JPS63311502A - Controller - Google Patents

Controller

Info

Publication number
JPS63311502A
JPS63311502A JP14710687A JP14710687A JPS63311502A JP S63311502 A JPS63311502 A JP S63311502A JP 14710687 A JP14710687 A JP 14710687A JP 14710687 A JP14710687 A JP 14710687A JP S63311502 A JPS63311502 A JP S63311502A
Authority
JP
Japan
Prior art keywords
signal
pid
value
optimum
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14710687A
Other languages
Japanese (ja)
Other versions
JP2634594B2 (en
Inventor
Koji Tachibana
立花 幸治
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62147106A priority Critical patent/JP2634594B2/en
Publication of JPS63311502A publication Critical patent/JPS63311502A/en
Application granted granted Critical
Publication of JP2634594B2 publication Critical patent/JP2634594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To set an optimum PID value without noise influence by providing an integrating arithmetic part and a process characteristic detection part which obtains the time constant and the dead time of a process from an integrating arithmetic result in an optimum PID arithmetic part. CONSTITUTION:The integrating arithmetic part 7 and the process characteristic detection part 12 which obtains the time constant and the dead time of the process from the integrating arithmetic result are provided in the optimum PID arithmetic part. The integrating arithmetic part 7 integrates a controlled variable signal. Since the frequency of the noise component of the controlled variable signal is larger than a process equivalent response frequency, the noise component is canceled and the process characteristic can be extracted. With the extracted process characteristic, the optimum PID value is decided by using the method of Ziegler Nichols, for example, whereby the noise influence of the controlled variable signal can be reduced at the time of deciding the PID value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は調節計に係り、特にプロセス制御に用いられる
ステップ信号を出力し、その制御応答の積算結果よりプ
ロセス特性を求め、最適PID値を設定するのに好適な
調節計に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a controller, and in particular outputs a step signal used for process control, obtains process characteristics from the integration result of the control response, and calculates the optimum PID value. The present invention relates to a controller suitable for setting.

〔従来の技術〕[Conventional technology]

従来、計装置986年Vo Q 、 29 、 No、
 L L 、第31頁〜第58頁の「特集 適用性から
みたオートチューニング調節計の発展方向」なる文献に
記載しであるように、プロセスの特性を求め、ジーグラ
・ニコルス(Ziegler −N1chols)の方
法より最適PID値を決定するようにしている。プロセ
スの特性を測定するのには、ステップ信号応答法があり
、プロセスにステップ信号を与え、制御量信号の変化率
を求め、最大変化率と制御量信号の最終値からプロセス
時定数、ステップ信号開始から制御量信号の立ち上がり
までのむだ時間、制御量信号の最終値とステップ信号幅
からプロセスゲインを求めていた。
Conventionally, measuring device 986 Vo Q, 29, No.
As described in the literature entitled "Special Feature: Development Direction of Autotuning Controllers from the Perspective of Applicability" on pages 31 to 58 of LL, the process characteristics were determined and Ziegler-N1chols' The optimum PID value is determined based on the method. The step signal response method is used to measure process characteristics. A step signal is given to the process, the rate of change of the controlled variable signal is determined, and the process time constant is calculated from the maximum rate of change and the final value of the controlled variable signal. The process gain was determined from the dead time from the start to the rise of the controlled variable signal, the final value of the controlled variable signal, and the step signal width.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、制御量信号の変化率からプロセス時定
数を求めるため、制御量信号に例えばノイズ等が加わる
と、ノイズの変化率を最大変化率としてプロセス時定数
を求め、最適PID値としてしまうことがあり、このた
め、PID値が最適値とは異なる場合があり、これを防
止するため、制御量信号にノイズフィルタ等の挿入の必
要があった。
In the above-mentioned conventional technology, the process time constant is determined from the rate of change of the controlled variable signal, so when noise, etc. is added to the controlled variable signal, the process time constant is determined using the rate of change of the noise as the maximum rate of change, and the optimum PID value is determined. Therefore, the PID value may differ from the optimum value, and in order to prevent this, it is necessary to insert a noise filter or the like into the control amount signal.

本発明の目的は、制御量信号の積算値からプロセス時定
数、むだ時間を求めて、ノイズ影響のない最適PID値
を設定することができる調節計を提供することにある。
An object of the present invention is to provide a controller that can determine a process time constant and dead time from an integrated value of a controlled variable signal and set an optimal PID value free from noise influence.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、最適PID演算部に積算演算部と、積算演
算結果よりプロセスの時定数及びむだ時間を求めるプロ
セス特性検出部とを設け、プロセス特性からの最適PI
D値決定に際して制御量信号のノイズ影響を低減するよ
うにして達成するようにした。
The above purpose is to provide the optimum PID calculation section with an integration calculation section and a process characteristic detection section that calculates the time constant and dead time of the process from the integration calculation results, and to calculate the optimum PID from the process characteristics.
This is achieved by reducing the influence of noise on the control amount signal when determining the D value.

〔作用〕[Effect]

積算演算部は、制御量信号の積算を行い、これにより制
御量信号のノイズ成分は、ノイズ成分の周波数がプロセ
ス等価応答周波数より大きいことから、ノイズ成分は相
殺され、プロセス特性を抽出できる。そして、抽出した
プロセス特性より、例えば、ジー菰う・ニコルスの方法
を用いて最適PID値を決定するから、PID値の決定
に際して制御量信号のノイズ影響を低減できる。
The integration calculation unit integrates the control amount signal, whereby the noise component of the control amount signal is canceled out because the frequency of the noise component is higher than the process equivalent response frequency, and the process characteristic can be extracted. Since the optimum PID value is determined based on the extracted process characteristics using, for example, the Gee-Nichols method, it is possible to reduce the influence of noise on the control amount signal when determining the PID value.

〔実施例〕〔Example〕

以下本団明を第1図、第2図、第4図に示した実施例及
び第3図を用いて詳細に説明する。
The present invention will be described in detail below with reference to the embodiments shown in FIGS. 1, 2, and 4, and FIG. 3.

第1図に本発明の調節計の一実施例を示す外観図である
。第1図において、1はマイクロプロセッサを搭載した
調節計本体で、例えば、プロセスの圧力伝送器3からの
制御量信号を取り込み取り込んだ信号に対してPID演
算を行い、その結果を操作出力信号として操作器4へ出
力する。2は調節計の前面パネルで、制御量及び設定値
表示器21、操作出力表示器22.操作出力押ボタンス
イッチ23.設定値押ボタンスイッチ24.運転モード
切替スイッチ25及び最適PIDチューニング起動スイ
ッチ26を備えている。
FIG. 1 is an external view showing an embodiment of the controller of the present invention. In Fig. 1, reference numeral 1 denotes a controller body equipped with a microprocessor, which takes in a control amount signal from a process pressure transmitter 3, performs PID calculation on the received signal, and uses the result as an operation output signal. Output to the controller 4. 2 is the front panel of the controller, which includes a control amount and set value display 21, an operation output display 22. Operation output pushbutton switch 23. Set value pushbutton switch 24. It is equipped with an operation mode changeover switch 25 and an optimum PID tuning start switch 26.

第2図は第1図の調節計の内部構成の一実施例を示す構
成図である。第2図では、アナログ入力信号を選択する
マルチプレクサ5.アナログ入力信号をディジタル入力
信号に変換するA/D変換部6.A/D変換部6からの
ディジタル入力信号を取り込んでPID演算を行うPI
D制御演算部7、第1図の前面パネル2の押ボタンスイ
ッチ23.24,25.26からの信号を取り込むディ
ジタル入力部8.制御量及び設定値表示器21へ制御量
及び設定値を表示する表示部9、PID制御演算部7で
のPID演算結果の操作出力値をアナログ出力信号に変
換するD/A変換部10、最適PID演算部13からの
開始指令でディジタル化された制御量信号の@算演算を
行う積算演算部11.積算演算値と制御量信号よりプロ
セスのゲイン、時定数、むだ時間を求めるプロセス特性
検出部12、求めただプロセス特性から最適PID値を
例えばジーグラ・ニコルスの方法で計算し。
FIG. 2 is a configuration diagram showing an example of the internal configuration of the controller shown in FIG. 1. In Figure 2, multiplexer 5. selects the analog input signal. 6. A/D converter that converts an analog input signal into a digital input signal. PI that takes in the digital input signal from the A/D converter 6 and performs PID calculation
D control calculation section 7, digital input section 8 which takes in signals from the pushbutton switches 23, 24, 25, 26 on the front panel 2 shown in FIG. A display section 9 that displays the controlled amount and set value on the controlled amount and set value display 21, a D/A converter 10 that converts the manipulated output value of the PID calculation result in the PID control calculation section 7 into an analog output signal, and an optimal An integration calculation unit 11 that performs @ calculation of the digitized control amount signal in response to a start command from the PID calculation unit 13. The process characteristic detecting section 12 calculates the gain, time constant, and dead time of the process from the integrated calculation value and the control amount signal, and calculates the optimum PID value from the determined process characteristics using, for example, the Ziegler-Nichols method.

PID制御演算部7からのチューニング起動信号で積算
演算部11及びステップ信号発生部14へ開始指令を出
す最適PID演算部13及び開始指令を受けて操作出力
切替スイッチ15を切り替えて操作出力側へステップ信
号を出力するステップ信号発生部14より構成しである
The optimum PID calculation unit 13 sends a start command to the integration calculation unit 11 and the step signal generation unit 14 with the tuning start signal from the PID control calculation unit 7, and upon receiving the start command, switches the operation output changeover switch 15 and steps to the operation output side. It consists of a step signal generating section 14 that outputs a signal.

第3図は第2図の積算演算部7の動作を示す線図で、(
a)は正常波形、(b)はノイズが乗った状態を示す波
形である。いま、プロセスにステップ信号を与えると、
プロセスの応答特性は、−次遅れ+むだ時間ke−”/
 1 + T S (K ;プロセスゲイン、T;時定
数、L;むだ時間)の形で応答する。積算演算は時間t
における制御量信号をP V tとし、サンプル時間を
Δtとすると、積算値Stは。
FIG. 3 is a diagram showing the operation of the integration calculation section 7 in FIG.
(a) is a normal waveform, and (b) is a waveform with noise added. Now, when we give a step signal to the process,
The response characteristics of the process are −order delay + dead time ke−”/
1 + T S (K: process gain, T: time constant, L: dead time). Integration calculation takes time t
When the control amount signal at is P V t and the sampling time is Δt, the integrated value St is.

St= St−ムt+ P V tXAt      
           ”・(1)ここに、St−Δt
;サンプル1回前の積算値。つまり、第3図(a)、(
b)の斜線部S、の面積となる。プロセスの春定数Tは
、制御量信号の終了値をPVse終了時間をts、むだ
時間をLとすると、 PVs より。
St= St-mut+ PV tXAt
”・(1) Here, St−Δt
;Accumulated value from the previous sample. In other words, Fig. 3(a), (
This is the area of the shaded part S in b). The spring constant T of the process is given by PVs, where the end value of the controlled variable signal is PVse, the end time is ts, and the dead time is L.

PVs で簡単に求められる。ステップ信号前の制御量信号PV
tが零でないときは、ステップ信号印加前に制御量信号
P V tの移動平均を取り、その値をPVRとすると
、 (1)、(3)式はそれぞれ、S t =S t−
Δt+ (P Vt−P VR) X A t  −(
4)となる。むだ時間しは、積算値ScがΔSX0.0
5/2(ΔS;ステップ信号)を越える時間をL′とし
、L=L’−0,05Tで求める。プロセスゲインには
、K=PVs  PVR/ASt’求メル。
It can be easily calculated using PVs. Controlled amount signal PV before step signal
When t is not zero, take the moving average of the control amount signal P V t before applying the step signal, and let that value be PVR. Equations (1) and (3) are respectively S t = S t-
Δt+ (P Vt-P VR)
4). During dead time, the integrated value Sc is ΔSX0.0
Let the time exceeding 5/2 (ΔS; step signal) be L', and find it as L=L'-0.05T. For process gain, K=PVs PVR/ASt'.

もし、PVsにノイズが印加されても積算値を取るため
、プロセスの時定数)ノイズの時定数のとき、影響を無
現し得る。
Even if noise is applied to PVs, since the integrated value is obtained, the effect may disappear when the time constant of the noise (process time constant) is the same.

第4図は本実施例の調節計の動作フロー図である。ステ
ップS1で入力処理を行い、アナログ入力信号を入力す
る。次に、ステップS2でキース°イツチ取込処理を行
い、第1図の前面パネル2の操作出力押ボタンスイッチ
23の操作出力を取り込む0次に、ステップS3で最適
PIDチューニング起動スイッチ26が押されたかどう
かの判定を行い、オフならステップS4でPID演算を
行い、操作出力値を作成する。オンならステップS5で
最適PID設定動作に入る。PID演算終了後、ステッ
プS6で表示処理を行い、前面パネル2へ制御量、設定
値表示を行う。次に、ステップS7で出力処理を行い、
操作出力値をアナログ出力する。次に、ステップS8で
演算周期待ち(Δを待ち)を行い、演算周期なら再びス
テップS1の入力処理より動作を行う。最適PID設定
動作は、まず、ステップS5でステップ信号出力を実行
したかどうかの判定を行い、まだならステップS9で操
作出力切替スイッチ15を切り替え、ステップ出力信号
を出力する。出力済ならステップS10でPv積算を行
う。次に、ステップS1番で現在までの積算値が5%積
算以上かどうかの判定を行い、5%以上になった時点で
ステップS12でむだ時間りを求める0次に、瞬時積算
値ΔStがΔS、−Δtと等しいか、0.1%積算の閾
値に入ったか否かの判定をステップS13で行い、等し
いときは、ステップ814でに、T、Lを求める。次に
、ステップS15でP、I、D最適値計算を行い、設定
する。
FIG. 4 is an operation flow diagram of the controller of this embodiment. In step S1, input processing is performed and an analog input signal is input. Next, in step S2, key switch capture processing is performed to capture the operation output of the operation output pushbutton switch 23 on the front panel 2 in FIG. 1.Next, in step S3, the optimum PID tuning start switch 26 is pressed If it is off, PID calculation is performed in step S4 to create a manipulated output value. If it is on, the optimum PID setting operation begins in step S5. After the PID calculation is completed, display processing is performed in step S6, and the control amount and set value are displayed on the front panel 2. Next, in step S7, output processing is performed,
Outputs the manipulated output value in analog form. Next, in step S8, a calculation period wait (wait for Δ) is performed, and if the calculation period is found, the operation is performed again from the input processing in step S1. In the optimum PID setting operation, first, it is determined in step S5 whether or not the step signal output has been executed, and if not, the operation output changeover switch 15 is switched in step S9 to output the step output signal. If the output has been completed, Pv integration is performed in step S10. Next, in step S1, it is determined whether the cumulative value up to now is 5% or more, and when it becomes 5% or more, the dead time is calculated in step S12. , -Δt, and whether they are within the threshold for 0.1% integration is determined in step S13. If they are equal, T and L are determined in step 814. Next, in step S15, P, I, and D optimum values are calculated and set.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれば、制御量信号の積算値から
簡単にプロセスの時定数、むだ時間を求め、最適PID
値を設定する調節計を実現できる。
According to the present invention described above, the time constant and dead time of the process are easily determined from the integrated value of the control amount signal, and the optimum PID is calculated.
A controller that sets values can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の調節計の一実施例を示す外観図、第2
図は第1図の調節計の内部構成の一実施例を示す構成図
、第3図は第2図の積算演算部の動作を示す線図、第4
図は本発明の調節計の動作フロー図である。 1・・・調節計本体、2・・・前面パネル、5・・・マ
ルチプレクサ、6・・・A/D変換部、7・・・PID
制御演算部、8・・・ディジタル入力部、9・・・表示
部、1o・・・D/A変換部、11・・・積算演算部、
12・・・プロセス特性検出詔、ia・・・最適PID
演算部、14・・・ステップ信号発生部、15・・・操
作出力切替スイッチ、26・・・最適PIDチューニン
グ起動スイッチ。 第3図 (α) 率4日
FIG. 1 is an external view showing one embodiment of the controller of the present invention, and FIG.
The figure is a configuration diagram showing an example of the internal configuration of the controller in Figure 1, Figure 3 is a diagram showing the operation of the integration calculation section in Figure 2, and Figure 4 is a diagram showing the operation of the integration calculation section in Figure 2.
The figure is an operation flow diagram of the controller of the present invention. 1... Controller main body, 2... Front panel, 5... Multiplexer, 6... A/D conversion section, 7... PID
Control calculation section, 8... Digital input section, 9... Display section, 1o... D/A conversion section, 11... Integration calculation section,
12... Process characteristic detection order, ia... Optimal PID
Arithmetic unit, 14... Step signal generation unit, 15... Operation output changeover switch, 26... Optimal PID tuning start switch. Figure 3 (α) Rate 4 days

Claims (1)

【特許請求の範囲】[Claims] 1、プロセスからの制御量信号を入力する入力部と、入
力した前記制御量信号に所定の制御演算を実行するPI
D制御演算部と、操作出力信号を出力する出力部と、前
記操作出力信号にステップ信号を与えて前記制御量信号
の応答から前記プロセスの特性を求め、最適PID値を
計算する最適PID演算部より構成された調節計におい
て、前記最適PID演算部に積算演算部と積算演算結果
より前記プロセスの時定数及びむだ時間を求めるプロセ
ス特性検出部とを設け、プロセス特性からの最適PID
値への制御量信号のノイズ影響を低減する構成としたこ
とを特徴とする調節計。
1. An input unit that inputs a control amount signal from a process, and a PI that performs a predetermined control calculation on the input control amount signal.
D control calculation unit, an output unit that outputs a manipulated output signal, and an optimal PID calculation unit that applies a step signal to the manipulated output signal, determines the characteristics of the process from the response of the control amount signal, and calculates an optimal PID value. In the controller configured as above, the optimum PID calculation section is provided with an integration calculation section and a process characteristic detection section that calculates the time constant and dead time of the process from the integration calculation results, and the optimum PID calculation section is configured to calculate the optimum PID from the process characteristics.
A controller characterized by having a configuration that reduces the influence of noise on a control amount signal on a value.
JP62147106A 1987-06-15 1987-06-15 Controller Expired - Lifetime JP2634594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147106A JP2634594B2 (en) 1987-06-15 1987-06-15 Controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147106A JP2634594B2 (en) 1987-06-15 1987-06-15 Controller

Publications (2)

Publication Number Publication Date
JPS63311502A true JPS63311502A (en) 1988-12-20
JP2634594B2 JP2634594B2 (en) 1997-07-30

Family

ID=15422651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147106A Expired - Lifetime JP2634594B2 (en) 1987-06-15 1987-06-15 Controller

Country Status (1)

Country Link
JP (1) JP2634594B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245902A (en) * 1989-03-20 1990-10-01 Hitachi Ltd Process controller
CN111324127A (en) * 2020-03-12 2020-06-23 安德里茨(中国)有限公司 Control method based on frequency converter and control device for walking positioning equipment
CN113485094A (en) * 2021-08-02 2021-10-08 中北大学 Method and device for obtaining process optimal ZN model

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465274A (en) * 1977-11-04 1979-05-25 Hideji Hayashibe Device of automatically adjusting pid value of regulator
JPS56159703A (en) * 1980-05-13 1981-12-09 Fuji Electric Co Ltd Arithmetic system for optimum value of pid control parameter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465274A (en) * 1977-11-04 1979-05-25 Hideji Hayashibe Device of automatically adjusting pid value of regulator
JPS56159703A (en) * 1980-05-13 1981-12-09 Fuji Electric Co Ltd Arithmetic system for optimum value of pid control parameter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245902A (en) * 1989-03-20 1990-10-01 Hitachi Ltd Process controller
CN111324127A (en) * 2020-03-12 2020-06-23 安德里茨(中国)有限公司 Control method based on frequency converter and control device for walking positioning equipment
CN111324127B (en) * 2020-03-12 2024-03-05 安德里茨(中国)有限公司 Control method based on frequency converter and control device for walking positioning equipment
CN113485094A (en) * 2021-08-02 2021-10-08 中北大学 Method and device for obtaining process optimal ZN model

Also Published As

Publication number Publication date
JP2634594B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
WO1997007444A3 (en) Field based process control system with auto-tuning
JPH11249724A (en) Planning device and method for robot control path
JPS63311502A (en) Controller
JPS5969807A (en) Auto-tuning system for parameter of pid adjustor
JP2576449B2 (en) Digital process controller
WO2002093478A3 (en) A method and apparatus for executing an affine or non-affine transformation
JPS6148164B2 (en)
JPS63262704A (en) Self-tuning controller
JPH07319504A (en) Controller
JP2562046Y2 (en) Averaging operation circuit
JPH10285989A (en) Current detector and current controller
JPH0718179Y2 (en) Automatic gain adjustment circuit
JP2561332B2 (en) Cascade auto tuning controller
SU873206A1 (en) Digital regulator
JPH07260850A (en) Servo analyzer
JPH0572797B2 (en)
SU980065A1 (en) Pipeline filter
SU418831A1 (en) DEVICE FOR RESEARCHING CHARACTERISTICS OF AUTOMATIC CONTROL SYSTEMS
KR100978267B1 (en) Pid auto synchronization method for using reaction curve
JPH06131002A (en) Controller
JPH0731174A (en) Disturbance load torque estimation system
JPS593503A (en) Blend controller
JPH0527802A (en) Controller
JPH0722899A (en) Signal processor
JPH03262330A (en) Signal processor