として用いる
光通信システムにおいて、光信号の入出力を光の
ままで切替える切替マトリクスに関する。近年、
光フアイバーの減衰特性が著しく改善され、また
半導体レーザーの長寿命化の可能性が出て来たこ
とから光通信に大きな期待がかけられている。す
なわち、高速PCM信号の伝送に当つて、電気信
号をケーブル伝送するのに比較し、光信号を用い
れば減衰量、波形歪、クロストークなどの特性面
また通信容量の点で数々の利点が期待できる。こ
の際、当然なことながら、高速PCM信号を切替
える切替器が必要となつて来るが、光信号のまま
で切替を行う切替器は現在2入力1出力程度の簡
単なものがある程度で、大容量切替マトリクスに
適した切替器は存在しない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a switching matrix for switching input and output of optical signals as they are in optical communication systems that use optical fibers as transmission paths. recent years,
There are great expectations for optical communications because the attenuation characteristics of optical fibers have been significantly improved and the possibility of extending the lifespan of semiconductor lasers has emerged. In other words, when transmitting high-speed PCM signals, compared to transmitting electrical signals through cables, using optical signals is expected to offer numerous advantages in terms of characteristics such as attenuation, waveform distortion, and crosstalk, as well as communication capacity. can. Naturally, in this case, a switch that switches the high-speed PCM signal becomes necessary, but currently the switch that switches the optical signal as it is is as simple as 2 inputs and 1 output, and has a large capacity. There is no suitable switch for the switching matrix.

例えば、現在のTV放送局ではスタジオ、
VTR、テレシネ、局外回線等を相互に接続する
ために、入力320×出力320の大容量の映像切替マ
トリクスが使われている。この切替素子には水銀
リレーが使用されている。これらの映像信号がす
べてPCM化された場合、100Mb/sの高速PCM
信号を切替える大容量切替マトリクスが必要とな
る。これを電気信号のままで行うとすれば、伝送
路の問題、切替マトリクス自体のクロストークな
どの問題が生じて出るが、これを光通信で置き換
えることにより諸問題が解決される。この際に必
要となるのが、光信号のままで切替を行う光通信
用交換機である。
For example, at current TV broadcasting stations, studios,
A large-capacity video switching matrix of 320 inputs x 320 outputs is used to interconnect VTRs, telecines, external lines, etc. A mercury relay is used as this switching element. If all these video signals are converted to PCM, high-speed PCM of 100Mb/s
A large-capacity switching matrix is required to switch the signals. If this were to be done using electrical signals as they were, problems such as transmission path problems and crosstalk in the switching matrix itself would arise, but these problems can be solved by replacing these with optical communications. What is needed in this case is an optical communications switch that performs switching using optical signals as they are.

本発明の目的は光フアイバーを用いて伝送され
る光変調された高速PCM信号あるいはアナログ
映像信号を交換する際に、光信号のままで切替え
ることの出来る光通信用交換機を構成するに必要
な切替マトリクスを提供することにある。
The purpose of the present invention is to provide switching necessary for configuring an optical communications exchange that can switch optical signals as they are when exchanging optically modulated high-speed PCM signals or analog video signals transmitted using optical fibers. The purpose is to provide a matrix.

本発明によれば、例えば8系統の入力光信号を
入力側においてそれぞれ8分岐し、分岐した各系
統の光フアイバーを一本づつ出力側に設けられた
8個の光ビーム選択切替素子に集線し、この選択
切替素子においては、光電変換素子を取付けた可
動片を電磁的に所定の位置に移動させることによ
り、8本の入力フアイバーの1つを選択し、この
光信号を受光することにより8入力×8出力の光
切替マトリクスが得られる。
According to the present invention, for example, eight input optical signals are branched into eight channels at the input side, and the optical fibers of each branched channel are concentrated one by one into eight optical beam selection switching elements provided at the output side. , this selection switching element selects one of the eight input fibers by electromagnetically moving the movable piece to which the photoelectric conversion element is attached to a predetermined position, and receives this optical signal. An optical switching matrix of input x 8 outputs is obtained.

次にこの発明の実施例について図面を参照して
詳述する。第1図aにおいてD1〜D8はマトリク
スの入力側に設けられた光信号分配器で外部から
光フアイバー1を通つて入力される光信号を分岐
して、これにつながる8本の光フアイバーに同一
の光信号を出力する。この光信号分配器は通常、
入力信号を一旦電気信号に変換して、整形増巾し
て再度光信号に直して、8本のフアイバーに出力
してやるもので、光通信中継器の応用であり、既
成の技術で達成出来るものである。
Next, embodiments of the invention will be described in detail with reference to the drawings. In Fig. 1a, D 1 to D 8 are optical signal distributors installed on the input side of the matrix, which branch optical signals input from the outside through optical fiber 1 and connect them to eight optical fibers. Outputs the same optical signal to both. This optical signal splitter is usually
The input signal is first converted into an electrical signal, then shaped and amplified, converted back into an optical signal, and outputted to eight fibers.It is an application of an optical communication repeater and cannot be achieved using existing technology. be.

光信号分配器D1〜D8からの出力は、8個の光
ビーム選択切替素子R1〜R8にそれぞれ1本づつ
入力される。すなわち選択切替素子の各々には分
配器D1〜D8からの光信号が1本づつ入力され、
選択切替素子はこの8入力の中の1つの光信号を
選択受光し、その信号を出力として外部に送り出
す。
Outputs from the optical signal distributors D 1 to D 8 are input to eight optical beam selection switching elements R 1 to R 8 one by one. That is, one optical signal from the distributors D 1 to D 8 is input to each of the selection switching elements,
The selection switching element selectively receives one optical signal among the eight inputs and sends the signal to the outside as an output.

これは第1図bに示す電気信号の場合における
8入力×8出力の切替マトリクスに相当する。
This corresponds to a switching matrix of 8 inputs x 8 outputs in the case of the electrical signal shown in FIG. 1b.

第2図aおよびbには、この光ビーム選択切替
素子の構造を示す。aは側面をbは断面を示して
いる。a図において1は入力信号の光フアイバー
である。8本の入力フアイバーはb図の点線の丸
で示した位置に収容されている。2は光電変換素
子で磁性体で出来た可動片3の上に取付けられて
いる。可動片3は可撓性のある金属支柱4で支え
られている。可動片に対する4つの外側にはb図
に示すごとく電磁石7が取付けられている。
FIGS. 2a and 2b show the structure of this light beam selection switching element. A shows a side surface and b shows a cross section. In Fig. a, 1 is an optical fiber for input signals. The eight input fibers are housed in the positions indicated by dotted circles in Figure b. A photoelectric conversion element 2 is mounted on a movable piece 3 made of a magnetic material. The movable piece 3 is supported by a flexible metal support 4. As shown in Figure b, electromagnets 7 are attached to the four outer sides of the movable piece.

また受光素子2からはリード線5が引き出さ
れ、このリード線は光電変換素子において電気信
号に変換された信号を増巾変換部6に導くもので
ある。増巾変換部は光電変換素子から入力された
微小電気信号を増巾整形し再び光信号に変換し
て、出力側光フアイバー9を通して外部に出力す
る。
Further, a lead wire 5 is drawn out from the light receiving element 2, and this lead wire guides the signal converted into an electric signal in the photoelectric conversion element to the amplification conversion section 6. The amplification conversion unit amplifies and shapes the minute electrical signal input from the photoelectric conversion element, converts it into an optical signal again, and outputs it to the outside through the output side optical fiber 9.

電磁石7のコイル端子8に駆動電流を印加する
ことにより、駆動された電磁石は自己の方向に可
撓性支柱に支えられた可動片3を吸引する。例え
ばb図において電磁石M1およびM2を駆動すれば
可動片は上左隅の位置に移動し、光電変換素子2
はこの位置に収容された光フアイバーの光を受信
することが出来る。電磁石の電流を切れば可動片
は中央の位置に戻りマトリクスはオフの状態にな
る。このようにして電磁石の1つまたは2つを組
み合せて駆動することにより8本の光フアイバー
入力の1つを任意に選択することが出来る。
By applying a driving current to the coil terminal 8 of the electromagnet 7, the driven electromagnet attracts the movable piece 3 supported by the flexible column in its own direction. For example, in figure b, if electromagnets M 1 and M 2 are driven, the movable piece moves to the upper left corner position, and the photoelectric conversion element 2
can receive the light of the optical fiber housed in this position. When the electromagnet's current is cut off, the movable piece returns to its central position and the matrix is turned off. In this way, by driving one or a combination of two electromagnets, one of the eight optical fiber inputs can be arbitrarily selected.

第2図に戻つて、図中の選択切替素子R1〜R8
を上述の如く機能を持つた素子で構成することに
より光通信用の8入力×8出力の切替マトリクス
が構成できる。
Returning to FIG. 2, the selection switching elements R 1 to R 8 in the diagram
By configuring the device with elements having functions as described above, an 8-input x 8-output switching matrix for optical communication can be constructed.

以上の詳述した8入力×8出力の切替マトリク
スを単位ブロツクとし、この単位ブロツクを電話
交換機のスイツチヤー構成方法と同一の手法を用
いて多段切替マトリクスを構成することにより大
容量の光通信用の切替マトリクスを構成すること
が出来る。
The 8-input x 8-output switching matrix described in detail above is used as a unit block, and this unit block is used to configure a multi-stage switching matrix using the same method as the switcher configuration method for a telephone exchange. A switching matrix can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aはこの発明の構造を示す系統図、第1
図bはこれに相当する従来の電気信号マトリクス
の系統図、第2図aは第1図aに示した光ビーム
選択切替素子の構造を示す側面図、第2図bはこ
の断面図である。 1……光フアイバー、D1〜D8……光信号分配
器、R1〜R8……光ビーム選択切替素子、2……
光電変換素子、3……可動片、4……支柱、5…
…受光素子のリード線、6……増巾変換部、7…
…電磁石(M1〜M4で位置を示す)、8……電磁
石のコイル端子、9……出力側光フアイバー。
Figure 1a is a system diagram showing the structure of this invention;
Figure b is a system diagram of a conventional electric signal matrix corresponding to this, Figure 2 a is a side view showing the structure of the light beam selection switching element shown in Figure 1 a, and Figure 2 b is a cross-sectional view of this. . 1...Optical fiber, D1 to D8 ...Optical signal distributor, R1 to R8 ...Light beam selection switching element, 2...
Photoelectric conversion element, 3... Movable piece, 4... Support column, 5...
...Lead wire of the light receiving element, 6...Width amplification conversion section, 7...
... Electromagnet (positions are indicated by M 1 to M 4 ), 8 ... Coil terminal of electromagnet, 9 ... Output side optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 n系統の入力光信号を入力側においてそれぞ
れm分岐し、分岐した各系統の光フアイバーを1
本づつ出力側に設けられたm個の光ビーム選択切
替素子に集線し、この選択切替素子においては、
光電変換素子を取付けた可動片を電磁的に所定の
位置に移動させることによりm本の入力フアイバ
ーの1つを選択し、この光信号を受光し、電気的
に増巾整形し、再び光ビームとして出力すること
によりn入力×m出力の光信号の切替を行う光通
信用切替マトリクス。
1 The input optical signals of n systems are each branched into m branches at the input side, and the optical fibers of each branched system are connected to 1
Each light beam is concentrated into m light beam selection switching elements provided on the output side, and in this selection switching element,
By electromagnetically moving the movable piece to which the photoelectric conversion element is attached to a predetermined position, one of the m input fibers is selected, and this optical signal is received, electrically amplified and shaped, and then converted into a light beam again. A switching matrix for optical communications that switches n input x m output optical signals by outputting as follows.
JP3649779A 1979-03-28 1979-03-28 Switching matrix for optical communication Granted JPS55129301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3649779A JPS55129301A (en) 1979-03-28 1979-03-28 Switching matrix for optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3649779A JPS55129301A (en) 1979-03-28 1979-03-28 Switching matrix for optical communication

Publications (2)

Publication Number Publication Date
JPS55129301A JPS55129301A (en) 1980-10-07
JPS6331158B2 true JPS6331158B2 (en) 1988-06-22

Family

ID=12471455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3649779A Granted JPS55129301A (en) 1979-03-28 1979-03-28 Switching matrix for optical communication

Country Status (1)

Country Link
JP (1) JPS55129301A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2529687B1 (en) * 1982-07-02 1985-09-13 Thomson Csf Mat Tel OPTICAL SWITCHING DEVICE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109651A (en) * 1977-03-08 1978-09-25 Nippon Telegr & Teleph Corp <Ntt> Optical switch and optical switch matrix

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109651A (en) * 1977-03-08 1978-09-25 Nippon Telegr & Teleph Corp <Ntt> Optical switch and optical switch matrix

Also Published As

Publication number Publication date
JPS55129301A (en) 1980-10-07

Similar Documents

Publication Publication Date Title
US5719971A (en) Strain based optical fiber systems
US5712932A (en) Dynamically reconfigurable WDM optical communication systems with optical routing systems
US5181134A (en) Photonic cross-connect switch
US4365863A (en) Optical switch for a very large number of channels
US6067389A (en) Wavelength-selective optical cross-connect
CA2285128C (en) Switch for optical signals
AU701959B2 (en) Optical telecommunications network
JP5470379B2 (en) Device for switching optical signals
EP0382431A1 (en) Communications network
ATE7346T1 (en) INTEGRATED SERVICES MESSAGE TRANSMISSION AND SWITCHING SYSTEM.
JPS6399697A (en) Optical exchange
EP0236796A3 (en) Optical switching system
JP2001112034A (en) Cross connection exchange and its realizing method
JPH10304406A (en) Optical network and its switch control method
US3871743A (en) Optical crosspoint switching matrix for an optical communications system
US4934775A (en) Optical space switches using cascaded coupled-waveguide optical gate arrays
KR20030065487A (en) Bidirectional wdm optical communication system with bidirectional add-drop multiplexing
JPH10233740A (en) Radio communication equipment using free space optical communication link
EP0149536A3 (en) Communications system
US5121381A (en) Optical switching apparatus for digital signal cross connection and method of interswitch optical transmission of digital signals
US6516112B1 (en) Optical wavelength filter and demultiplexer
WO1992009176A1 (en) Switch composed of identical switch modules
JPS6331158B2 (en)
US20140270634A1 (en) Multi- purpose apparatus for switching, amplifying, replicating, and monitoring optical signals on a multiplicity of optical fibers
US5959748A (en) Method for operating a multistage NxN space division switching arrangement